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STOCHASTIC DIFFERENTIAL EQUATIONS WITH GENERALIZED

STOCHASTIC VOLATILITY AND STATISTICAL ESTIMATORS

UDC 519.21

M. BEL HADJ KHLIFA, YU. MISHURA, K. RALCHENKO, G. SHEVCHENKO, AND M. ZILI

Abstract. We study a stochastic differential equation, the diffusion coefficient of
which is a function of some adapted stochastic process. The various conditions for
the existence and uniqueness of weak and strong solutions are presented. The drift
parameter estimation in this model is investigated, and the strong consistency of
the least squares and maximum likelihood estimators is proved. As an example, the
Ornstein–Uhlenbeck model with stochastic volatility is considered.

1. Introduction

In this article we investigate the stochastic differential equation of the form

Xt = X0 + θa(t,Xt) dt+ σ(t,Xt, Yt) dWt, t ∈ [0, T ],

where W is a Wiener process, Y is some additional stochastic process, and θ is an
unknown drift parameter. The models of such type have been known in mathematical
finance since the late eighties; see [8]. Later the various models with stochastic volatility
were proposed and studied by Stein and Stein [15], Heston [7], and Fouque et al. [5, 6]
among others. For the recent results on this topic we refer to [9, 10], and the references
cited therein. The problem of the parameter estimation in stochastic volatility models
was considered in [1].

The case when the coefficient σ is a product of the form σ1(t,Xt)σ2(t, Yt) was studied
in detail in [3], where the existence-uniqueness theorems for weak and strong solutions
under various assumptions were proved, and the maximum likelihood estimator (MLE)
was constructed and investigated. Here we obtain similar results for the case of a general
diffusion coefficient σ(t,Xt, Yt). Moreover, we also propose the least squares estimator
(LSE) for θ. Unlike the MLE, this estimator does not depend on the process Y . This is
its crucial advantage, since in the financial applications the volatility process usually is
not observed. As an example, we study the Ornstein–Uhlenbeck process with stochastic
volatility and establish the strong consistency of both estimators for it.

The paper is organized as follows. In Section 2 we discuss the existence and uniqueness
of weak and strong solutions. The drift parameter estimation is studied in Section 3.
Section 4 is devoted to numerics. Some auxiliary results are proved in Section 5.
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2. Existence and uniqueness results

Let (Ω,F, {Ft}t≥0 ,P) be a complete probability space with filtration satisfying the
standard assumptions. Let us consider the stochastic differential equation

(1) Xt = X0 +

∫ t

0

a(s,Xs) ds+

∫ t

0

σ(s,Xs, Ys) dWs, t ∈ [0, T ],

where X0 ∈ R is a constant, a : [0, T ] × R → R and σ : [0, T ] × R × R → R are non-
random functions, W = {Wt,Ft, t ∈ [0, T ]} is a standard Wiener process, and Y =
{Yt,Ft, t ∈ [0, T ]} is some stochastic process.

In this section we consider the existence and uniqueness of weak and strong solutions
for the equation (1), adapting the approaches of Skorokhod [14], Stroock and Varad-
han [16, 17], Yamada and Watanabe [18], and the standard Lipschitz conditions. Most
of the results of this section can be proved similarly to the corresponding theorems of [3],
so we omit their proofs.

2.1. Existence of weak solutions in terms of the Skorokhod conditions. The
proof of the following result follows the scheme from [14, Ch. 3, §3] and is similar to [3,
Th. 1].

Theorem 2.1. Let Y = {Yt,Ft, t ∈ [0, T ]} be a stochastically continuous stochastic pro-
cess, i.e.,

lim
h→0

sup
|t1−t2|≤h

P (|Yt1 − Yt2 | > ε) = 0.

Assume that the coefficients a(t, x) and σ(t, x, y) satisfy the following assumptions:

(i) a(t, x) and σ(t, x, y) are jointly continuous with respect to t ∈ [0, T ] and x, y ∈ R,
(ii) there exists a constant K > 0 such that

a(t, x)2 + σ(t, x, y)2 ≤ K
(
1 + x2

)
,

for all x, y ∈ R.

Then the equation (1) has a weak solution.

2.2. Existence and uniqueness of weak solution in terms of Stroock–Varadhan
conditions. In this approach we assume additionally that the process Y is also a solu-
tion of some diffusion stochastic differential equation. Let W 1 and W 2 be two Wiener
processes, possibly correlated, so that dW 1

t W
2
t = ρ dt for some |ρ| ≤ 1. In this case

we can present W 2
t = ρW 1

t +
√
1− ρ2 W 3

t , where W 3 is a Wiener process independent
of W 1.

