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A SEMI-MARTINGALE REPRESENTATION FOR A SEMI-MARKOV
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Abstract. In this paper we present the semi-martingale representation for a dis-
crete time semi-Markov chain, and consider its application to a semi-Markov regime-
switching binomial model in finance. We also introduce a semi-Markov switching
Lévy process. Estimation results for Markov and semi-Markov chains are presented
as well.

1. Introduction

Semi-Markov processes were first introduced by Lévy [17] in 1954. Essentially, semi-
Markov processes generalize Markov jump processes by allowing holding times to be
more generally distributed instead of being exponentially distributed. The theory of
semi-Markov processes is based on the theory of Markov renewal processes. Smith [31]
and Takacs [36] almost simultaneously developed semi-Markov processes in 1955 and
1956. The initial treatment of semi-Markov theory was given by Cinlar [7] and Pyke
[24]–[27]. For an overview of hidden Markov chain processes and their financial ap-
plications see Elliott [9] and Swishchuk and Elliott [33]. For the general theories of
semi-Markov processes, regime-switching, and Lévy processes, with applications in fi-
nance, see the textbooks and notes of Applebaum [2], Cohen and Elliott [6], Koroliuk
and Limnios [16], Swishchuk and Wu [35], Schoutens [29], and Papapantoleon [23]. Dis-
crete time semi-Markov random evolutions and their applications were considered in [18].
Semi-Markov processes with a discrete state space were studied in [30]. Semi-Markov
switching processes in queueing systems were considered in [1].

Although the Black-Scholes formula has been quite successful in describing stock op-
tion prices, it does have well-known biases and its performance is substantially worse
when pricing other derivatives. This is not surprising since the Black-Scholes model
makes the strong assumption that stock returns are normally distributed with known
mean and variance. The Black-Scholes formula does not depend on the mean spot re-
turn so it cannot be generalized by allowing this mean to vary. The assumption that the
volatility, or instantaneous variance is constant appears wrong.

After Merton’s [21] jump-diffusion models in 1976, generalized models to allow sto-
chastic volatility were reported to be successful in explaining the prices of currency
options by Melino and Turnbull [19,20], Rumsey [28], as well as the stochastic volatility
jump-diffusion models of Bates [3]. However, these papers have the disadvantage of not
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having closed-form solutions and require extensive use of numerical techniques to solve
two-dimensional partial differential equations.

Heston’s model, developed in 1993 [14], not only allows volatility to follow a stochas-
tic process, but the solution methods are faster than finite difference solutions to partial
differential equations or integro-differential equations. This led Heston to refer to them
as closed-form solutions. The famous Heston model was further developed in 1999 [15],
to exploit the relationship between bond pricing models and option pricing models with
stochastic volatility. A new stochastic volatility model was found with a closed-form so-
lution for European option prices. Miltersen, Sandmann, and Sondermann [22] obtained
closed-form solutions for term structure derivatives on log-normal interest rates, and for
the “market model” of interest rates.

As advocated by Hamilton [13], the Markov-switching model maintains the assumption
that time series data may display frequent changes in their observed behaviour and
accounts for such changes through switches in states, where the data-generating process
and average duration of each state are allowed to differ. Importantly, the statistical
features and identification of the states are not imposed exogenously on the data, but
rather are determined endogenously by an estimation procedure.

Previous empirical results have witnessed the success of the Markov-switching model
in capturing observed nonlinearities. For example, Elliott and Osakwe [10] used Markov-
modulated regime-switching market parameters to capture the time-inhomogeneity gen-
erated by the financial market. Goutte and Zou [12] used real foreign exchange rates
data and compared the results obtained from regime-switching models with non-regime-
switching models during a financial or economic crisis. Zhou and Mamon [37] also proved
regime-switching models were more flexible, had better forecasting performance and pro-
vided a better fit than models without regime-switching.

There also has been considerable interest in the applications to various financial prob-
lems driven by a semi-Markov chain process. D’Amico, Janssen, and Manca [8] used a
discrete time, non-homogeneous semi-Markov model for the rating evolution of the credit
quality of a firm, and determined the credit default swap spread for a contract between
two parties. Fodra and Pham [11] modeled microstructure noise using a semi-Markov
model. Swishchuk [32] priced variance and volatility swaps for stochastic volatilities
driven by semi-Markov processes.

