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ASYMPTOTIC EXPANSION OF A FUNCTIONAL CONSTRUCTED

FROM A SEMI-MARKOV RANDOM EVOLUTION IN THE SCHEME

OF DIFFUSION APPROXIMATION
UDC 519.21

V. S. KOROLIOUK AND I. V. SAMOĬLENKO

Abstract. The regular and singular components of an expansion of a functional
of a semi-Markov decomposition of a random evolution are found in the paper. A
procedure is proposed for finding the explicit form of initial conditions for t = 0 by
using the boundary conditions for the singular component of the expansion,

1. Introduction

Various stochastic systems can be described with the help of an abstract mathematical
model in the Banach space B(Rd) of functions ϕ(u), u ∈ R

d, called a random evolution (a
detailed survey can be found in [18]). Griego and Hersh [2–4] were the first to consider
such a model.

Asymptotic methods in the theory of random evolutions have been used by many
authors (see, for example, [5, 11, 17]). Some applications of these methods for different
stochastic systems can be found in [14]. Pinsky [18] studies the models of a kinetic theory
of gases, isotropic transport on manifolds, stability of random oscillators, etc., by means
of analogous methods.

We mention here the results by Hillen and Othmer [6, 15] among the papers related
to random evolutions in the mathematical biology (also see [16]). Namely, the transport
equations are used in the mathematical biology as a model of movement and evolution of a
population. The bacterial movement can be described as follows: the cycles when bacteria
move along a straight line are changed with the random rotation cycles that result in the
change of direction of the further movement. One can model such a movement picture
with the help of a jump process that determines the speed and this, in turn, leads to the
transport equation.

The linear transport equation is written as

∂

∂t
p(x, v, t) + v∇p(x, v, t) = −λp(x, v, t) +

∫
V

λT (v, v′)p(x, v′, t) dv′,

where p(x, v, t) is the density of particles at a point x ∈ R
d that move with speed

v ∈ V ⊂ R
d at time t ≥ 0. The intensity of rotation λ may depend on both the current

position and speed. The kernel determining the rotation or the distribution of the angle
of rotation T (v, v′) determines the probability of the jump from v′ to v.

The evolution equation studied in the current paper generalizes the above transport
equation. An analogous generalization of the telegraph equation is described in [20].
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Another application of asymptotic methods is described by Yin and Zhang [26]. They
study a model for production planning of a failure-prone manufacturing system consisting
of several machines whose production capacity is modeled by a Markov or semi-Markov
chain. In large-scale controlled systems different components may be renewed with dif-
ferent intensities. Thus the system can be split into separate components for which the
corresponding state of the chain are aggregated. Introducing a small parameter ε > 0,
the system is transformed to a system scaled by two time parameters. The equation for
such a model is given by

dpε(t)

dt
=

1

ε
pε(t)Q(t).

Here pε(t) is the probability distribution of the corresponding Markov or semi-Markov
chain and Q(t) is its generator. As a rule, the analysis of quickly changing processes pε(t)
in a physical or manufacturing system is complicated. Instead of pε(t), one can use “av-
eraged” version constructed with the help of limit properties obtained from asymptotic
decompositions.

In particular, the problems of minimization of the discounted cost function and optimal
control are solved in [26] with the use of asymptotic approximation. Similar methods
are also used when solving Markov problems of decision making, problems of stochastic
control in dynamic systems, numerical methods of control, and optimization.

More details and a survey of recent results concerning the methods of the asymptotic
analysis of random evolutions and applications of these results in various fields can be
found in [22, 27].

Some of the results obtained in [26] are generalized in this paper to the case of semi-
Markov processes. The current paper deals with the scheme of diffusion approximation
and is a continuation of the paper [1], where a similar study is presented for the scheme
of averaging. An analogous problem is investigated in [19], where the model includes
some additional parameters in order to transform a semi-Markov random evolution into
a Markov one. This essentially simplifies the technical part of the investigation; how-
ever, this method requires introducing an additional variable, being an argument of a
functional under consideration, and thus the questions concerning the inverse transform
remain open. Moreover, the author of [19] does not formulate any result about the form
of the regular component of the expansion. An algorithm for finding the regular compo-
nent of the expansion is proposed in [19], but the regularization of the limit conditions
is not done. Such a regularization allows one to propose an algorithm for finding initial
conditions in an explicit form at t = 0 by using the limit conditions for the singular
component of the decomposition.