Theorem 2.2. Consider the system of stochastic differential equations

(2)

{
dXt = a(t,Xt) dt+ σ(t,Xt, Yt) dW

1
t ,

dYt = α(t, Yt) dt+ β(t, Yt) dW
2
t ,

where all coefficients a, σ, α, and β are non-random measurable and bounded functions,
and σ and β are continuous in all arguments. Let |ρ| < 1, β(t, y) > 0, σ(t, x, y) > 0
for all t, x, y. Then the weak existence and uniqueness in law hold for system (2), and,
in particular, the weak existence and uniqueness in law hold for the first equation of (2)
with Y being a weak solution of the second equation of (2).

Proof. Equations in (2) are equivalent to the two-dimensional stochastic differential equa-
tion

dZ(t) = A(t, Zt) dt+B(t, Zt) dW (t),



SDES WITH GENERALIZED STOCHASTIC VOLATILITY 3

where Z(t) =
(

X(t)
Y (t)

)
, W (t) =

(
W 1(t)

W 3(t)

)
is a two-dimensional Wiener process,

A(t, x, y) =

(
a(t, x)
α(t, y)

)
, B(t, x, y) =

(
σ(t, x, y) 0

ρβ(t, y)
√
1− ρ2β(t, y)

)
.

It follows from measurability and boundedness of a and α and continuity and bounded-
ness of σ and β that coefficients of matrices A and B are non-random, measurable, and
bounded, and additionally coefficients of B are continuous in all arguments. Then we
can apply [16, Ths. 4.2 and 5.6] (see also [4, Prop. 1.14]) and deduce that we have to
prove the following relation: for any (t, x, y) ∈ R

+ × R
2 there exists ε(t, x, y) > 0 such

that for all λ ∈ R
2,

(3) ‖B(t, x, y)λ‖ ≥ ε(t, x, y) ‖λ‖ .

Relation (3) is equivalent to the following (we omit arguments):

σ2λ2
1 + β2

(
ρλ1 +

√
1− ρ2λ2

)2

≥ ε2
(
λ2
1 + λ2

2

)
or

(4)
(
σ2 + β2ρ2

)
λ2
1 + β2

(
1− ρ2

)
λ2
2 + 2ρ

√
1− ρ2β2λ1λ2 ≥ ε2

(
λ2
1 + λ2

2

)
.

The quadratic form

Q(λ1, λ2) =
(
σ2 + β2ρ2

)
λ2
1 + β2

(
1− ρ2

)
λ2
2 + 2ρ

√
1− ρ2β2λ1λ2

in the left-hand side of (4) is positive definite, since its discriminant

D = ρ2
(
1− ρ2

)
β4 − β2

(
1− ρ2

) (
σ2 + β2ρ2

)
= −β2

(
1− ρ2

)
σ2 < 0.

The continuity of Q(λ1, λ2) implies the existence of minλ2
1+λ2

2=1 Q(λ1, λ2) > 0. Then

putting ε = minλ2
1+λ2

2=1 Q(λ1, λ2) and using homogeneity, we get (4). �

2.3. Existence and uniqueness of strong solution in terms of Yamada–
Watanabe conditions. Now we consider strong existence-uniqueness conditions for
equation (1), adapting the Yamada–Watanabe conditions for inhomogeneous coefficients
from [2].

Theorem 2.3. Let a and σ be non-random measurable and bounded functions such that

(i) there exist a positive increasing function ρ(u), u ∈ (0,∞), satisfying ρ(0) = 0
and a positive measurable bounded function ψ such that

|σ(t, x1, y)− σ(t, x2, y)| ≤ ψ(y)ρ(|x1 − x2|),

for all t ≥ 0, x1, x2, y ∈ R, and
∫∞
0

ρ−2(u) du = +∞;
(ii) there exists a positive increasing concave function k(u), u ∈ (0,∞), satisfying

k(0) = 0 such that

|a(t, x)− a(t, y)| ≤ k(|x− y|),

for all t ≥ 0, x, y ∈ R, and
∫∞
0

k−1(u) du = +∞.

Also, let Y be an adapted continuous stochastic process. Then the pathwise uniqueness
of a solution holds for the equation (1), and hence it has the unique strong solution.
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2.4. Existence and uniqueness of strong solution in terms of Lipschitz condi-
tions.

