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THE STUDY OF BASIC RISK PROCESSES BY DISCRETE-TIME

NON-HOMOGENEOUS MARKOV PROCESSES
UDC 519.21

G. D’AMICO, F. GISMONDI, J. JANSSEN, R. MANCA, F. PETRONI,
AND E. VOLPE DI PRIGNANO

Abstract. This paper elaborates how it is possible to calculate precisely the ag-
gregate claim amount and the claim number by means of Markov reward models
in a non-homogeneous time setting. More precisely, evolution equations of the non-
homogeneous Markov reward processes are presented in a discounted environment
for the calculation of the aggregate claim amount and in a non-discounted case for

the calculation of the claim number. The underlying Markov process has a denumer-
able number of states. In the last section, an application of the proposed models is
presented using real data obtained by merging databases of two small insurance com-
panies. The results highlight the importance of the insured’s age in the calculation
of the actuarial quantities.

1. Introduction

It is well known that the three basic insurance processes, namely,

1) the claim number process,
2) the aggregated claim amount process,
3) the premium process

were first studied in the seminal Lundberg papers [19, 20]. The former papers formed
the basis of the renewal processes but in the simpler Poisson process environment. More
precisely, Lundberg’s papers proposed to model the claim number and the aggregate
claim amount by two Poisson processes. Later Cramér [8,9] proposed a generalization of
Lundberg’s model, which considered a Poisson process for the study of the claim number
process and a “general process” for the claim amount, namely, a renewal process with a
distribution that fits well the observed data. Many authors gave important contributions
generalizing Lundberg’s results. We refer to the papers by de Finetti [13], Cramér [9],
and Andersen [1]. More recently the main results were given in [3, 17, 21, 22, 25].

Markov chains are well-known tools, which are applied in almost all scientific fields.
For an easy introduction, see [7] and for applications [6, 16].

In risk theory, Markov processes were applied first by Howard and Matheson [14].
In that paper Markov reward processes were used for an introduction to Markov deci-
sion processes that were the main tools. Many papers followed this seminal work (see,
for example, [4, 5]) presenting applications not in the insurance field. The risk insur-
ance approach by means of a Markov environment was presented for the first time in
Janssen [15]. More precisely, contributions based on semi-Markov models, which are
strong generalizations of Markov processes, were given in [15, 18]. In those papers the
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states of the process stood for the different types of claims. Following Janssen, Asmussen
[2] applied the Markov process in an actuarial environment. Asmussen’s paper ignited
interest in this direction, and now many researchers have turned their attention towards
this approach. Many references on this approach are given in [3].

In the present paper, the Markov approach is given from a non-homogeneous point
of view, which is totally new and takes into account the age as a time variable but
not the calendar time. For the sake of precision, the non-homogeneous setting is not
usually applied. Furthermore, the age as a time variable has never been used in the non-
homogeneous environment. To the author’s knowledge, the eight evolution equations of
non-homogenous Markov reward processes are demonstrated only in [16]. Furthermore,
there are 300 different non-homogeneous Markov reward processes: 30 of them are in
non-discounted cases, and 270 are in discounted ones.

Indeed, we present a non-homogeneous Markov model that permits the study of the
aggregate claim amount risk process and the claim number process in a simple and
effective way. The state sets are denumerable and represent the number of claims in
both the aggregate claim amount and the claim number processes.

To compute the mean accumulated claim values and the mean number of claims, it is
necessary to introduce the non-homogeneous Markov reward processes, which are tools
that have never been applied to the calculation of these quantities. To this end, the
paper describes both cases, namely, a discounted one for the aggregate claim amount
process and a non-discounted one for the claim number process (see [10, 16]).

The present paper generalizes D’Amico et al.’s [11] homogeneous version of this model.
Indeed, the introduction of non-homogeneity raises the possibility of considering the
different behaviors of insured people of different ages, which is of relevant importance in
an insurance setting.

If the non-homogeneous variable is the calendar time, then forecasting of future events
is a function of the past data, thus conjuring a biting its tail scenario. In an insurance
setting three types of variables are considered: calendar time, age, and seniority. In
our opinion, the main time variable is the insured’s age. This is evident in life and
pension insurance contracts. Nevertheless, in non-life insurance the insured’s age also
has significant relevance.

The insured’s seniority is also of great importance in pension schemes. In age and
seniority the non-homogeneity can be applied without the problem of lapsed calendar
time because, for example, it is possible to consider that a person of age k will have the
same behavior as a person of the same age ten years later. The same could hold true
for two workers of the same seniority at different times; i.e., the past data could be used
to forecast the future. However, if the non-homogeneity is the calendar time, most of
the phenomena change and forecasting of the non-homogeneous models becomes more
difficult.

The paper is organized as follows. In Section 2, the Markov reward environment is
introduced briefly. In Section 3, the Markov aggregate claim amount process is presented.
In Section 4, the claim number process is given. Section 5 presents a numerical example.
In Section 6, some conclusive remarks are given.