All problems mentioned above are successfully solved in the current paper. The conver-
gence of the asymptotic series is proved by using an estimate for the remainder term.
The authors leave this result for a separate publication elsewhere.

A semi-Markov random evolution in the scheme of series (its properties are studied
in [10] in more detail) is defined in terms of the solution of the following evolution
equation in the Euclidean space R

d, d ≥ 1:

(1)
duε(t)

dt
=

1

ε
v
(
uε(t); æ

(
t/ε2
))

.

The process that switches the speeds æ(t), t ≥ 0, is a semi-Markov process [9] with
the state space (E, E), where E is a complete separable metric space and E is the cor-
responding σ-algebra of its subsets. The process is defined in terms of its semi-Markov
kernel (see [10])

Q(x,B, t) = P (x,B)Fx(t), x ∈ E, B ∈ E , t ≥ 0,
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that determines the transition probabilities of the Markov renewal process æn, τn, n ≥ 0,

Q(xn, B, t) = P{æn+1 ∈ B, τn+1 − τn ≤ t | æn = x}
= P{æn+1 ∈ B | æn = x}P{τn+1 − τn ≤ t | æn = x}.

The stochastic kernel

P (x,B) = P{æn+1 ∈ B | æn = x}
generates the transition probabilities of the embedded Markov chain æn = æ(τn), n ≥ 0,
while the distribution functions

Fx(t) = P{τn+1 − τn ≤ t | æn = x} =: P{τn+1 − τn ≤ t}, x ∈ E,

generate the distributions of sojourn times θx in the states x ∈ E.
Let B(E) denote the Banach space of real-valued test functions ϕ(x) being bounded

together with all their derivatives. Let this space be equipped with the sup-norm. The
generator of the associated Markov process acts on B(E) and is of the form

Q = q(x)(P − I),

where

Pϕ(x) =

∫
E

P (x, dy)ϕ(y), x ∈ E,

is the operator of transition probabilities q(x) = 1/m1(x), mk(x) =
∫∞
0

sk Fx(ds).
Let the switching semi-Markov process æ(t), t ≥ 0, be uniformly ergodic (see [10]

for details). Denote by π(B), B ∈ E , the stationary distribution of the switching semi-
Markov process æ(t), t ≥ 0, and assume that

π(dx) = ρ(dx)m1(x)/m̂,

m̂ =

∫
E

ρ(dx)m1(x).

Here ρ(B), B ∈ E , is the stationary distribution of the embedded Markov chain æn, n ≥ 0,
defined by

ρ(B) =

∫
E

ρ(dx)P (x,B), ρ(E) = 1.

In this case, the Banach space B(E) is the direct sum of the null-subspace NQ :=
{ϕ(x) : Qϕ(x) = 0} of the operator Q and the subspace RQ := {ψ(x) : Qϕ(x) = ψ(x)} of
values of the operator Q (see [10, 12]).

Denote by Π the projector to the null-space of the operator Q: Πϕ(x) := ϕ̂1(x),
where 1(x) = 1 for all x ∈ E,

ϕ̂ :=

∫
E

ϕ(x) π(dx).

In [10, Section 3.4.3], the conditions for the weak convergence

uε(t) ⇒ û(t), ε → 0,

are found, and an equation is derived that determines the limit process.
In general, there are two lines of attack when studying the rate of the weak conver-

gence; namely,

(i) either the asymptotic analysis of the fluctuations

ζε(t) = uε(t)− û(t), ε → 0,
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(ii) or the asymptotic analysis of the functional defining the expectation of the semi-
Markov random evolution

Φε
t (u, x) = E

[
ϕ
(
uε(t)

) ∣∣ uε(0) = u,æ(0) = x
]
,

where ϕ(u) belongs to the Banach space B(Rd) of real-valued test functions
being bound together with all their derivatives. The norm in the space B(Rd) is
defined by

‖ϕ‖ = sup
u∈Rd

|ϕ(u)| < Cϕ

for some Cϕ > 0.