Theorem 2.4. Let a and σ be non-random measurable functions and let Y be an adapted
continuous stochastic process. Consider the following assumptions :

(i) there exists K > 0 such that for all t ≥ 0, x ∈ R, y ∈ R,

|σ(t, x, y)|2 + |a(t, x)|2 ≤ K2
(
1 + |x|2

)
;

(ii) for any N ∈ N there exist KN > 0 and CN > 0 such that for all t ≥ 0 and for
all (x1, x2, y) satisfying |x1| ≤ N , |x2| ≤ N , and |y| ≤ N ,

|a(t, x1)− a(t, x2)| ≤ KN |x1 − x2|

and

|σ(t, x1, y)− σ(t, x2, y)| ≤ KNϕ(t, y) |x1 − x2| ,
where ϕ is a positive and measurable function such that

sup
s≥0

sup
|x|≤N

|ϕ(s, x)| ≤ CN .

Then equation (1) has a unique strong solution.

This result can be proved by using the successive approximation method; see, e.g.,
[13, Th. 1.2].

3. Drift parameter estimation

Let (Ω,F,F,P) be a complete probability space with filtration F = {Ft, t ≥ 0} satisfy-
ing the standard assumptions. It is assumed that all processes under consideration are
adapted to the filtration F. Consider a parametrized version of equation (1),

(5) Xt = X0 + θ

∫ t

0

a(s,Xs) ds+

∫ t

0

σ(s,Xs, Ys) dWs, t ∈ [0, T ],

where W is a Wiener process. Assume that equation (1) has a unique strong solution
X = {Xt, t ∈ [0, T ]}. Our main problem is to estimate the unknown parameter θ by the
continuous observations of X and Y .

3.1. Least squares estimation. Assume that

E

∫ t

0

a2(s,Xs) ds < ∞,(6) ∫ ∞

0

a2(s,Xs) ds = ∞ almost surely,(7)

|σ(t,Xt, Yt)| ≤ C almost surely,(8)

for all t > 0 and for some constant C > 0. Consider the following least squares estimator:

θ̃T =

∫ T

0
a(t,Xt) dXt∫ T

0
a2(t,Xt) dt

.

Theorem 3.1. Under the assumptions (6)–(8), the estimator θ̃T is strongly consistent,
as T → ∞.
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Proof. Using (5), the estimator θ̃T can be written as

θ̃T = θ +
ZT

LT
,

where

ZT =

∫ T

0

a(t,Xt)σ(t,Xt, Yt) dWt, LT =

∫ T

0

a2(t,Xt) dt.

Under assumptions (6)–(8) the process Zt is a square-integrable martingale with quadrat-

ic variation 〈Z〉t =
∫ t

0
a2(s,Xs)σ

2(s,Xs, Ys) ds, and Lt is an increasing process such that
L0 = 0, and L∞ = ∞ almost surely. According to the strong law of large numbers
for martingales [12, Ch. 2, §6, Th. 10], in order to prove the almost sure convergence
ZT /LT → 0, it suffices to verify that

∫∞
0

(1+Lt)
−2 d〈Z〉t < ∞. This condition is satisfied,

because ∫ ∞

0

d〈Z〉t
(1 + Lt)2

=

∫ ∞

0

a2(t,Xt)σ
2(t,Xt, Yt)

(1 + Lt)2
dt ≤ C2

∫ ∞

0

dLt

(1 + Lt)2
= C2. �

3.2. Maximum likelihood estimation. Denote

f(t, x, y) =
a(t, x)

σ2(t, x, y)
, g(t, x, y) =

a(t, x)

σ(t, x, y)
.

Assume that for all t > 0,

σ(t,Xt, Yt) 
= 0 almost surely,(9)

E

∫ t

0

g2(s,Xs, Ys) ds < ∞,(10) ∫ ∞

0

g2(s,Xs, Ys) ds = ∞ almost surely.(11)

Then a likelihood function for equation (1) has the form

dPθ(T )

dP0(T )
= exp

{
θ

∫ T

0

f(t,Xt, Yt) dXt −
θ2

2

∫ T

0

g2(t,Xt, Yt) dt

}
;

see [11, Ch. 7]. Hence, the maximum likelihood estimator of parameter θ constructed by
the observations of X and Y on the interval [0, T ] has the form

(12) θ̂T =

∫ T

0
f(t,Xt, Yt) dXt∫ T

0
g2(t,Xt, Yt) dt

= θ +

∫ T

0
g(t,Xt, Yt) dWt∫ T

0
g2(t,Xt, Yt) dt

.