This paper is organized as follows. Section 2 introduces discrete time finite state
semi-Markov chains and presents a semi-martingale representation for the semi-Markov
chains. In Section 3 we introduce semi-Markov switching Lévy processes. Section 4 deals
with applications of semi-Markov chains in finance, namely, we consider the application
of the semi-Markov chains to the binomial model in finance. Here, we also consider some
estimation results for Markov and semi-Markov chains. The last Section 5 concludes the
paper and mentions possible future work.

2. A semi-martingale representation for semi-Markov chains

In this section, we introduce discrete time finite state semi-Markov chains and give a
semi-martingale representation for them.

2.1. Discrete time finite state semi-Markov chains. Let Xt be a discrete time,
finite state semi-Markov chain defined on (Ω,F ,P). Suppose time t ∈ {0, 1, 2, . . . }. The
state space can be taken without loss of generality to be E = {e1, e2, . . . , eN}, where
ei = (0, . . . , 1, 0, . . . , 0)′ ∈ R

N . Suppose the jump times are 0 < τ1 < τ2 < τ3 < . . . .
Write Xτn = Xn ∈ E, θn+1 := τn+1 − τn, Ft := σ{Xk : k ≤ t}. The semi-Markov
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property states that

P (Xn+1 = ej , θn+1 = m | Fτn) = P(Xn+1 = ej , θn+1 = m | Xn = ei)

= P(θn+1 = m | Xn+1 = ej , Xn = ei)P(Xn+1 = ej | Xn = ei)

= qji(m) := fji(m)Pji.

Write P(θn+1 = m | Xn+1 = ej , Xn = ei) = fji(m), and P(Xn+1 = ej | Xn = ei) = Pji.
Suppose fji(m) does not depend on ej , i.e.,

P(θn+1 = m | Xn+1 = ej , Xn = ei) = P(θn+1 = m | Xn = ei) = Ti(m).

The process being homogeneous means these probabilities Ti(m) are independent of n.
Write

Gi(k) =

k∑
m=1

Ti(m) = P(θn+1 ≤ k | Xn = ei),

Fi(k) = P(θn+1 > k | Xn = ei) = 1−Gi(k),

Fi(k, j) = P(θn+1 > k,Xn+1 = ej | Xn = ei) = Fi(k)Pji.

2.2. A semi-martingale representation for a semi-Markov chain. Consider the
processes

pni (k, j) = �τn+k≥τn+1
�(Xn+1 = ej)�(Xn = ei),

p̃ni (k, j) =
∑

τn<τn+m≤τn+k∧τn+1

(
Ti(m)

Fi(m) + Ti(m)

)
πji.

Theorem 2.1. For τn < τn + d ≤ τn + k,

qni (k, j) := pni (k, j)− p̃ni (k, j)

is an {Fk} martingale.

Proof. Suppose τn < τn + d ≤ τn + k. Then

E[pni (k, j)− p̃ni (d, j) | Fd] = �τn+1>τn+d

(
Gi(k)−Gi(d)

Fi(d)

)
πji.

Also,

E[p̃ni (k, j)− p̃ni (d, j) | Fd]

= �τn+1>τn+d E

⎡⎣ ∑
τn+d<τn+m≤τn+k∧τn+1

(
Ti(m)

Fi(m) + Ti(m)

)
πji

∣∣∣∣∣ Fd

⎤⎦
= �τn+1>τn+d

πji

Fi(d)

⎡⎣Fi(k)
∑

τn+d<τn+m≤τn+k

(
Ti(m)

Fi(m) + Ti(m)

)

+
∑

τn+d<τn+r≤τn+k

⎛⎝ ∑
τn+d<τn+m≤τn+r

Ti(m)

Fi(m) + Ti(m)

⎞⎠Ti(r)

⎤⎦.
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Now, interchanging the order in the last double sum

∑
τn+d<τn+r≤τn+k

⎛⎝ ∑
τn+d<τn+m≤τn+r

Ti(m)

Fi(m) + Ti(m)

⎞⎠Ti(r)

=
∑

τn+d<τn+m≤τn+k

⎛⎝ ∑
τn+m≤τn+r≤τn+k

Ti(r)

⎞⎠ Ti(m)

Fi(m) + Ti(m)

=
∑

τn+d<τn+m≤τn+k

(
Gi(k)−Gi(m) + Ti(m)

) Ti(m)

Fi(m) + Ti(m)

=
∑

τn+d<τn+m≤τn+k

(
Fi(m)− Fi(k) + Ti(m)

) Ti(m)

Fi(m) + Ti(m)

=
∑

τn+d<τn+m≤τn+k

Ti(m)− Fi(k)
∑

τn+d<τn+m≤τn+k

Ti(m)

Fi(m) + Ti(m)
.