The aim of the current paper is to study the rate of convergence following the second
approach. More precisely, we construct an asymptotic expansion of the functional of the
semi-Markov random evolution in the form

(2) Φε
t (u, x) = Uε(t) +W ε(τ ) = U0(t) +

∞∑
k=1

εk
(
Uk(t) +Wk(τ )

)
,

where τ = t/ε2.

Remark 1.1. The initial conditions are given by

Φε
0(u, x) = Uε(0) +W ε(0) = ϕ(u),

whence

U0(0) = ϕ(u),

Uk(0) +Wk(0) = 0, k ≥ 1.

The singular component of the decomposition satisfies the boundary conditions

W ε(∞) = 0.

Asymptotic expansions with a boundary layer are studied by many authors; see, for
example, [8, 25]. In particular, functionals of Markov and semi-Markov processes are
studied in [11, 20, 24] by following the second approach mentioned above.

Asymptotic expansion (2) for a functional of the semi-Markov random evolution in
the scheme of diffusion approximation is constructed in the current paper by using the
integral equation of the Markov renewal. The procedure for the construction of an explicit
form of regular and singular components of the asymptotic expression and boundary
conditions are given in Theorem 1.1. The proof of the main result consists of several
steps.

Now we introduce some notation. The deterministic evolution

Φx(t, u) = ϕ
(
uε
x(t)
)
, uε

x(0) = u,

generates the corresponding semigroup

Vt(x)ϕ(u) := ϕ(uε
x(t)), uε

x(0) = u,

whose generator is of the form

V
ε(x)ϕ(u) =

1

ε
v(u, x)ϕ′(u).

For convenience, the auxiliary generator is denoted by

V(x)ϕ(u) := v(u, x)ϕ′(u).
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Below is some more notation:

μk(x) =
mk(x)

k!m1(x)
, μ1(x) := 1,

Li
k,nUn(t) := (−1)iCk−n−i

k−n−2iV
k−n−2i(x)PU (i)

n (t),

ΠLk :=

k−1∑
n=1

[ k−n
2 ]∑

i=0

Πμk−n−i(x)L
i
n,kR0Ln +

[ k2 ]∑
i=0

Πμk−i(x)L
i
0,k,

νk(x) = (−1)k[mk(x)− μk+1(x)],

L̂k−1(x) :=
k−1∑
n=0

(−1)nCn
kV

k−n(x)PU (n)(t),

L̂k(x) := V
k(x)P.

Finally,

QW (τ ) =

∫ ∞

0

Fx(ds)PW (τ − s),

ψk(τ ) = F̄ (k)
x (τ )Vk(x)Pϕ(u), ψk

0 (τ ) =
k−1∑
r=1

QrWk−r(τ ),(3)

F̄ (k)
x (τ ) =

∫ ∞

τ

sk−1

(k − 1)!
F̄x(s) ds, QrW (τ ) =

∫ ∞

0

sr

r!
Fx(ds)V

r(x)PW (τ − s).

In what follows, we assume that the balance condition holds; that is, we assume
that the mean value of v(u, x) with respect to the stationary measure of the switching
semi-Markov process is equal to zero:

(4) ΠV(x)Π =

∫
E

v(u, x) π(dx) = 0.

Theorem 1.1. Assume that the uniform ergodicity condition holds for the switching
semi-Markov process. Then balance condition (4) implies that the asymptotic expansion
of the random evolution

Φε
t (u, x) = E

[
ϕ
(
uε(t)

) ∣∣ uε(0) = u,æ(0) = x
]

is given by

Φε
t (u, x) = Uε(t) +W ε(τ ) = U0(t) +

∞∑
k=1

εk
(
Uk(t) +Wk(τ )

)
, τ = t/ε2,

where

U0(t) = c0(t, u)1,

and the function c0(t, u) satisfies the equation

(5)
∂c0(t, u)

∂t
= ṽ(u)

∂c0(t, u)

∂u
+

1

2
σ̃(u)

∂2c0(t, u)

∂u2

with initial condition

c0(0, u) = ϕ(u).