Theorem 3.2. Under the assumptions (9)–(11), the estimator θ̂T is strongly consistent,
as T → ∞.

Proof. Note that under condition (10) the process Mt =
∫ t

0
g(s,Xs, Ys) dWs is a square-

integrable martingale with quadratic variation 〈M〉t =
∫ t

0
g2(s,Xs, Ys) ds. According to

[12, Ch. 2, §6, Th. 10, Cor. 1], under condition 〈M〉T → ∞ almost surely, as T → ∞,
we have that MT /〈M〉T → 0 almost surely, as T → ∞. Therefore, it follows from

representation (12) that θ̂T is strongly consistent. �
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3.3. Drift parameter estimation for the Ornstein–Uhlenbeck process with sto-
chastic volatility. As an example let us consider the following model:

(13) Xt = X0 + θ

∫ t

0

Xs ds+

∫ t

0

σ(Ys) dWs, t ∈ [0, T ],

where the process Y is independent of the Wiener process W , and the diffusion coefficient
σ(Y ) satisfies the following condition: for all t ≥ 0, y ∈ R,

(14) σ1 ≤ σ(Ys) ≤ σ2

almost surely for some positive constants σ1 and σ2.
By Theorem 2.4, the equation (13) has a unique strong solution. It is not hard to see

that this solution is given by

Xt = X0e
θt +

∫ t

0

σ(Ys)e
θ(t−s) dWs, t ∈ [0, T ].

Note that when σ is a constant, we obtain the well-known Ornstein–Uhlenbeck model.
Therefore, we will call the process X the Ornstein–Uhlenbeck process with stochastic
volatility.

The LSE and MLE for θ are equal to

θ̃T =

∫ T

0
Xt dXt∫ T

0
X2

t dt
, θ̂T =

∫ T

0
f(Xt, Yt) dXt∫ T

0
g2(Xt, Yt) dt

,

where f(x, y) = x/σ2(y), g(x, y) = x/σ(y).

Theorem 3.3. In the model (13), under the assumption (14), both estimators θ̃T and θ̂T
are strongly consistent, as T → ∞.

Proof. Since Y is independent of W , we can assume that P = PW ×PY , Ω = ΩW ×ΩY ,
ω = (ωW , ωY ), Wt(ω) = Wt(ωW ), Yt(ω) = Yt(ωY ). Thus it is sufficient to show the
strong consistency with respect to PW for a. a. ωY ∈ ΩY . In other words, we can assume
that σ(Yt) = σ(t) is deterministic. More precisely, let

(15) Xt = X0e
θt +

∫ t

0

σ(s)eθ(t−s) dWs, t ∈ [0, T ].

Note that under the assumption (14), the conditions (8) and (9) are satisfied. Fur-
thermore, the conditions (6)–(7) and (10)–(11) are equivalent to

E

∫ t

0

X2
s ds < ∞,(16) ∫ ∞

0

X2
s ds = ∞ almost surely.(17)

Clearly, the assumption (16) is satisfied, because

E

∫ t

0

X2
s ds ≤ 2

(
X0

∫ t

0

eθs ds

)2

+ 2E

(∫ t

0

∫ s

0

σ(u)eθ(s−u) dWu ds

)2

=

(
X0

∫ t

0

eθs ds

)2

+ 2E

(∫ t

0

∫ t

u

σ(u)eθ(s−u) ds dWu

)2

≤
(
X0

∫ t

0

eθs ds

)2

+ 2σ2
2

∫ t

0

(∫ t

u

eθ(s−u) ds

)2

du < ∞.

It remains to verify the assumption (17). Let us consider two cases.
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Case θ ≥ 0. It suffices to prove that for λ > 0 the Laplace transform

Ψt(λ) := E exp

{
−λ

∫ t

0

X2
s ds

}
converges to zero, as t → ∞. Since∫ t

0

X2
s ≥

∫ t

t−1

X2
s ds ≥

(∫ t

t−1

Xs ds

)2

,

we have

Ψt(λ) ≤ E exp

{
−λ

(∫ t

t−1

Xs ds

)2
}
.

Note that
∫ t

t−1
Xs ds is Gaussian. For a Gaussian random variable ξ ∼ N (μ, s2),

E exp
{
−λξ2

}
=

(
2λs2 + 1

)−1/2
exp

{
− λμ2

2λs2 + 1

}
≤

(
2λs2 + 1

)−1/2
.