2. The non-homogeneous discrete-state space

and discrete-time Markov processes

2.1. Introduction to discrete-state space and discrete-time non-homogeneous
Markov processes. First we want to explore the different ways of generalizing the
Markov process in a non-homogeneous environment (see [16]). Let us consider a proba-
bility space (Ω,�,P) and a random variable Jn : Ω → E, where E is a discrete set. Here
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Jn represents the state of the system at the nth transition. We suppose that Tn is the
time of the nth transition and Tn = n. The transition at time n will be ruled by the
non-homogeneous transition matrix P(n) with elements

pij(n+ 1) = P [Jn+1 = j | Jn = i, Jn−1, . . . , J1, J0] = P [Jn+1 = j | Jn = i] .

Let Φ(s, t) =
(
φi,j(s, t)

)
i,j∈E

, s, t ∈ N, be the matrix function with elements given by

φi,j(s, t) = P [Jt = j|Js = i]. Then we have

t∏
k=s+1

P(k) = Φ(s, t), s, t ∈ N, 0 ≤ s < t.

Furthermore, given the vector of the initial probability distribution π(s, s) at time s, the
related distribution probability vector π(s, t) at time t is given by

π(s, t) = π(s, s) ∗Φ(s, t), s, t ∈ N, 0 ≤ s < t.

Moreover, the Chapman-Kolmogorov equation holds:

Φ(s, t) ∗Φ(t, k) = Φ(s, k), s ≤ t ≤ k, and Φ(t, t) = I,

where I represents the identity matrix.

2.2. Discrete-state set of non-homogeneous Markov reward process. Markov
reward processes, as specified in [16], can be seen as a class of stochastic processes.
Indeed, there are many different evolution equations depending on the problem that
should be solved.

Rewards can be measured in amounts of money or differently. In the first case, it is
natural to have discounted reward processes. In the second case, discounting does not
make sense, and we have non-discounted processes.

In an insurance environment, the rewards that represent money assume great rele-
vance, but, as we will see, in some cases the non-discounted evolution equations can be
useful. We will present a general formula with the aim of explaining the meaning of the
reward structure. The interested reader is referred to [16] for further reading.

In general, it is possible to have permanence rewards or transition rewards (sometimes
also called rate and impulse rewards, respectively; see [23]). The first one is paid or
received because of the permanence inside a state, the second one because of a transition.

Rewards can be constant or variable in time. In this second case, they can change as
a function of the current time t or depending on the initial time s when the evaluation
of the system started. In this last case, we speak of time non-homogeneous rewards.

Let ψ =
(
ψi

)
i∈E

be the column vector denoting the permanence reward constant in

time paid for the occupancy at a given time of state i ∈ E. Moreover, let Γ =
(
γi,j

)
i,j∈E

be the matrix of transition rewards constant in time paid for the transition at a given
time from state i into state j. Whenever these rewards depend on the current time
t, we adopt the corresponding notation ψ(t) =

(
ψi(t)

)
i∈E

and Γ(t) =
(
γi,j(t)

)
i,j∈E

.

Whenever these rewards are non-homogeneous (i.e., depend on the calendar time t and
on the initial time s), we adopt the corresponding notation ψ(s, t) =

(
ψi(s, t)

)
i∈E

and

Γ(s, t) =
(
γi,j(s, t)

)
i,j∈E

.

In (1)–(3), we give the non-homogeneous Markov reward evolution equations with
permanence and transition rewards in the immediate case (the permanence rewards
are paid at the end of the period). These relations allow us to calculate the reward
present values that are paid during the first year starting at time s. More precisely, (1)
corresponds to the case where the permanence and transition rewards are functions of
the states only. In (2), the permanence and transition rewards are functions of the states
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and the calendar time. At last, in (3), the rewards are functions of states and, in this
case, the starting and ending times are to be considered. Thus, we have

Vi(s, s+ 1) = ν

(
ψi +

∑
j∈E

pij(s+ 1)γij

)
,(1)

V̄i(s, s+ 1) = ν

(
ψi(s+ 1) +

∑
j∈E

pij(s+ 1)γij(s+ 1)

)
,(2)

¯̄Vi(s, s+ 1) = ν

(
ψi(s, s+ 1) +

∑
j∈E

pij(s+ 1)γij(s, s+ 1)

)
.(3)

Here ν is the discount factor for one period subject to the interest rate that does not
change during the time (flat interest rate structure), the permanence reward is a function
of the state in which the system is at time s, while the transition reward is paid at the
end of the period because it is possible to know if there has been a transition reward
at the end of the period once the transition occurred. Henceforth, the above marked
symbol means the variation in the function of the spending time, and the above double
marked symbol corresponds to the non-homogeneous case.