Here

ṽ(u) := Πμ2(x)
∂v(u, x)

∂u
−Πv(x, u)R0

∂v(x, u)

∂u
,

σ̃(u) := 2
(
Πμ2(x)v(u, x)−Πv(x, u)R0v(x, u)

)
.



88 V. S. KOROLIOUK AND I. V. SAMOĬLENKO

The rest of the regular terms are of the form

Uk(t) = R0

⎛⎜⎝k−1∑
n=0

[ k−n
2 ]∑

i=0

μk−n−i(x)L
i
k,nUn(t)

⎞⎟⎠+ ck(t, u),

where R0 = Π− [Q+Π]−1 according to [8].
The functions ck(t, u) are such that

∂ck(t, u)

∂t
−Πμ2(x)V

2(x)ck(t, u) + ΠV(x)R0V(x)ck(t, u)

= −ΠLkc0(t, u)− · · · −ΠL1ck−1(t, u).

The singular terms of the expansion (“boundary layer”) are of the form

W1(τ ) = R0

[
ψ1(τ ) + F̄x(τ )PU1(0) +

∫ ∞

τ

(τ − s)Fx(ds)PU ′
0(0)

]
,

Wk(τ ) = R0

⎡⎢⎣ψk(τ )− ψk
0 (τ ) + F̄x(τ )PUk(0) +

[ k2 ]∑
n=1

∫ ∞

τ

(τ − s)n

n!
Fx(ds)PU

(n)
k−2n(0)

⎤⎥⎦ ,
where R0 is the matrix of the Markov renewal [21].

The initial conditions are

(I −Π)[Uk(0) +Wk(0)] = 0,

ck(0, u) = −ΠWk(0),

ck(0, u) =

[
k−1∑
r=0

∫
π(dx)νk−r(x)L̂k−r(x)Ur(0)

−
k−1∑
r=1

∫
ρ(dx)

∫ ∞

0

∫ τ

0

sr

r!
Fx(ds)V

r(x)PWk−r(τ − s) dτ

]/
m̂.

Remark 1.2. Equation (5) for the function c0(t, u) is completely compatible with results
obtained in Section 3.4.3 of the monograph [10] and means that the stochastic process
to which the prelimit random evolution converges weakly as ε → 0 is defined by the
diffusion type equation

du0(t) = ṽ(u) dt+ σ̃1/2(u) dw(t).

2. Equation of the Markov renewal

Lemma 2.1. The functional Φε
t (u, x) of the semi-Markov evolution satisfies the equation

(6)

∫ ∞

0

Fx(ds)Vε2s(x)PΦε
t−ε2s(u, x)− Φε

t (u, x) = ε2Vε(x)

∫ ∞

τ

F̄x(s)Vε2s(x)ϕ(u) ds,

where τ = t/ε2.

Proof. Considering the first jump moment of the switching process, the functional is
rewritten as

Φε
t (u, x) = Eu,x

[
ϕ
(
uε(t)

)
; θx > t/ε2

]
+ Eu,x

[
ϕ
(
uε(t)

)
; θx ≤ t/ε2

]
= F̄x

(
t/ε2

)
Vt(x)Pϕ(u) +

∫ t/ε2

0

Fx(ds)Vε2s(x)PΦε
t−ε2s(u, x).
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Thus

Φε
t (u, x)−

∫ t/ε2

0

Fx(ds)Vε2s(x)PΦε
t−ε2s(u, x) = F̄x(τ )Vt(x)Pϕ(u).

Extending Φε
t−ε2s(u, x) = ϕ(u) by continuity for t−ε2s ≤ 0, the latter equation becomes

of the form

Φε
t (u, x)−

∫ ∞

0

Fx(ds)Vε2s(x)PΦε
t−ε2s(u, x)

= F̄x(τ )Vt(x)Pϕ(u)−
∫ ∞

τ

Fx(ds)Vε2s(x)PΦε
t−ε2s(u, x)

= F̄x(τ )Vt(x)Pϕ(u)−
∫ ∞

τ

Fx(ds)Vε2s(x)Pϕ(u).