Therefore,

E[p̃ni (k, j)− p̃ni (d, j) | Fd] = �τn+1>τn+d
πji

Fi(d)

(
Gi(k, j)−Gi(d, j)

)
= E[pni (k, j)− pni (d, j) | Fd].

So, E[qni (k, j) | Fd] = pni (d, j)− p̃ni (d, j) = qni (d, j), and qni is a martingale. �

Corollary 2.1. Write Q(m) =
(
Qji(m), 1 ≤ i, j ≤ N

)
for the matrix with entries

Qji(m) = Ti(m)
Fi(m)+Ti(m)πji; then for τn + k ≥ 1,

qn(τn + k) := �τn+k≥τn+1
Xn+1 −

∑
τn<τn+m≤τn+k∧τn+1

Q(m)Xn ∈ R
N

is an {Fk} martingale.

Proof. We note

pni (k, j) = �τn+k≥τn+1
�(Xn+1 = ej)�(Xn = ei)

has compensator

p̃ni (k, j) =
∑

τn<τn+m≤τn+k∧τn+1

(
Ti(m)

Fi(m) + Ti(m)

)
πji.

However,

�τn+k≥τn+1
Xn+1 = pn(k) = �τn+k≥τn+1

(
N∑
i=1

〈Xn, ei〉
)⎛⎝ N∑

j=1

〈Xn+1, ej〉

⎞⎠ ej .

So this has compensator

p̃n(k) =
N∑
j=1

N∑
i=1

∑
τn<τn+m≤τn+k∧τn+1

Ti(m)

Fi(m) + Ti(m)
πji〈Xn, ei〉ej

=
∑

τn<τn+m≤τn+k∧τn+1

Q(m)Xn. �

Corollary 2.2. Write q(t) =
∑

�(τn ≤ τn + t)qn(t); then q(t) is an {Fk} martingale.
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Proof. Suppose τm < τn + s ≤ τm+1 ≤ · · · ≤ τn < τn + t. Note pn(t) and p̃n(t) are only
defined for t ≥ τn + 1. With qn(t) = pn(t)− p̃n(t), and t ≥ τn + 1,

E[qn(t) | Fτn+1] = qn(τn + 1) = pn(τn + 1)− p̃n(τn + 1)

= �τn+1=τn+1
Xn+1 −Q(τn + 1)Xn.

For i �= j, Qji(τn + 1) = Ti(τn+1)
Ti(τn+1)Pji, so Q(τn + 1) = P = (Pji, 1 ≤ i, j ≤ N).

Also,

E[�τn+1Xn+1 | Fτn ] = PXn.

So,

E[qn(t) | Fτn ] = E[qn(τn + 1) | Fτn ] = 0 ∈ R
N . �

Corollary 2.3.
∑

n≥0 q
n(t) = q(t) ∈ R

N is then the martingale associated with the

semi-Markov chain X = {Xt, t = 0, 1, 2, . . . }.

We know q(t) =
∑

n≥0 p
n(t) −

∑
n≥0 p̃

n(t). Write Q(t) =
∑

n≥0 p̃
n(t) ∈ R

N ; then X
has semi-martingale representation

Xt = X0 +Q(t) + q(t) ∈ R
N .

3. Semi-Markov switching Lévy processes

Here, we introduce semi-Markov switching Lévy processes which are a natural gener-
alization of classical Lévy processes.

3.1. Lévy processes. For completeness, we present a brief description of Lévy processes.
A Lévy process is a stochastic process representing the motion of a point whose suc-

cessive random displacements are independent, and statistically identical over different
time intervals of the same length. A Lévy process may thus be viewed as the continuous
time analog of a random walk. The most well-known examples of Lévy processes are
Brownian motion and the Poisson process. Aside from Brownian motion with drift, all
other proper Lévy processes have discontinuous paths.