Therefore,

Ψt(λ) ≤
(
2λV (t) + 1

)−1/2
,

where

V (t) = Var

[∫ t

t−1

Xs ds

]
.

However, by Lemma 5.1, V (t) → ∞ as t → ∞, whence the proof follows.
Case θ < 0. We will prove a stronger property than (17), namely,

P

(
lim sup
t→∞

∫ t+1

t

X2
s ds = ∞

)
= 1.

Evidently, it suffices to prove that for all C > 0,

P

(
lim sup
t→∞

∫ t+1

t

X2
s ds ≥ C

)
= 1

or

P

(
lim inf
t→∞

∫ t+1

t

X2
s ds ≤ C

)
= 0.

By the Cauchy–Schwarz inequality,∣∣∣∣∫ t+1

t

Xs ds

∣∣∣∣2 ≤
∫ t+1

t

X2
s ds.

Therefore,

P

(
lim inf
t→∞

∫ t+1

t

X2
s ds ≤ C

)
≤ P

(
lim inf
t→∞

∣∣∣∣∫ t+1

t

Xs ds

∣∣∣∣2 ≤ C

)

≤ P

⎛⎝ ⋃
N∈N

⋂
t≥N

At

⎞⎠ ≤
∑
N∈N

P

⎛⎝ ⋂
t≥N

At

⎞⎠ ,

where At =
{∣∣∫ t+1

t
Xs ds

∣∣2 ≤ C + 1
}
. Now it suffices to show that for all N ,

(18) P
(⋂

t≥N At

)
= 0.
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For any k ≥ 1 and N < N1 < N2 < · · · < Nk,

P
(⋂

t≥N At

)
≤ P(AN )P (AN1

| AN )P (AN2
| AN1

∩ AN ) . . .

× P
(
ANk

| AN1
∩ · · · ∩ANk−1

∩ AN

)
.

By Lemma 5.2, P(AN ) ≤ δ < 1, where a constant δ = δ(θ, C) does not depend on N .

Since Z is a Gaussian process, the conditional distribution of ζN1
=

∫ N1+1

N1
Xs ds given

σ(Xs, s ≤ N) is Gaussian. Moreover, in view of (15) we can decompose ζN1
= ζ ′N1

+ ζ ′′N1
,

where

ζ ′N1
=

∫ N1+1

N1

∫ N

0

σ(s)eθ(t−s) dWs dt

is σ(Xs, s ≤ N)-measurable, and

ζ ′′N1
=

∫ N1+1

N1

(
X0e

θt +

∫ t

N

σ(s)eθ(t−s) dWs

)
dt

is independent from σ(Xs, s ≤ N). Then ζ ′N1
→ 0 in probability, as N1 → ∞, since

E
(
ζ ′N1

)2
=

(∫ N1+1

N1

eθt dt

)2 ∫ N

0

σ2(s)e−2θs ds

≤ e2θN1

(
eθt − 1

)2
θ2

σ2
2

∫ N

0

e−2θs ds → 0,

as N1 → ∞. Therefore, for any ε > 0,

lim sup
N1→∞

P (AN1
| AN ) = lim sup

N1→∞

P
(
ζ2N1

≤ C + 1, ζ2N ≤ C + 1
)

P (ζ2N ≤ C + 1)

≤ lim sup
N1→∞

P
(∣∣ζ ′N1

∣∣ ≥ ε
)
+ P

(∣∣ζ ′′N1

∣∣ ≤ √
C + 1 + ε, ζ2N ≤ C + 1

)
P (ζ2N ≤ C + 1)

= lim sup
N1→∞

P
(∣∣ζ ′′N1

∣∣ ≤ √
C + 1 + ε

)
.

Letting ε → 0, we get

lim sup
N1→∞

P (AN1
| AN ) ≤ lim sup

N1→∞
P
(∣∣ζ ′′N1

∣∣2 ≤ C + 1
)
< δ,

by Lemma 5.2, since ζ ′′N1
=

∫ N1+1

N1
X

(N)
t dt in terms of the notation (19). Hence there

exists N1 > N such that

P (AN1
| AN ) <

1 + δ

2
.

Similarly, there exists N2 > N1 such that

P (AN2
| AN1

∩ AN ) <
1 + δ

2
,

and so on. Then

P

⎛⎝ ⋂
t≥N

At

⎞⎠ ≤
(
1 + δ

2

)k

.