Hence

Φε
t (u, x)−

∫ ∞

0

Fx(ds)Vε2s(x)PΦε
t−ε2s(u, x)

= F̄x(τ )Vt(x)Pϕ(u)− F̄x(s)Vε2s(x)Pϕ(u)
∣∣∣∞
τ

− ε2Vε(x)

∫ ∞

τ

F̄x(s)Vε2s(x)ϕ(u)ds.

Deleting the terms we obtain equality (6). The lemma is proved. �

3. Equation for regular terms

Let

Lk =
k∑

n=0

(−1)nCn
k (V

ε(x))k−nP
(
Uε(n)(t)

)
.

Lemma 3.1. The equations for the regular terms of the expansion can be written as

QU(t) = −
[ ∞∑
k=1

ε2kμk(x)Lk

]
Uε(t).(7)

Proof. We will use the equality

aPb− 1 = (P − 1) + (a− 1)P + P (b− 1) + (a− 1)P (b− 1),

where

a = Vε2s(x) = I +

∞∑
k=1

ε2k
sk

k!

(
V

ε(x)
)k
, b = Φε

t−ε2s =

∞∑
k=0

(−1)kε2k
sk

k!
Φ

(k)
t (u, x).

Then we rewrite (6) as

(P − I)Φε
t (u, x) +

∫ ∞

0

Fx(ds)

( ∞∑
k=1

ε2k
sk

k!
(Vε(x))k

)
PΦε

t (u, x)

+

∫ ∞

0

Fx(ds)P

( ∞∑
k=1

(−1)kε2k
sk

k!
Φ

(k)
t (u, x)

)

+

∫ ∞

0

Fx(ds)

( ∞∑
k=1

ε2k
sk

k!
(Vε(x))k

)
P

( ∞∑
k=0

(−1)kε2k
sk

k!
Φ

(k)
t (u, x)

)

= ε2Vε(x)

∫ ∞

τ

F̄x(s)Vε2s(x)Pϕ(u) ds.
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Substituting expression (2) for regular terms we conclude that

(P − I)Uε(t) =−
∫ ∞

0

Fx(ds)

( ∞∑
k=1

ε2k
sk

k!
(Vε(x))k

)
PUε(t)

−
∫ ∞

0

Fx(ds)P

( ∞∑
k=1

(−1)kε2k
sk

k!

(
Uε(k)(t)

))

−
∫ ∞

0

Fx(ds)

( ∞∑
k=1

ε2k
sk

k!
(Vε(x))k

)
P

( ∞∑
k=0

(−1)kε2k
sk

k!

(
Uε(k)(t)

))
.

Collecting the terms with the same powers of ε we get

(P − I)Uε(t)

=
∞∑
k=1

ε2k

[
−
∫ ∞

0

Fx(ds)
sk

k!
(Vε(x))kPUε(t)

−
∫ ∞

0

Fx(ds)

(
k−1∑
n=1

(−1)n
sk

n!(k − n)!
(Vε(x))nP

(
Uε(k−n)(t)

))

−
∫ ∞

0

(−1)kFx(ds)P
sk

k!

(
Uε(k)(t)

)]

= −
∞∑
k=1

ε2k
mk(x)

k!
LkU

ε(t).

Dividing the latter equality by m1(x) we obtain (7). The lemma is proved. �

Substituting the expansion

Uε(t) =

∞∑
k=0

εkUk(t)

into (7), taking into account the relation V
ε(x) = 1

εV(x), and collecting the terms with
the same powers of ε we prove the following result.

Corollary 3.1. The regular terms of the asymptotic expansion satisfy the following
system of equations:

(8)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

QU0(t) = 0,

QU1(t) = −V(x)PU0(t),

QU2(t) =
∂PU0(t)

∂t
− μ2(x)V

2(x)PU0(t)− V(x)PU1(t),

QU3(t) =
∂PU1(t)

∂t
− μ2(x)V

2(x)PU1(t)− V(x)PU2(t)

+ μ2(x)C
2
1V(x)P

∂U0(t)

∂t
− μ3(x)V

3(x)PU0(t),

. . .