In equations (4)–(6), we give the general formulas with t > s. We would like to point
out that working in a non-homogeneous setting, we can have a homogeneous interest
rate term structure (interest rate that changes as a function of calendar time) and a
non-homogeneous interest rate term structure where the interest rate changes depending
on starting and ending times. Thus, we have

Vi(s, t) =

t−1∑
τ=s+1

ντ−s
∑
k∈E

φik(s, τ − 1)

(
ψk +

∑
j∈E

pkj(τ )γkj

)

+ νt−s
∑
k∈E

φik(s, t− 1)

(
ψk +

∑
j∈E

pkj(t)γkj

)

= Vi(s, t− 1) + νt−s
∑
k∈E

φik(s, t− 1)

(
ψk +

∑
j∈E

pkj(t)γkj

)
,

(4)

V̄i(s, t) =

t−1∑
τ=s+1

ντ−s
∑
k∈E

φik(s, τ − 1)

(
ψk(τ ) +

∑
j∈E

pij(τ )γij(τ )

)

+ νt−s
∑
k∈E

φik(s, t− 1)

(
ψk(t) +

∑
j∈E

pkj(t)γkj(t)

)

= V̄i(s, t− 1) + νt−s
∑
k∈E

φik(s, t− 1)

(
ψk(t− 1) +

∑
j∈E

pkj(t)γkj(t)

)
,

(5)

¯̄V i(s, t) =
t−1∑

τ=s+1

ντ−s
∑
k∈E

φik(s, τ − 1)

(
ψk(s, τ ) +

∑
j∈E

pij(τ )γij(s, τ )

)

+ νt−s
∑
k∈E

φik(s, t− 1)

(
ψk(s, t) +

∑
j∈E

pkj(t)γkj(s, t)

)

= ¯̄V i(s, t− 1) + νt−s
∑
k∈E

φik(s, t− 1)

(
ψk(s, t) +

∑
j∈E

pkj(t)γkj(s, t)

)
,

(6)
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where Vi(s, t), V̄i(s, t),
¯̄Vi(s, t) represent the mean present values of all the rewards

(RMPV) that have been paid and/or received up to time t starting from the state i
at time s. Here νt is the discount factor for t periods in the three considered cases
and Φ(s, s) = I is the identity matrix [17]. The evolution equations are iterative; i. e.,
the subsequent step is obtained by adding the present value of the rewards paid in the
last period to the previous steps. The previous relations are simple to understand; i. e.,
φik(s, t) is the probability to remain at time t in the state k, given that at time s the
system was in the state i.

Under the same hypotheses the evolution equations in the due case (the rate rewards
are paid at beginning of each period and the impulse rewards at the end) are presented
in (7)–(9) provided that one year has passed after the beginning time s. In (10)–(12),
we give the general relations with t > s. So we have

V̈i(s, s+ 1) =

(
ψi + ν

∑
j∈E

pij(s+ 1)γij

)
,(7)

¨̄Vi(s, s+ 1) =

(
ψi(s) + ν

∑
j∈E

pij(s+ 1)γij(s+ 1)

)
,(8)

¨̄̄
Vi(s, s+ 1) =

(
ψi(s, s) + ν

∑
j∈E

pij(s+ 1)γij(s, s+ 1)

)
,(9)

V̈i(s, t) =

(
ψi + v

∑
j∈E

pij(s, s+ 1)γij

)

+

t−1∑
τ=s+2

ντ−s−1
∑
k∈E

φik(s, τ − 1)

(
ψk + v

∑
j∈E

pkj(τ )γkj

)

+ νt−s−1
∑
k∈E

φik(s, t− 1)

(
ψk + ν

∑
j∈E

pkj(t)γkj

)

= V̈i(s, t− 1) + νt−s−1
∑
k∈E

φik(s, t− 1)

(
ψk + ν

∑
j∈E

pkj(t)γkj

)
,

(10)

¨̄V i(s, t) =

(
ψi(s) + ν

∑
j∈E

pij(s, τ )γij(τ )

)

+

t−1∑
τ=s+2

ντ−s−1
∑
k∈E

φik(s, τ − 1)

(
ψk(τ ) + ν

∑
j∈E

pkj(τ )γkj(τ )

)

+ νt−s−1
∑
k∈E

φik(s, t− 1)

(
ψik(t− 1) + ν

∑
j∈E

pkj(t)γkj(t)

)

= ¨̄V i(s, t− 1) + νt−s−1
∑
k∈E

φik(s, t− 1)

(
ψk(t− 1) + ν

∑
j∈E

pkj(t)γkj(t)

)
,

(11)
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¨̄̄
V i(s, t) =

(
ψi(s, s) + ν

∑
j∈E

pij(s, s+ 1)γij(s, s+ 1)

)

+
t−1∑

τ=s+2

ντ−s−1
∑
k∈E

φik(s, τ − 1)

×
(
ψk(s, τ − 1) + ν

∑
j∈E

pkj(τ )γkj(s, τ )

)

+ νt−s−1
∑
k∈E

φik(s, t− 1)

(
ψk(s, t− 1) + ν

∑
j∈E

pkj(t)γkj(s, t)

)

=
¨̄̄
V i(s, t− 1)

+ νt−s−1
∑
k∈E

φik(s, t− 1)

(
ψk(s, t− 1) + ν

∑
j∈E

pkj(t)γkj(s, t)

)
.

(12)

It is assumed that the transition reward is always paid at the end of the period. By
this reason, in the due case, it is necessary to consider one more period of discounting.
The dieresis means that the relations are referred to the due cases.