Càdlàg is a French acronym for “right-continuous with left limit”. A càdlàg, adapted,
real valued stochastic process L = (Lt)t≥0 with L0 = 0 is a Lévy process if the following
conditions are satisfied [1]:

(i) the process L has independent increments, i.e., Lt − Ls is independent of Fs for
any 0 ≤ s ≤ t ≤ T ,

(ii) the process L has stationary increments, i.e., the distribution of Lt+s − Lt does
not depend on t for any s, t ≥ 0,

(iii) the process L is stochastically continuous, i.e., for every t ≥ 0 and ε > 0:

lim
s→t

P(|Lt − Ls| > ε) = 0.

We now define the Lévy measure.
Let Lt be a Lévy process on R

d. The jump measure μ on R
d defined by [21]

μ(t, dz) =
∑
s>0

�(ΔLs �=0)δ(s,ΔLs)(t, dz)

is called the Lévy measure of Lt; δ(s,ΔLs)(t, dz) denotes the unit mass at (s,ΔLs).
Any Lévy process may be decomposed into the sum of a Brownian motion, a linear drift

and a pure jump process which captures all jumps of the original Lévy process. The latter
can be thought of as a superposition of centred compound Poisson processes. This result
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is known as the Lévy–Itô decomposition. Mathematically, the Lévy–Itô decomposition
for Lt is [21]

Lt = at+ σW (t) +

∫
|z|>1

∫
]0,t]

zN(ds, dz) +

∫
|z|≤1

∫
]0,t]

zÑ(ds, dz),

where a, σ are constants with σ ≥ 0, W (t) is a standard Brownian motion, N is an

independent Poisson random measure μ(t, dz), and Ñ is a compensated Poisson random

measure, where Ñ(dt, dz) = N(dt, dz)−m(dz) dt.
The distribution of a Lévy process is characterized by its characteristic function, which

is given by the Lévy–Khintchine formula: if L = (Lt)t≥0 is a Lévy process, then its
characteristic function φL(u) is given by [21]

φt(u) = E
(
eiuLt

)
= exp

{
t

(
iau− 1

2
σ2u2 +

∫
R

(
eiuz − 1− iz�(|z| ≤ 1)

)
m(dz)

)}
.

This is determined by the Lévy–Khintchine triplet
(
a, σ2,m(dz)

)
.

3.2. Semi-Markov switching Lévy process. For the semi-Markov process with the
semi-martingale representation Xt = X0 + p̃(t) + q(t), the semi-Markov switching Lévy
process Λt is then

Λt =
N∑
i=1

Li
t〈Xt, ei〉 = 〈Lt, Xt〉.

If Lt is the vector of Lévy processes
(
L1
t , L

2
t , . . . , L

N
t

)
, then it gives:

dΛt = 〈dLt, Xt〉+ 〈Lt, dXt〉 =
N∑
i=1

dLi
t〈Xt, ei〉+

N∑
i=1

Li
t〈dXt, ei〉

with dXt = dp̃(t) + dq(t).

4. Application of semi-Markov chains: Binomial model and estimations

In this section, we apply the semi-Markov switching binomial model in finance, and
obtain the formula for the arbitrage free price of a financial asset based on our model.
We also present some estimation results for Markov and semi-Markov chains.

4.1. (B,S)-security regime-switching markets. Let us consider a finite state Markov
chain X = {Xt, t = 0, 1, 2, . . . }. X will model the state of the economy or market. We
suppose Xt ∈ {e1, e2, . . . , eN} (we can choose N = 2), ei = (0, . . . , 0, 1, . . . , 0)′ ∈ R

N .
Suppose there are vectors u = (u1, u2, . . . , uN )′ ∈ R

N , d = (d1, d2, . . . , dN )′ ∈ R
N ,

e = (e1, e2, . . . , eN )′ ∈ R
N ; so ut = 〈u,Xt〉, dt = 〈d,Xt〉, et = 〈e,Xt〉 (see [10]).