QUk(t) = −
k−1∑
n=0

[ k−n
2 ]∑

i=0

μk−n−i(x)L
i
k,nUn(t), k ≥ 3,

. . .
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where

Li
k,nUn(t) := (−1)iCk−n−i

k−n−2iV
k−n−2i(x)PU (i)

n (t).

The first equation of system (8) implies that U0(t) ∈ NQ. Therefore one can set

U0(t) = c0(t, u)1,

where c0(t, u) is a scalar function that does not depend on x but does depend on u.
The right hand side of the second equation belongs to RQ as seen from balance con-

dition (4), whence

U1(t) = R0V(x)PU0(t) + c1(t, u) = R0V(x)c0(t, u) + c1(t, u)

(see [9]).
As a result, the third equation is rewritten as

QU2(t) =
∂c0(t, u)

∂t
− μ2(x)V

2(x)c0(t, u)− V(x)R0V(x)c0(t, u)− V(x)c1(t, u),

and thus balance condition (4) and the condition of solvability of the latter equation
imply the equation for the function c0(t, u):

ΠQΠU2(t) = 0 =
∂c0(t, u)

∂t
−Πμ2(x)V

2(x)Πc0(t, u)−ΠV(x)R0V(x)Πc0(t, u).

Corollary 3.2. The function c0(t, u) satisfies the diffusion type equation

∂c0(t, u)

∂t
= ṽ(u)

∂c0(t, u)

∂u
+

1

2
σ̃(u)

∂2c0(t, u)

∂u2

with the initial condition

c0(0, u) = ϕ(u).

Here

ṽ(u) := Πμ2(x)
∂v(u, x)

∂u
−Πv(x, u)R0

∂v(x, u)

∂u
,

σ̃(u) := 2
(
Πμ2(x)v(u, x)−Πv(x, u)R0v(x, u)

)
.

Then we obtain for U2(t) that

U2(t) = R0

(
∂c0(t, u)

∂t
− μ2(x)V

2(x)c0(t, u)− V(x)PU1(t)

)
+ c2(t, u).

Using balance condition (4) and the condition of solvability of the fourth equation of
system (8), we get

0 = Π

(
R0V(x)

∂c0(t, u)

∂t
+

∂c1(t, u)

∂t
− μ2(x)V

2(x)R0V(x)c0(t, u)

− μ2(x)V
2(x)c1(t, u)− V(x)R0

∂c0(t, u)

∂t
+ V(x)R0μ2(x)V

2(x)c0(t, u)

+ V(x)R0V(x)R0V(x)c0(t, u) + V(x)R0V(x)c1(t, u)− V(x)c2(t, u)

+ μ2(x)C
2
1V(x)

∂c0(t, u)

∂t
− μ3(x)V

3(x)c0(t, u)

)
Π,
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which yields the equation for c1(t, u):

∂c1(t, u)

∂t
−Πμ2(x)V

2(x)Πc1(t, u) + ΠV(x)R0V(x)Πc1(t, u)

= −ΠR0V(x)
∂c0(t, u)

∂t
+Πμ2(x)V

2(x)R0V(x)Πc0(t, u) + ΠV(x)R0
∂c0(t, u)

∂t

−ΠV(x)R0μ2(x)V
2(x)Πc0(t, u)−ΠV(x)R0V(x)R0V(x)Πc0(t, u)

−Πμ2(x)C
2
1V(x)

∂c0(t, u)

∂t
+Πμ3(x)V

3(x)Πc0(t, u).