Before defining the matrix evolution equation, it is necessary to define the following
matrix product (see [10]).

Definition 1. For two matrices A and B with m rows and n columns, we define the
following operation:

v = A ◦B, vi =
n∑

j=1

aij · bij = ai∗ ∗ bi∗, i = 1, . . . ,m and ai∗,bi∗ ∈ R
n.

We have c = A ◦ B where c(i) =
∑

j∈E aijbij = ai∗ ∗ bi∗ and ai∗,bi∗ ∈ R
n if E

is finite or ai∗,bi∗ ∈ R
N if E is denumerable. The relations (4)–(6) were written for a

flat interest rate. Now we rewrite those equations in matrix form. The equations (13)
and (14) correspond to a spot interest rate structure, and (15) is written for the case of
a non-homogeneous interest rate structure. So we have

V(s, t) = ν(s, s+ 1)I ∗
(
ψ +P(s+ 1) ◦ Γ

)
+ . . .

+ ν(s, t)
(
Φ(s, t− 1) ∗ ψ +Φ(s, t) ◦ Γ

)
,

(13)

V̄(s, t) = ν(s, s+ 1)I ∗
(
ψ(s+ 1) +P(s+ 1) ◦ Γ(s+ 1)

)
+ . . .

+ ν(s, t)
(
Φ(s, t− 1) ∗ ψ(t) +Φ(s, t) ◦ Γ(t)

)
,

(14)

¯̄V(s, t) = ˙̈ν(s, s+ 1)I ∗
(
ψ(s, s+ 1) +P(s+ 1) ◦ Γ(s, s+ 1)

)
+ . . .

+ ˙̈ν(s, t)
(
Φ(s, t− 1) ∗ ψ(s, t) +Φ(s, t) ◦ Γ(s, t)

)
,

(15)

where

v(s, t) =

t∏
h=s+1

(1 + r(h))
−1

,

r(h) is the interest rate at time h,

˙̈v(s, t) =
t∏

h=s+1

(1 + r(s, h))−1,
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and r(s, h) is the non-homogeneous interest rate from the time s up to the time t. In
addition, let v̇(s, h) = (1 + r(s, h))−1. Furthermore, ∗ represents the usual row-column
matrix product.

Formulas (10)–(12) can be rewritten more compactly. Formulas (16) and (17) below
correspond to the case of a spot interest rate structure, and (18) is written for the case
of a non-homogeneous interest rate structure:

V̈(s, t) =
(
ψ + v(s, s+ 1)P(s+ 1) ◦ Γ

)
+

t−1∑
τ=s+2

ν(s, τ − 1)
(
Φ(s, τ − 1) ∗ ψ + ν(τ )Φ(s, τ ) ◦ Γ

)
+ ν(s, t− 1)

(
Φ(s, t− 1) ∗ ψ + ν(t)Φ(s, t) ◦ Γ

)
,

(16)

¨̄V(s, t) = ψ(s) + v(s, s+ 1)P(s+ 1) ◦ Γ(s+ 1)

+
t−1∑

τ=s+2

ν(s, τ − 1)
(
Φ(s, τ − 1) ∗ ψ(τ − 1) + ν(τ )Φ(s, τ ) ◦ Γ(τ )

)
+ ν(s, t− 1)

(
Φ(s, t− 1) ∗ ψ(t− 1) + ν(t)Φ(s, t) ◦ Γ(t)

)
,

(17)

¨̄̄
V(s, t) =

(
ψ(s, s) + v(s, s+ 1)P(s+ 1) ◦ Γ(s, s+ 1)

)
+

t−1∑
τ=s+2

ν(s, τ − 1)
(
Φ(s, τ − 1) ∗ ψ(s, τ − 1) + ν̇(s, τ )Φ(s, τ ) ◦ Γ(s, τ )

)
+ ν(s, t− 1)

(
Φ(s, t− 1) ∗ ψ(s, t− 1) + ν̇(s, t)Φ(s, t) ◦ Γ(s, t)

)
.

(18)

Remark 1. If E = N, then V(s, t)
(
V̈(s, t)

)
is obtained as a sum of infinite vectors whose

elements are in series. Indeed, at each time step we will have two infinite vectors of series.
In addition, nobody can assure the related convergence for each element of the vectors.
Furthermore, there are infinite elements in each vector. In our opinion, the only way
to solve these evolution equations is to apply the truncation method [24] as shown in
(19)–(21) for the three cases that we consider now.