Letting k → ∞, we get (18). This completes the proof. �
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4. Simulations

In this section we illustrate the quality of the estimators by simulations. Assume that
the process X is described by the model (5), where Y is a unique strong solution of the
homogeneous stochastic differential equation

Yt = Y0 +

∫ t

0

α(Ys) ds+

∫ t

0

β(Ys) dW̃s, t ∈ [0, T ],

W̃ =
{
W̃t,Ft, t ∈ [0, T ]

}
is a Wiener process, independent of W . More precisely, we

consider the following four examples of Y :

(1) constant coefficients: α(y) = α, β(y) = β (we choose α = 1, β = 2);
(2) geometric Brownian motion: α(y) = αy, β(y) = βy (we choose α = 2, β = 1);
(3) Ornstein–Uhlenbeck model: α(y) = −αy, β(y) = β (we choose α = β = 1);
(4) Cox–Ingersoll–Ross model: α(y) = α1(α2 − y), β(y) = β

√
y (we choose α1 = 1,

α2 = 2, β = 1).

We simulate 100 sample paths of X for each set of parameters and compute means and
standard deviations of LSE and MLE. Since the influence of the initial values X0 and Y0

on the behavior of the estimators is quite small, we choose X0 = Y0 = 1 everywhere.

Table 1. dXt = θ(2 + sinXt) dt+
(
2 + cos(Xt + Yt)

)
dWt, θ = 2

Mean/ T

α(y) β(y) Est. Std.dev. 10 50 100 200

1 2
θ̃

Mean 1.9870 1.9965 1.9899 1.9887

Std.dev. 0.2839 0.1447 0.1077 0.0813

θ̂
Mean 1.9935 1.9919 1.9937 1.9940

Std.dev. 0.2538 0.1163 0.0862 0.0629

2y y
θ̃

Mean 2.0262 2.0048 1.9975 1.9908

Std.dev. 0.2885 0.1344 0.1015 0.0673

θ̂
Mean 2.0141 1.9935 1.9874 1.9893

Std.dev. 0.2194 0.1006 0.0861 0.0562

−y 1
θ̃

Mean 2.0164 1.9885 1.9990 2.0058

Std.dev. 0.3293 0.1482 0.1113 0.0836

θ̂
Mean 2.0305 1.9951 2.0072 2.0081

Std.dev. 0.2649 0.1139 0.0825 0.0606

2− y
√
y

θ̃
Mean 2.0283 2.0143 2.0094 2.0017

Std.dev. 0.3177 0.1427 0.0964 0.0642

θ̂
Mean 2.0167 2.0122 2.0079 2.0042

Std.dev. 0.2403 0.1080 0.0771 0.0527

At first, let the coefficients a(t, x) and σ(t, x, y) be bounded away from zero and
infinity: a(t, x) = 2 + sinx, σ(t, x, y) = 2 + cos(x + y). Evidently, in this case all
assumptions of Theorems 3.1 and 3.2 are satisfied. The results of simulations for θ = 2
are reported in Table 1. We see that both estimators converge to the true value of θ and
demonstrate quite similar asymptotic behavior. Therefore, we can conclude that LSE is
preferable, since it has simpler form and does not depend on the process Y , which can
be unobservable.

Now let us take the unbounded diffusion coefficient σ(t, x, y) = 1 + y2 (as before,
a(t, x) = 2 + sinx). We see from Table 2 that MLE converges to θ for all four examples
of Y . In the case of constants α and β, as well as for the geometric Brownian motion, the
LSE does not work. This means that the assumption (8) in Theorem 3.1 is substantial.
However, the LSE converges to the true value of the parameter for two other examples
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of Y . Moreover, in the Ornstein–Uhlenbeck model the behavior of two estimators is
similar, while in the Cox–Ingersoll–Ross model the MLE clearly outperforms the LSE,
since it has smaller standard deviation.

