Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

 
 

 

Upper bounds for supremums of the norms of the deviation between a homogeneous isotropic random field and its model


Author: N. V. Troshki
Translated by: N. Semenov
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 94 (2016).
Journal: Theor. Probability and Math. Statist. 94 (2017), 159-184
MSC (2010): Primary 60G15; Secondary 60G07
DOI: https://doi.org/10.1090/tpms/1016
Published electronically: August 25, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Some estimates are obtained for the norm of the deviation between a homogeneous isotropic random field and its model.


References [Enhancements On Off] (What's this?)

  • [1] V. V. Buldygin and Yu. V. Kozachenko, Metric characterization of random variables and random processes, Translations of Mathematical Monographs, vol. 188, American Mathematical Society, Providence, RI, 2000. Translated from the 1998 Russian original by V. Zaiats. MR 1743716
  • [2] R. Giuliano Antonini, Yu. Kozachenko, and T. Nikitina, Spaces of 𝜙-sub-Gaussian random variables, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 27 (2003), 95–124 (English, with English and Italian summaries). MR 2056414
  • [3] Yu. V. Kozachenko and L. F. Kozachenko, On the accuracy of modeling stationary Gaussian random processes in 𝐿²(0,𝑇), Vychisl. Prikl. Mat. (Kiev) 75 (1991), 108–115 (Russian); English transl., J. Math. Sci. 72 (1994), no. 3, 3137–3143. MR 1168858, https://doi.org/10.1007/BF01259486
  • [4] Yu. V. Kozachenko and A. O. Pashko, The accuracy of modeling random processes in norms of Orlicz spaces. I, Teor. Ĭmovīr. Mat. Stat. 58 (1998), 45–60 (Ukrainian, with Ukrainian summary); English transl., Theory Probab. Math. Statist. 58 (1999), 51–66 (2000). MR 1793641
  • [5] Yu. V. Kozachenko, A. O. Pashko, and I. V. Rozora, Modeling Random Processes and Fields, ``Zadruga'', Kyiv, 2007. (Ukrainian)
  • [6] Yu. V. Kozachenko, O. O. Pogorilyak, and A. M. Tegza, Modeling Gaussian Random Processes and Cox Processes, ``Karpaty'', Uzhgorod, 2012. (Ukrainian)
  • [7] Yu. Kozachenko and A. Slyvka-Tylyshchak, The Cauchy problem for the heat equation with a random right part of the space $ \mathrm {Sub}_{\varphi }(\Omega )$, Appl. Math. 5 (2014), 2318-2333.
  • [8] Yu. V. Kozachenko and N. V. Troshki, Accuracy and reliability of a model of a Gaussian random process in $ C(\mathbb{T})$ space, Inter. J. Statist. Management System 10 (2015), no. 1-2, 1-15.
  • [9] G. A. Mikhaĭlov, Modeling random processes and fields with the help of Palm processes, Doklady AN SSSR 262 (1982), no. 3, 531-535. (Russian)
  • [10] G. A. Mikhaĭlov, \cyr Nekotorye voprosy teorii metodov Monte-Karlo., Izdat. “Nauka” Sibirsk. Otdel., Novosibirsk, 1974 (Russian). MR 0405785
  • [11] G. A. Mikhaĭlov and K. K. Sabel'fel'd, On numerical simulation of impurity diffusion in stochastic velocity fields, Izvestiya AN SSSR Ser. Physics 16 (1980), no. 3, 229-235. (Russian)
  • [12] G. A. Mikhaĭlov, Approximate models of random processes and fields, Zh. Vychisl. Mat. i Mat. Fiz. 23 (1983), no. 3, 558–566 (Russian). MR 706881
  • [13] G. A. Mikhaĭlov and A. V. Voĭtishek, Numerical statistical modeling, ``Akademia'', Moscow, 2006. (Russian)
  • [14] N. V. Troshkī, Accuracy and reliability of a model of a Gaussian homogeneous and isotropic random field in the space 𝐿_{𝑝}(𝕋), 𝕡≥1, Teor. Ĭmovīr. Mat. Stat. 90 (2014), 161–176 (Ukrainian, with English, Russian and Ukrainian summaries); English transl., Theory Probab. Math. Statist. 90 (2015), 183–200. MR 3242030, https://doi.org/10.1090/tpms/959
  • [15] Nataliya Troshki, Construction models of Gaussian random processes with a given accuracy and reliability in 𝐿_{𝑝}(𝑇), 𝑝⩾1, J. Class. Anal. 3 (2013), no. 2, 157–165. MR 3322266
  • [16] Z. O. Vyzhva, On approximation of 3-D isotropic random fields on the sphere and statistical simulation, Theory Stoch. Process. 3 (1997), no. 3-4, 463-467.
  • [17] M. Ĭ. Jadrenko, \cyr Spektral′naya teoriya sluchaĭnykh poleĭ, “Vishcha Shkola”, Kiev, 1980 (Russian). MR 590889
  • [18] M. I. Yadrenko and A. K. Rakhimov, Statistical simulation of a homogeneous isotropic random field on the plane and estimations of simulation errors, Teor. Ĭmovīr. Mat. Stat. 49 (1993), 245–251 (Ukrainian, with Ukrainian summary); English transl., Theory Probab. Math. Statist. 49 (1994), 177–181 (1995). MR 1445264

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2010): 60G15, 60G07

Retrieve articles in all journals with MSC (2010): 60G15, 60G07


Additional Information

N. V. Troshki
Affiliation: Department of Probability Theory and Mathematical Analysis, Uzhgorod National University, Universytets’ka Street, 14, Uzhgorod 88000, Ukraine
Email: FedoryanichNatali@ukr.net

DOI: https://doi.org/10.1090/tpms/1016
Keywords: Gaussian random fields, homogeneous and isotropic fields, modeling, accuracy and reliability
Received by editor(s): April 20, 2016
Published electronically: August 25, 2017
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society