For given s and t, we calculate

sim′
k
(s, t) =

m′
k∑

j=1

t∑
τ=s+1

φij(s, τ )γij, k ∈ N,

and

sim′
k+1(s, t) =

m′
k+1∑
j=1

t∑
τ=s

φij(s, τ )γij,

stopping the calculation when∣∣∣sim′
k+1(s, t)− sim′

k
(s, t)

∣∣∣ < ε;(19)

sim′′
k
(s, t) =

m′′
k∑

j=1

t∑
τ=s+1

φij(s, τ )γij(τ )

and

sim′′
k+1(s, t) =

m′′
k+1∑
j=1

t∑
τ=s+1

φij(s, τ )γij(τ ),
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stopping the calculation when∣∣∣sim′′
k+1(s, t)− sim′′

k
(s, t)

∣∣∣ < ε;(20)

sim′′′
k
(s, t) =

m′′′
k∑

j=1

t∑
τ=s+1

φij(s, τ )γij(s, τ )

and

sim′′′
k +1(s, t) =

m′′′
k +1∑
j=1

t∑
τ=s+1

φij(s, τ )γij(s, τ ),

stopping the calculation when

(21)
∣∣∣sim′′′

k +1(s, t)− sim′′′
k
(s, t)

∣∣∣ < ε,

where ε is fixed at the beginning. In this way we have fixed the maximum order of
the transition matrices of the non-homogeneous model. It should be remarked that the
same approach has to be applied in order to control the convergence of the permanence
rewards.

Remark 2. Our model is described by a block matrix. The order of inner matrices can
be infinite as shown in Remark 1. When we need to compute V(s, T ) for large values
of T , we should activate another numerical process in the following way. Once the order
of the block matrices is decided, we can begin with a start time s and an arrival time t.
Then we calculate

t∑
k=0

‖V(k, t)−V(k, t+ 1)‖ < ε, k = 0, . . . , t− 1 ∧ ‖V(t, t+ 1)‖ , T = t,

where ‖∗‖ represents the Euclidean norm of a vector. This strategy works well whenever
the rate of increasing reward is lower than the interest rate.

3. The non-homogeneous Markov aggregate claim amount model

In the proposed model the state of the Markov process Jn represents the number of
claims reported up to the nth period, i.e., Jn ∈ N. Each year represents the discrete
time period, as it naturally occurs, for example, in car insurance contracts. The matrix
equation can be solved applying the truncation method (see [24]) described in Remarks
1 and 2. We now study the aggregate claim process and the Markov chains in a non-
homogeneous case.

Indeed, we study an accumulation process, and Jn represents the total number of
claims up to the nth period. Under this hypothesis, it follows that Jn−1(ω) ≤ Jn(ω) for
all ω ∈ Ω.

The non-homogeneous Markov chain will be the following:

(22) P(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p0,0(s) p0,1(s) · · · p0,k(s) p0,k+1(s) · · ·
0 p1,1(s) · · · p1,k(s) p1,k+1(s) · · ·
0 0 · · · p2,k(s) p2,k+1(s) · · ·
...

...
. . .

...
...

. . .

0 0 · · · pk,k(s) pk,k+1(s) · · ·
0 0 · · · 0 pk+1,k+1(s) · · ·
0 0 · · · 0 0 · · ·
...

...
. . .

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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In this case, pij(s) represents the probability of going from the number of claims i to
the number of claims j at time s. In particular, pii(s) represents the probability that at
time s there were no claims (probability of a virtual transition of the state i at time s)
given that at the time s the number of reported claims was i.

It is well known that the probability to have 0 claims in one year is the highest of the
other possible events. The transition matrix (22) is triangular, and the main diagonal
has all the elements greater than 0, and its determinant is not equal to 0. This is the
condition for having the solution to a countable system with countable unknowns [24].
Furthermore, the hypothesis that the interest rate is greater than the rate of reward
increasing implies that the formulas (19)–(21) tend to 0.

In the general cases, the transition matrix of the Markov process is denumerable for
all s ∈ N. The treatment of denumerable homogeneous Markov chains is well known.
In constrast, the non-homogeneous case is less studied. In the aggregate claim amount,
there are no permanence rewards. The relations (4)–(6) become

Vi(s, t) = Vi(s, t− 1) + νt−s
∑
k∈E

φik(s, t− 1)
∑
j∈E

pkj(t)γkj,

V̄i(s, t) = V̄i(s, t− 1) + νt−s
∑
k∈E

φik(s, t− 1)
∑
j∈E

pkj(t)γkj(t),

¯̄V i(s, t) =
¯̄V i(s, t− 1) + νt−s

∑
k∈E

φik(s, t− 1)
∑
j∈E

pkj(t)γkj(s, t).

In the case of the absence of permanence rewards, the due case does not make sense
because a transition reward cannot be paid at the beginning of the period. Indeed, it
is impossible to know if the transition will happen or not, and we will suppose that
transition rewards will be paid only at the end of the periods.

It is clear that it is not possible that an insured can have an infinite number of claims.
Having a good database, it is possible to check the maximum number of claims that each
insured in the database has had in one year. Suppose that this number is k; then we
can suppose that the maximum number of accidents in one year is k. This hypothesis
implies that each row of the Markov matrix will have k non-zero elements. Now we will
show how the product of n upper triangular matrices P with only the main diagonal and
the following k − 1-element diagonal, which may be non-null, behaves.