Table 2. dXt = θ(2 + sinXt) dt+
(
1 + Y 2

t

)
dWt, θ = 2

Mean / T
α(y) β(y) Est. Std.dev. 10 50 100 200

1 2
θ̃

Mean 1.5750 −8.5535 3.6113 78.1776

Std.dev. 15.3463 84.8756 241.035 623.109

θ̂
Mean 2.0408 2.0402 2.0407 2.0408

Std.dev. 0.9771 0.9020 0.9004 0.9000

2y y
θ̃

Mean 2.1 · 1018 4.2 · 1076 7.8 · 10153 8.9 · 10281

Std.dev. 1.6 · 1019 4.1 · 1077 7.8 · 10154 8.9 · 10282

θ̂
Mean 2.2443 2.2443 2.2443 2.2443

Std.dev. 1.9967 1.9967 1.9967 1.9967

−y 1
θ̃

Mean 2.0189 2.0000 1.9978 1.9978

Std.dev. 0.2712 0.1371 0.0984 0.0627

θ̂
Mean 1.9954 1.9979 1.9988 1.9962

Std.dev. 0.2112 0.1010 0.0686 0.0449

2− y
√
y

θ̃
Mean 2.1090 1.9942 1.9632 1.9641

Std.dev. 1.1786 0.5412 0.4200 0.2720

θ̂
Mean 1.9883 2.0080 1.9897 2.0024

Std.dev. 0.4935 0.2092 0.1669 0.0976

Finally, we consider the Ornstein–Uhlenbeck model (13) with the stochastic volatility
σ(Yt) = 2 + cosYt. The results for θ = −2 and θ = 2 are reported in Tables 3 and 4
respectively. We see that in both cases the simulation studies confirm the theoretical
results on strong consistency for both estimators. However, the rate of convergence for
the positive value of θ is much higher.

Table 3. dXt = θXt dt+ (2 + cosYt) dWt, θ = −2

Mean / T
α(y) β(y) Est. Std.dev. 10 50 100 200

1 2
θ̃

Mean −2.3413 −2.03574 −1.9980 −2.0093

Std.dev. 0.8153 0.3134 0.2120 0.1628

θ̂
Mean −2.2603 −2.0242 −2.0046 −2.0150

Std.dev. 0.6732 0.2534 0.1811 0.1361

2y y
θ̃

Mean −2.2009 −2.0411 −2.0234 −2.0113

Std.dev. 0.6545 0.2865 0.2114 0.1537

θ̂
Mean −2.1521 −2.0368 −2.0310 −2.0162

Std.dev. 0.4669 0.2087 0.1459 0.1039

−y 1
θ̃

Mean −2.1340 −2.0895 −2.0495 −2.0406

Std.dev. 0.6116 0.3010 0.2006 0.1479

θ̂
Mean −2.1329 −2.0883 −2.0471 −2.0419

Std.dev. 0.5863 0.3058 0.2039 0.1473

2− y
√
y

θ̃
Mean −2.2316 −2.0792 −2.0266 −2.0266

Std.dev. 0.6980 0.3406 0.2196 0.1546

θ̂
Mean −2.2041 −2.0647 −2.0256 −2.0211

Std.dev. 0.6180 0.2629 0.1870 0.1342
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Table 4. dXt = θXt dt+ (2 + cosYt) dWt, θ = 2

Mean/ T
α(y) β(y) Est. Std.dev. 10 50 100 200

1 2
θ̃

Mean 2.000 2.000 2.000 2.000

Std.dev. 4.3 · 10−8 7.7 · 10−15 8.9 · 10−15 7.0 · 10−15

θ̂
Mean 2.000 2.000 2.000 2.000

Std.dev. 3.0 · 10−8 8.4 · 10−15 8.9 · 10−15 8.0 · 10−15

2y y
θ̃

Mean 2.000 2.000 2.000 2.000

Std.dev. 2.6 · 10−8 8.3 · 10−15 7.2 · 10−15 7.0 · 10−15

3-8
θ̂

Mean 2.000 2.000 2.000 2.000

Std.dev. 2.8 · 10−8 1.1 · 10−14 9.0 · 10−15 8.0 · 10−15

−y 1
θ̃

Mean 2.000 2.000 2.000 2.000

Std.dev. 4.4 · 10−8 7.6 · 10−15 8.6 · 10−15 7.0 · 10−15

θ̂
Mean 2.000 2.000 2.000 2.000

Std.dev. 4.3 · 10−8 7.0 · 10−15 7.3 · 10−15 7.0 · 10−15

2− y
√
y

θ̃
Mean 2.000 2.000 2.000 2.000

Std.dev. 3.6 · 10−6 8.4 · 10−15 7.8 · 10−15 7.0 · 10−15

θ̂
Mean 2.000 2.000 2.000 2.000

Std.dev. 1.7 · 10−6 8.5 · 10−15 8.8 · 10−15 7.0 · 10−15

5. Appendix

LetX be the Ornstein–Uhlenbeck process with deterministic volatility defined by (15).
Consider an auxiliary process

(19) X
(t0)
t := X0e

θt +

∫ t

t0

σ(s)eθ(t−s) dWs, t ≥ t0 ≥ 0.