Suppose we have a risk-free asset, namely a bond with its value at time zero B0 = 1,
Bt+1 = (1 + et)Bt. There is a second risky asset with the following price change:

St

S−
t+1 = dtSt

S+
t+1 = utSt

{Ft} is the filtration generated by price S.
Suppose Vt is a claim paid at time T . Vt is {Ft}-measurable. In this binomial model,

there is a perfect hedge and the arbitrage-free price of V at time t is derived by working
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backwards. Suppose Vt+1 has been determined for all states of the world at time t + 1.
We wish to find Vt below:

Vt

V −
t+1

V +
t+1

At time t, we form a portfolio by buying αt of St and βt of Bt. The value of this
portfolio is Πt = αtSt + βtBt. At time t+ 1 the portfolio has values:

Π+
t+1 = αtStut + βtBt(1 + et) in the up state,

Π−
t+1 = αtStdt + βtBt(1 + et) in the down state,

αt and βt are to be chosen so that Π+
t+1 = V +

t+1 and Π−
t+1 = V −

t+1.
Πt must then be the price of Vt at time t. In fact, this gives

Vt =
1

(1 + et)

[
((1 + et)− dt)

ut − dt
V +
t+1 +

(ut − (1 + et))

ut − dt
V −
t+1

]
.

If we introduce the “risk-neutral” probability πt =
(1+et)−dt

ut−dt
, 1−πt =

ut−(1+et)
ut−dt

, then

Vt =
1

(1 + et)

[
πtV

+
t+1 + (1− πt)V

−
t+1

]
.

Write Πi =
(1+ei)−di

ui−di
, and Π = (π1, π2, . . . , πN )′ ∈ R

N .

Then πt :=
(1+et)−dt

ut−dt
= 〈π,Xt〉.

4.2. Regime-switching binomial model. Now consider a Bernoulli random variable
Xt = 0 or 1 with probability pt = P(Xt = 1 | Ft−1). Pt is Ft-measurable where
Ft = σ{Xs, 0 ≤ s ≤ t}.

We are considering a binomial model but with risk-neutral probabilities πt, t =
0, 1, . . . , so the pricing still works with

Vt =
1

1 + et

(
πtV

+
t+1 + (1− πt)V

−
t+1

)
.

In the binomial model, the hedging and unique price depends on there being two states
of the world at the next time and two assets to hedge. This hedge works if the ut, dt,
and et are adapted to {Ft}. That is, at time t, ut, dt, and et are Ft-measurable.

Suppose St+1 = utSt if Xt+1 = 1, St+1 = dtSt if Xt+1 = 0; the state of the economy
is modelled by a finite state Markov chain X = {Xt : t = 0, 1, . . . , T}. Consider vectors

u = (u1, . . . , uN )′ ∈ R
N , d = (d1, . . . , dN )′ ∈ R

N , r = (r1, . . . , rN )′ ∈ R
N ;

so ut = 〈u,Xt〉, dt = 〈d,Xt〉, rt = 〈r,Xt〉.
Suppose initially we know the trajectory of the chain Xt, for t = 0, 1, . . . , T , i.e.,

suppose we know X0 = ei0 , X1 = ei1 , . . . , XT = eiT . Then, ut = uit , dt = dit , rt = rit .
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Then, there is a risk-neutral measure Q given by

dQ

dP

∣∣∣
FTV FX

T

=

T−1∑
n=0

(
qn
pn

)Xn+1
(
1− qn
1− pn

)1−Xn+1

=
T−1∑
n=0

(
〈q,Xn〉

pn

)Xn+1
(
1− 〈q,Xn〉

1− pn

)1−Xn+1

=

T−1∑
n=0

(
qin
pn

)Xn+1
(
1− qin
1− pn

)1−Xn+1

.

If X0 = ei0 , X1 = ei1 , . . . , XT = eiT , knowing this trajectory of X to time T , if G is
an Ft-measurable random variable, the arbitrage free price of G is

Vt = EQ

[
G

(
T−1∑
n=t

1

rin

) ∣∣∣∣∣ FtV FX
T

]
.