Proposition 1. For h = 1, . . . , n, let

(23) P(h) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1,1(h) p1,2(h) · · · p1,k(h) 0 0 · · ·
0 p2,2(h) · · · p2,k(h) p2,k+1(h) 0 · · ·
0 0 · · · p3,k(h) p3,k+1(h) p3,k+2(h) · · ·
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

0 0 · · · pk,k(h) pk,k+1(h) pk,k+2(h) · · ·
0 0 · · · 0 pk+1,k+1(h) pk+1,k+2(h) · · ·
0 0 · · · 0 0 pk+2,k+2(h) · · ·
0 0 · · · 0 0 0 · · ·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

be an upper triangular transition probability matrix with the first k diagonal that may be

not equal to 0. Letting Φ(0, n) =
n∏

h=1

P(h) gives

φij(0, n) = 0 if i < j or j > i+ nk − (n− 1).

The steps of the proof are the same as in [11].

Remark 3. It is evident that the nth product of the matrices will have in each row at
most nk − (n− 1) non-zero coefficients.
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Remark 4. The elements of the matrix (23) give the probability to make j − i claims
in one period given that there were i claims before. In his car’s lifetime, a given driver
made i claims if he is in the state i. Therefore, in this case, it is impossible that a
person could have more than k claims. The value of k can be obtained by the data set
as explained previously. For example, we have two small databases in which in total
there are about 262, 000 records, and the maximum number of claims in one year is 4.
Furthermore, we could consider the matrices of (23) as square matrices of order m; i.e.,
we suppose that in the driving life the maximum number of claims of an insured will be
less than or equal to m. The matrix (23) becomes

(24)

P(h) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p0,0(h) p0,1(h) · · · p0,k(h) 0 · · · 0 0
0 p1,1(h) · · · p1,k(h) p1,k+1(h) · · · 0 0
0 0 · · · p2,k(h) p2,k+1(h) · · · 0 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 · · · pk−1,k(h) pk−1,k+1(h) · · · 0 0
0 0 · · · pk,k(h) pk,k+1(h) · · · 0 0
0 0 · · · 0 pk+1,k+1(h) · · · 0 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 · · · 0 0 · · · pm−1,m−1(h) pm−1,m(h)
0 0 · · · 0 0 · · · 0 pm,m(h)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The model with matrix (24) overcomes the second problem of Remark 1.

4. The Markov claim number processes

By means of small changes in the non-homogeneous Markov reward processes, it is
possible to construct a useful model for the calculation of mean claim numbers. In this
case, it is necessary to note that reward processes can be discounted or non-discounted
(for a complete classification of reward processes see [16]). In the previous sections, we
gave the evolution equation for discounted cases. In the non-discounted cases, it does
not make sense to give the immediate and due distinction. By setting v(n) = 1 for all
n ∈ N, relations (4)–(6) become

Vi(s, t) = Vi(s, t− 1) +
∑
k∈E

φik(s, t− 1)

⎛
⎝∑

j∈E

pkj(t)

⎞
⎠ ,

V̄i(s, t) = V̄i(s, t− 1) +
∑
k∈E

φik(s, t− 1)

⎛
⎝∑

j∈E

pkj(t)

⎞
⎠ ,

¯̄Vi(s, t) =
¯̄Vi(s, t− 1) +

∑
k∈E

φik(s, t− 1)

⎛
⎝∑

j∈E

pkj(t)γkj(s, t)

⎞
⎠ ,

which in matrix form can be written as

V(s, t) = V(s, t− 1) +Φ(s, t− 1) ∗
(
P(t)

)
,(25)

V̄(s, t) = V̄(s, t− 1) +Φ(s, t− 1) ∗
(
P(t) ◦ Γ(t)

)
,

¯̄V(s, t) = ¯̄V(s, t− 1) +Φ(s, t− 1) ∗
(
P(t) ◦ Γ(s, t)

)
.

The Markov claim number model does not have the permanence rewards, and the
transition rewards are constant. Under these hypotheses, relation (25) becomes

V(s, t) = V(s, t− 1) +Φ(s, t− 1) ∗
(
P(t)

)
.
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Relation (26) gives the reward matrix of the Markov claim number process. In γij ,
i − 1 represents the number of claims previously reported by an insured and j − i the
claims reported in the last studied period. For example, row 1 represents an insured
that has never reported claims, and the element 2, which is the coefficient γ1,3 in the
matrix, represents the number of claims that could have been reported in the last period.
Continuing the example, the third row represents the insured who has already reported 2
claims, and the 2 in the position γ3,5 gives the number of claims that could have been
reported in the last period. Thus, we have

(26) Γ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2 3 4 · · ·
0 0 1 2 3 · · ·
0 0 0 1 2 · · ·
0 0 0 0 1 · · ·
0 0 0 0 0 · · ·
...

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Under this hypothesis, for each starting state i, the relations (25) will give the mean
number of claims that will be reported by an insured for each time along the studied
horizon.