(Note that Xt = X
(0)
t .)

Lemma 5.1. For any θ ∈ R there exists a constant ε = ε(θ) > 0 such that for all
t ≥ t0 ≥ 0,

(20) V (t0, t) := Var

[∫ t+1

t

X(t0)
s ds

]
≥ ε.

Moreover, if θ ≥ 0, then V (t0, t) → ∞, as t → ∞.

Proof. Denote

U
(t0)
t =

∫ t

t0

σ(u)eθ(t−u) dWu = X
(t0)
t −X0e

θt.

Then

V (t0, t) = E

(∫ t+1

t

U (t0)
s ds

)2

.

By Itô’s isometry, for s ≥ t0, v ≥ t0,

EU (t0)
s U (t0)

v =

∫ min{s,v}

t0

σ2(u)eθ(s−u)eθ(v−u) du ≥ σ2
1

∫ min{s,v}

t0

eθ(s+v−2u) du.

Hence

V (t0, t) =

∫ t+1

t

∫ t+1

t

EU (t0)
s U (t0)

v ds dv ≥ σ2
1

∫ t+1

t

∫ t+1

t

∫ min{s,v}

t0

eθ(s+v−2u) du ds dv.
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If θ = 0, then

V (t0, t) ≥ σ2
1

∫ t+1

t

∫ t+1

t

(min {s, v} − t0) ds dv = σ2
1

(
t+

1

3
− t0

)
≥ σ2

1

3
;

that is, (20) holds with ε = σ2
1/3, and V (t0, t) → ∞, as t → ∞.

In what follows we assume that θ 
= 0. We have

V (t0, t) ≥
σ2
1

2θ

∫ t+1

t

∫ t+1

t

eθ(s+v)
(
e−2θt0 − e−2θmin{s,v}

)
ds dv

=
σ2
1

2θ

∫ t+1

t

∫ t+1

t

(
eθ(s+v−2t0) − eθ|s−v|

)
ds dv

=
σ2
1

2θ

(
e−2θt0

(∫ t+1

t

eθs ds

)2

− 2

∫ t+1

t

∫ v

t

eθ(v−s) ds dv

)

=
σ2
1

2θ3

(
e2θ(t−t0)

(
eθ − 1

)2 − 2
(
eθ − 1− θ

))
.

(21)

The right-hand side of (21) increases with respect to t ∈ [t0,∞) for θ > 0 as well as for
θ < 0. Therefore, it attains its minimum value at the point t = t0. Hence

V (t0, t) ≥
σ2
1

2θ3

((
eθ − 1

)2 − 2
(
eθ − 1− θ

))
=:

σ2
1

2θ3
h(θ).

Note that h(0) = 0 and the derivative h′(θ) = 2
(
eθ − 1

)2
> 0 for θ 
= 0. This implies that

h(θ) < 0 for θ < 0, and h(θ) > 0 for θ > 0. Thus, (20) holds with ε = σ2
1h(θ)/2θ

3 > 0
for all θ 
= 0. Moreover, it follows from (21) that for θ > 0, V (t0, t) → ∞, as t → ∞.
This concludes the proof. �

Lemma 5.2. Let C > 0, θ ∈ R. Then there exists a constant δ = δ(θ, C) such that for
all t ≥ t0 ≥ 0,

P

(∣∣∣∣∫ t+1

t

X(t0)
s ds

∣∣∣∣2 ≤ C + 1

)
≤ δ < 1.

Proof. For a Gaussian random variable ξμ,s2 ∼ N (μ, s2) one has

P
(∣∣ξμ,s2∣∣ ≤ x

)
≤ P

(∣∣ξ0,s2∣∣ ≤ x
)
= 2Φ

(x
s

)
− 1, x > 0,

where Φ denotes the cdf of the standard normal distribution. Taking into account that

the random variable
∫ t+1

t
X

(t0)
s ds is Gaussian with variance V (t0, t) and applying the

previous lemma, we get

P

(∣∣∣∣∫ t+1

t

X(t0)
s ds

∣∣∣∣2 ≤ C + 1

)
≤ 2Φ

( √
C + 1√
V (t0, t)

)
−1 ≤ 2Φ

(√
C + 1√

ε

)
−1 =: δ < 1. �
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