Distributions of overshoots for almost continuous stochastic processes defined on a Markov chain

Author:
M. S. Gerych

Translated by:
S. Kvasko

Original publication:
Teoriya Imovirnostei ta Matematichna Statistika, tom **94** (2016).

Journal:
Theor. Probability and Math. Statist. **94** (2017), 37-52

MSC (2010):
Primary 42C40; Secondary 60G12

DOI:
https://doi.org/10.1090/tpms/1007

Published electronically:
August 25, 2017

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the distributions of overshoots for the almost semi-continuous processes defined on a Markov chain. For these processes, we obtain the limit distributions of overshoots for the infinite and zero horizons.

- [1]
Ī.
Ī. Ēžov and A.
V. Skorohod,
*Markov processes which are homogeneous in the second component. I*, Teor. Verojatnost. i Primenen.**14**(1969), 3–14 (Russian, with English summary). MR**0247666** - [2]
Ī.
Ī. Ēžov and A.
V. Skorohod,
*Markov processes which are homogeneous in the second component. II.*, Teor. Verojatnost. i Primenen.**14**(1969), 679–692 (Russian, with English summary). MR**0267640** - [3]
E.
Arjas,
*On a fundamental identity in the theory of semi-Markov processes*, Advances in Appl. Probability**4**(1972), 258–270. MR**0339355**, https://doi.org/10.2307/1425998 - [4]
A. A. Mogul'skĭ,
*Factorization identities for processes with independent increments, given on a finite Markov chain*, Teor. Veroyatnost. Mat. Statist.**11**(1974), 86-96; English transl. in Theory Probab. Math. Statist.**11**(1974), 87-98. - [5]
Søren
Asmussen and Hansjörg
Albrecher,
*Ruin probabilities*, 2nd ed., Advanced Series on Statistical Science & Applied Probability, vol. 14, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2010. MR**2766220** - [6]
D.
V. Gusak,
*\cyr Granichnī zadachī dlya protsesīv z nezalezhnimi prirostami na skīnchennikh lantsyugakh Markova ta dlya napīvmarkovs′kikh protsesīv*, \cyr Trudi Īnstitutu Matematiki Natsīonal′noï Akademīï Nauk Ukraïni [Proceedings of the Institute of Mathematics of the National Academy of Sciences of the Ukraine], vol. 18, Natsīonal′na Akademīya Nauk Ukraïni, Īnstitut Matematiki, Kiev, 1998 (Ukrainian, with English and Ukrainian summaries). MR**1710395** - [7]
E. V. Karnaukh,
*Boundary problems for a class of processes defined on a Markov chain*, Abstract of thesis kand. fiz.-mat. nauk, Institute of Mathematics, National Academy of Science of Ukraine, Kyiv, 2007. (Ukrainian) - [8]
V.
I. Lotov and N.
G. Orlova,
*Factorization representations in boundary value problems for random walks defined on a Markov chain*, Sibirsk. Mat. Zh.**46**(2005), no. 4, 833–840 (Russian, with Russian summary); English transl., Siberian Math. J.**46**(2005), no. 4, 661–667. MR**2169400**, https://doi.org/10.1007/s11202-005-0066-2 - [9]
M.
S. Herych and D.
V. Husak,
*On the moment-generating functions of extrema and their complements for almost semicontinuous integer-valued Poisson processes on Markov chains*, Ukrainian Math. J.**67**(2016), no. 8, 1164–1182. Translation of Ukraïn. Mat. Zh. 67 (2015), no. 8, 1034–1049. MR**3473711**, https://doi.org/10.1007/s11253-016-1144-2 - [10]
D.
V. Gusak and A.
I. Tureniyazova,
*Distribution of some functionals for lattice Poisson processes on a Markov chain*, Asymptotic methods in the investigation of stochastic models (Russian), Acad. Sci. Ukrain. SSR, Inst. Math., Kiev, 1987, pp. 21–27, 143 (Russian). MR**943353** - [11]
D.
V. Gusak,
*\cyr Granichnī zadachī dlya protsesīv z nezalezhnimi prirostami v teorīï riziku*, \cyr Pratsī Īnstitutu Matematiki Natsīonal′noï Akademīï Nauk Ukraïni. Matematika ta ïï Zastosuvannya [Proceedings of Institute of Mathematics of NAS of Ukraine. Mathematics and its Applications], vol. 65, Natsīonal′na Akademīya Nauk Ukraïni, Īnstitut Matematiki, Kiev, 2007 (Ukrainian, with English and Ukrainian summaries). MR**2382816** - [12]
M. S. Gerych,
*A ramification of the main factorization identity for almost semi-continuous lattice Poisson processes defined on a Markov chain*, Carpathian Math. Publ.**4**(2012), no. 2, 229-240. (Ukrainian) - [13]
M. S. Gerych,
*Generating functions of extremums and their complements for semi-continuous from above lattice Poisson processes defined on a Markov chain*, Visn. Kyiv Shevchenko Nat. Univ. Ser. Fiz.-Mat.**1**(2013), 21-27. (Ukrainian)

Retrieve articles in *Theory of Probability and Mathematical Statistics*
with MSC (2010):
42C40,
60G12

Retrieve articles in all journals with MSC (2010): 42C40, 60G12

Additional Information

**M. S. Gerych**

Affiliation:
Department of Probability Theory and Mathematical Analysis, Faculty for Mathematics, Uzhgorod National University, Universytets’ka Street, 14, Uzhgorod 88000, Ukraine

Email:
miroslava.gerich@yandex.ua

DOI:
https://doi.org/10.1090/tpms/1007

Keywords:
Almost semi-continuous process defined on a Markov chain,
overshoot functionals,
distributions of overshoots for the infinite and zero horizons

Received by editor(s):
February 12, 2016

Published electronically:
August 25, 2017

Article copyright:
© Copyright 2017
American Mathematical Society