5. An applicative example using an almost real data set

5.1. The aggregate claim amount. The construction of an applicative example im-
plies that the data set that will be used is collected taking into account the model to
which it will be applied. Fortunately, we had data sets with 156 428 and 105 627 records.
The first of them was the complete history (up to 1998) of a small Italian car insurance
company. The second one was the three years’ history of an Italian car’s insurance. We
decided to merge the two files, appending the records of the second set to the first one.
In this way, we had an artificial data set coming by real data. Moreover, the mean costs
of 1, 2, 3, and 4 claims were obtained by the more reliable dataset. In the evaluation of
the Markov transition matrix, the virtual transitions assume great relevance, because a
great percentage of insured people do not crash and consequently do not report claims.
In our model, if an insured person does not report a claim, then she/he will remain in the
same state and will have a virtual transition. In the first data set, we had the dates of
insurance contract signings. We can compute all the virtual transitions that an insured
had during her/his life. As outlined previously, the maximum number of claims per pe-
riod k has been set to 4. Furthermore, the maximum reported claims over the driving
lifetime of each insured was 10. By this reasoning, the Markov matrix of our example
has the order 10. In Table 1, we give the frequency matrix of the number of transitions
that we obtain with our data. Altogether we had 2 915 729 transitions. In Figure 1, we
present the Markov transition matrix obtained by Table 1.

It is possible to observe that state 10 is absorbing and about 90% of the insured will
remain in state 1 next time. From the data, we evaluated the mean cost of 1 claim, 2
claims, 3 claims, and 4 claims that happened in one year. The initial reward matrix is
shown in Table 2.
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Table 1. Number of transitions among the states; the outside column
contains the state; the element i, j is the number of transitions from
state i to state j.

State 1 2 3 4 5 6 7 8 9 10

1 1365340 160175 15775 202 58 0 0 0 0 0

2 0 815827 216110 2905 164 8 0 0 0 0

3 0 0 190041 35494 2958 76 16 0 0 0

4 0 0 0 54206 18917 921 82 0 0 0

5 0 0 0 0 18849 5139 680 48 0 0

6 0 0 0 0 0 5863 2481 104 16 0

7 0 0 0 0 0 0 1846 568 140 0

8 0 0 0 0 0 0 0 540 116 2

9 0 0 0 0 0 0 0 0 44 15

10 0 0 0 0 0 0 0 0 0 3

Figure 1. Discrete-time homogeneous Markov chain.

The amount 2487.7 euro represents the mean cost of 1 claim. The amount 4259.163 is
the mean sum paid in one year if 2 claims are reported. The amount 5019.9 is the mean
expense that the company should pay to an insured in the case that she/he reports 3
claims. At last, 7001.9 is the mean cost sustained by the company in one year if 4 claims
are reported. The sums given in Table 2 represent the values paid in the first year. We
suppose that the values will increase at a yearly rate of 1%. We follow the evolution of
our phenomenon for 30 years. In Table 3, the rewards in the last year are given.

In Table 4, we present the mean expenses sustained for each time and each state. The
values are discounted at time 0 with 3% interest rate. The element 216.14, which is in
the second place of column 25, represents the mean cost that the insurance company
should pay to an insured who made 1 claim at the start time, i.e., V2(0, 24)− V2(0, 23).
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Table 2. Mean costs of different numbers of claims at the first year.

State 1 2 3 4 5 6 7 8 9 10

1 0 2487.7 4259.2 5019.9 7001.9 0 0 0 0 0

2 0 0 2487.7 4259.2 5019.9 7001.9 0 0 0 0

3 0 0 0 2487.7 4259.2 5019.9 7001.9 0 0 0

4 0 0 0 0 2487.7 4259.2 5019.9 7001.9 0 0

5 0 0 0 0 0 2487.7 4259.2 5019.9 7001.9 0

6 0 0 0 0 0 0 2487.7 4259.2 5019.9 7001.9

7 0 0 0 0 0 0 0 2487.7 4259.2 5019.9

8 0 0 0 0 0 0 0 0 2487.7 4259.2

9 0 0 0 0 0 0 0 0 0 2487.7

10 0 0 0 0 0 0 0 0 0 0

Table 3. Mean costs of different numbers of claims in the last year.

State 1 2 3 4 5 6 7 8 9 10

1 0 3352.9 5740.7 6766.2 9437.6 0 0 0 0 0

2 0 0 3352.9 5740.7 6766.2 9437.6 0 0 0 0

3 0 0 0 3352.9 5740.7 6766.2 9437.6 0 0 0

4 0 0 0 0 3352.9 5740.7 6766.2 9437.6 0 0

5 0 0 0 0 0 3352.9 5740.7 6766.2 9437.6 0

6 0 0 0 0 0 0 3352.9 5740.7 6766.2 9437.6

7 0 0 0 0 0 0 0 3352.9 5740.7 6766.2

8 0 0 0 0 0 0 0 0 3352.9 5740.7

9 0 0 0 0 0 0 0 0 0 5740.7

10 0 0 0 0 0 0 0 0 0 0

Table 4. The matrix element i, j gives the mean costs of claims paid
for each five years.

Years
State 1 5 10 15 20 25 30

1 294.16 345.35 354.23 345.83 312.22 256.86 192.94

2 516.72 457.40 444.22 396.55 311.48 216.14 134.59

3 430.63 510.17 478.60 382.12 263.51 160.57 88.39

4 673.13 601.50 476.11 313.31 176.88 88.22 39.89

5 625.41 601.01 411.73 235.30 116.77 43.69 21.26

6 767.98 546.24 307.78 148.19 62.76 19.92 13.31

7 763.80 427.46 212.41 90.03 52.22 10.01 6.54

8 438.35 326.76 141.10 52.51 34.42 3.96 2.03

9 614.03 125.85 25.04 4.98 18.29 90.10 0.04

10 0 0 0 0 0 0 0

In Table 5, the aggregate claim amounts for each year of the time horizon are shown.
In addition, these values are discounted at time 0.