Putting in dQ
dP , knowing X0, X1, . . . , XT , the arbitrage free price of G is

Vt = E

[
G

(
T−1∑
n=t

(
〈q,Xn〉

pn

)Xn+1
(
1− 〈q,Xn〉

1− pn

)1−Xn+1 1

〈r,Xn〉

) ∣∣∣∣∣ FtV FX
T

]

= E

[
G

(
T−1∑
n=t

(
qin
pn

)Xn+1
(
1− qin
1− pn

)1−Xn+1 1

rin

) ∣∣∣∣∣ FtV FX
T

]
π̂(t : T ),

where π̂(t : T ) =
∏T−1

n=t 〈ein , Xn〉.
We are then left to condition out the product

T−1∏
n=t

〈ein , Xn〉 = 〈eit , Xt〉〈eit+1
, Xt+1〉 . . . 〈eiT−1

, XT−1〉 = π̂(t : T )

given Xt. This will be

E[π(t : T ) | Xt = eit ] = 〈eit , Xt〉〈eit+1
, AXt〉 . . .

〈
eiT−1

, AT−1−tXt

〉
= ait+1itait+2it+1

ait+3it+2
. . . aiT−t−1iT−t−2

= π̂(t : T ),

where A = (aji, 1 ≤ i, j ≤ N) and aji = P(Xt+1 = ej | Xt = ei). The final result will be
the sum over all possible paths eit , eit+1, . . . , eiT−1

for Xt, . . . , XT−1,

V̂t =
∑

E

[
G

(
T−1∑
n=t

(
qin
pn

)Xn+1
(
1− qin
1− pn

)1−Xn+1 1

rin

)]
π̂(t : T ),

of which each of the paths has a probability π̂(t : T ), which is the product of the transition
probabilities of the steps in the path

π̂(t : T ) = ait+1itait+2it+1
. . . aiT−t−1iT−t−2

.

4.3. Estimates for Markov and semi-Markov chains.

4.3.1. Estimates for a Markov chain. We suppose the state Xt is known or observed at
each time t.

Suppose the chain X has transition probabilities

pji = P(Xt+1 = ej | Xt = ei) = P(X1 = ej | X0 = ei).
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If the chain is homogeneous, write A = (pji, 1 ≤ i, j ≤ N); then

Xt+1 = AXt +Mt+1,

where E[Mt+1 | Ft] = 0 = (0, 0, . . . , 0)′ ∈ R
N .

The likelihood ratio is

Λt =

t∏
l=0

λl,

where λ0 = 〈l0, X0〉; and for l ≥ 1, λl = 〈Xl, AXl−1〉. We also have pji ≥ 0 and∑N
j=1 pji = 1.
Now

log Λt =
t∑

l=0

λl =
t∑

l=1

N∑
j=1

N∑
i=1

log pji〈Xl, ej〉〈Xl−1, ei〉.

We wish to maximize this subject to
∑N

j+1 pji = 1.
Write λ for the Lagrange multiplier and consider

Lt :=
N∑
j=1

N∑
i=1

log pjiν
ij(t) + λ

⎛⎝ N∑
j=1

pji − 1

⎞⎠ ,

where νji(t) =
∑t

l=1〈Xl, ej〉〈Xl−1, ei〉 is the number of jumps from ei to ej up to time t.
First order conditions given for aji is

1

pji
νij(t) + λ = 0

and
N∑
j=1

pji = 1.

Then

λpji = −νji(t)

and summing over j,

λ = −
N∑

j=1,i=1

νij(t) = νi(t),

where νi(t) =
∑t

l=1〈Xl−1, ei〉 is the amount of time the chain X has spent in state ei up
to time t.

Therefore, observing Xt for 0, 1, 2, . . . , t, the estimate of pji is
νji(t)
νi(t) .

4.3.2. Estimates for a semi-Markov chain. Now suppose X = {Xt, t = 0, 1, . . . } is a
finite state semi-Markov chain with jumps 0 < τ1 < τ2 < . . . . We shall write Xτn = Xn,
θn+1 := τn+1 − τn. Recall that the semi-Markov property states

P(Xn+1 = ej , θn+1 = m | Fτn) = P(Xn+1 = ej , θn+1 = m | Xn = ei)

= qji(m) := Pjifji(m).