The elements of Table 5 represent the sequence of the mean total cost of insured
customers. For example, 9739 in the second place of column 25 represents the mean
total cost that was paid within 25 years for an insured who at time 0 was in state 2
(1 claim), i.e., V2(0, 24).
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Table 5. Aggregate claim amounts for each year of the horizon time.

Years
State 1 5 10 15 20 25 30

1 294 1647 3760 5161 6799 8201 9332

2 517 2382 5074 6731 8469 9739 10616

3 431 2436 5387 7046 8600 9598 10215

4 673 3164 6270 7718 8857 9457 9768

5 625 3167 5991 7128 7925 8296 8472

6 768 3287 5544 6302 6762 6947 7025

7 764 2817 4453 4933 5197 5294 5333

8 438 2005 3158 3449 3596 3646 3665

9 614 1485 1768 1797 1812 1815 1815

10 0 0 0 0 0 0 0

Table 6. Number of reported claims in one year.

State 1 2 3 4 5 6 7 8 9 10

1 0 1 2 3 4 0 0 0 0 0

2 0 0 1 2 3 4 0 0 0 0

3 0 0 0 1 2 3 4 0 0 0

4 0 0 0 0 1 2 3 4 0 0

5 0 0 0 0 0 1 2 3 4 0

6 0 0 0 0 0 0 1 2 3 4

7 0 0 0 0 0 0 0 1 2 3

8 0 0 0 0 0 0 0 0 1 2

9 0 0 0 0 0 0 0 0 0 1

10 0 0 0 0 0 0 0 0 0 0

5.2. The mean claim number. In this part, we present the results that we obtained
for the total mean claim number. As we already pointed out, in this case we applied the
non-discounted Markov reward model. In Table 6, the matrix of the rewards is shown.

Each reward gives the number of claims that are reported. For example, 3 in the
second place of the sixth column represents the number of claims reported by an insured
who was at time 0 in state 2 (1 claim).

In Table 7, the mean number of claims reported for each year of the horizon time is
given.

For example, 0.14 in the third place of column 25 gives the mean number of claims
reported by an insured who was at time 0 in state 3 (2 reported claims).

Table 8 gives the total mean number of claims that should be reported within time s.
For example, 6.83 in the third place of column 25 gives the total number of claims that
were reported up to time 25, starting at time 0 from state 3 (2 claims).
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Table 7. Mean number of claims reported for each year of the horizon time.

Years
State 1 5 10 15 20 25 30

1 0.12 0.16 0.20 0.22 0.23 0.22 0.19

2 0.21 0.22 0.25 0.25 0.25 0.19 0.13

3 0.18 0.21 0.26 0.25 0.24 0.14 0.09

4 0.28 0.29 0.25 0.29 0.19 0.08 0.04

5 0.27 0.29 0.21 0.29 0.14 0.04 0.02

6 0.32 0.26 0.15 0.28 0.08 0.02 0.01

7 0.33 0.20 0.10 0.22 0.05 0.01 0.01

8 0.18 0.15 0.18 0.07 0.03 0.016 0.002

9 0.25 0.01 0.12 0.08 0.01 0.002 0.001

10 0 0 0 0 0 0 0

Table 8. Total mean number of claims reported for each year of the
horizon time.

Years
State 1 5 10 15 20 25 30

1 0.12 0.73 1.65 2.94 3.86 5.00 6.02

2 0.21 1.06 3.60 5.12 6.06 7.09 7.86

3 0.18 1.10 3.68 5.20 6.03 6.83 7.36

4 0.28 1.42 3.85 5.18 5.72 6.19 6.45

5 0.26 1.44 4.00 5.04 5.47 5.77 5.91

6 0.32 1.48 6.00 6.76 10.86 11.02 11.07

7 0.33 1.27 4.77 5.21 8.28 8.38 8.412

8 0.18 0.88 3.28 3.56 5.60 5.65 5.66

9 0.25 0.64 1.75 1.78 2.79 2.79 2.79

10 0 0 0 0 0 0 0

6. Conclusions

In this paper, a new way to apply the non-homogeneous Markov approach to clas-
sical risk processes was presented. It was demonstrated how it is possible to calculate
the aggregate claim amount and the claim number processes. In both cases, the non-
homogeneous Markov reward processes were applied. The aggregate claim amount pro-
cess was determined by means of a discounted non-homogeneous Markov reward process.
The claim number process was found by a non-discounted approach.

In the near future, the authors would like to:

• access a large amount of data to apply their model and to compare their results
with the results of the classical risk models,

• obtain the relations useful for the calculation of higher order moments that allows
the calculation of variance, skewness, and kurtosis,

• demonstrate how to calculate the premium rate.
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