Write hl(Xl) = k. When Xl−k �= ei but Xl−k+1 = ei, Xl−k+2 = ei, . . . , Xl = ei; then
hl(Xl) = 1 + 〈Xl, Xl−1〉hl−1(Xl−1).

hl(Xl) counts the number of consecutive states the process has been in state Xl.
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Write

pi(k) := P(θn+1 = k | Zn = ei),

Fi(k) := P(θn+1 ≥ k | Zn = ei) =

∞∑
l=k

pi(l).

Lemma 4.1. Suppose Xt = ei and P(ht(Xt) = k | Xt = ei) > 0; then

P(Xt+1 �= ei | Xt = ei, ht(Xt) = k) =
pi(k)

Fi(k)
.

Corollary 4.1. Suppose Xt = ei and P(ht(Xt) = k | Xt = ei) > 0; then

P(Xt+1 = ei | Xt = ei, ht(Xt) = k) =
Fi(k + 1)

Fi(k)
.

Write

p(k)

F (k)
:=

(
p1(k)

F1(k)
,
p2(k)

F2(k)
, . . . ,

pN (k)

FN (k)

)
,

F (k + 1)

F (k)
:=

(
F1(k + 1)

F1(k)
,
F2(k + 1)

F2(k)
, . . . ,

FN (k + 1)

FN (k)

)
.

For j �= i,

Aji = P(Xn+1 = ej | Xn = ei),

A = (Aji), 1 ≤ i, j ≤ N.

We have defined

qji(m) = P(Xn+1 = ej , θn+1 = m | Xn = ei)

= P(θn+1 = m | Xn+1 = ej , Xn = ei)P(Xn+1 = ej , Xn = ei)

= Tji(m)Aji,

where Tji(m) = P(θn+1 = m | Xn+1 = ej , Xn = ei).
We shall suppose Tji(m) is independent of ej , so

P(θn+1 = m | Xn+1 = ej , Xn = ei) = P(θn+1 = m | Xn = ei) = Ti(m).

Then qji(m) = Ti(m)Aji.
Consider the matrix

Bt(Xt) :=

〈
Xt,

p(ht(Xt))

F (ht(Xt))

〉
A+

〈
Xt,

F (ht(Xt) + 1)

F (ht(Xt))

〉
I.

Lemma 4.2. For all t ≥ 0,

E[Xt+1 | Ft] = Bt(Xt)Xt ∈ R
N .

Write λ0 = 〈X0, p0〉, where p0 is the distribution of X0.
For l ≥ 1, λl+1 = 〈Bl(Xl)Xl, Xl+1〉. The likelihood ratio is then

Λk :=
k∏

l+1

λl.

Again we have
∑N

j=1 pji = 1, and by construction we have pii = 0. Then

log Λk =

k∑
t=0

N∑
j=1

N∑
i=1

log

[
pi(ht(Xt))

Fi(ht(Xt))
aji +

Fi(ht(Xt) + 1)

Fi(ht(Xt))

]
〈Xt+1, ej〉〈Xt, ei〉.
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As pii = 0, this is equal to

k∑
t=0

N∑
j=1

N∑
i=1
i �=j

log

[
pi(ht(Xt))

Fi(ht(Xt))
pji

]
〈Xt+1, ej〉〈Xt, ei〉

+

k∑
t=0

N∑
i=1

log

[
Fi(hi(Xt) + 1)

Fi(hi(Xt))

]
〈Xt+1, ej〉〈Xt, ei〉.

Now

log

[
pi(ht(Xt))

Fi(ht(Xt))
pji

]
= log(pi(ht(Xt)))− logFi(ht(Xt)) + log pji.

So the first order conditions again give the estimates

pji =
νij(t)

νi(t)
,

where

νij(t) =
∑

τn+1≤t

〈Xn+1, ej〉〈Xn, ei〉

and

νi(t) =

N∑
j=1
j �=i

νji(t).

5. Conclusion

In this paper, we introduced a new model of discrete time switching semi-Markov
chains, derived its semi-martingale representation, and applied a semi-Markov switching
binomial model in finance. Semi-Markov switching models will be extended to the con-
tinuous case and other derivative pricing in finance in our future papers. We shall also
apply semi-Markov switching Lévy processes to derivative pricing and other problems
in finance in our future works. Semi-Markov processes are also widely applied in other
models, including limit order books in finance [34], computer science, sociology, biology,
and medicine [35].
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