For Uk(t), we proceed analogously:

Uk(t) = R0

⎛⎜⎝k−1∑
n=0

[ k−n
2 ]∑

i=0

μk−n−i(x)L
i
k,nUn(t)

⎞⎟⎠+ ck(t, u),

∂ck(t, u)

∂t
−Πμ2(x)V

2(x)Πck(t, u) + ΠV(x)R0V(x)Πck(t, u)

= −ΠLkc0(t, u)− · · · −ΠL1ck−1(t, u),

where

ΠLk :=
k−1∑
n=1

[ k−n
2 ]∑

i=0

Πμk−n−i(x)L
i
n,kR0Ln +

[ k2 ]∑
i=0

Πμk−i(x)L
i
0,k.

4. Equations for singular terms (“boundary layer”)

We will use notation (3).

Lemma 4.1. The equations for singular terms are given by

(Q− I)W1(τ ) = ψ1(τ ),

(Q− I)Wk(τ ) = ψk(τ )− ψk
0 (τ ).

(9)

Proof. Substituting the expansion

W ε(τ ) =

∞∑
k=1

εkWk(τ )

of the singular component into (6) and taking into account Vε(x) = 1
εV(x), we obtain∫ ∞

0

Fx(ds)

[
I +

∞∑
k=1

εk
sk

k!
V

k(x)

]
P

[ ∞∑
k=1

εkWk(τ − s)

]
−

∞∑
k=1

εkWk(τ )

=

∫ ∞

τ

F̄x(s)

[ ∞∑
k=1

εk
sk−1

(k − 1)!
V

k(x)

]
Pϕ(u)ds.

Therefore

ε[Q− I]W1(τ ) +
∞∑
k=2

εk[Q− I]Wk(τ ) +
∞∑
k=2

εk
k−1∑
r=1

QrWk−r+1(τ )

=
∞∑
k=1

εkF̄ k
x (τ )V

k(x)Pϕ(u).

Collecting the terms with the same powers of ε we get (9). Lemma 4.1 is proved. �
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Corollary 4.1. The singular terms of the asymptotic expansion are given by

W1(τ ) = R0

[
ψ1(τ )−

∫ ∞

τ

Fx(ds)PW1(τ − s)

]
,

Wk(τ ) = R0

[
ψk(τ )− ψk

0 (τ )−
∫ ∞

τ

Fx(ds)PWk(τ − s)

]
, τ ≥ 0, k ≥ 2.

5. Initial conditions. The regularity of initial conditions

Consider the Taylor series for the function Φε2τ (u, x) with respect to ε and for negative
numbers τ :

ϕ(u) = Φε2τ (u, x)
∣∣∣
τ<0

= U0(0) +

∞∑
k=1

ε2k
τk

k!
U

(k)
0 (0) + εU1(0) + + ε

∞∑
k=1

ε2k
τk

k!
U

(k)
1 (0) + · · ·+

∞∑
k=1

εkWk(τ ).

Hence

(10) W ε(τ ) = W ε(0)−
∞∑
k=1

ε2k
τk

k!
Uε(k)(0)

and

(11) Wk(τ ) = Wk(0)−
[ k2 ]∑
n=1

τn

n!
U

(n)
k−2n(0).

Lemma 5.1. For τ = 0, we have

Q[Uε(0) +W ε(0)] = 0.

Proof. We need to prove the following equalities:

QUε(0) = −
( ∞∑

k=1

ε2kμk(x)Lk

)
Uε(0)

and

QW ε(0) =

( ∞∑
k=1

ε2kμk(x)Lk

)
Uε(0).

The first of the latter equalities follows from equality (7).
Let

Q(τ )W (τ ) :=

∫ τ

0

Fx(ds)PW (τ − s).
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Now we substitute (10)–(11) into equation (9):

(Q(τ )− I)W ε(τ )

= −
∫ ∞

τ

Fx(ds)P

(
W ε(0)−

∞∑
k=1

ε2k
(τ − s)k

k!
Uε(k)(0)

)

+

∫ ∞

τ

F̄x(ds)

( ∞∑
k=1

εk
sk−1

(k − 1)!
V

k(x)

)
PU0(0) ds

−
∫ ∞

0

Fx(ds)

( ∞∑
k=1

εk
sk

k!
V

k(x)

)
P

(
W ε(0)−

∞∑
k=1

ε2k
(τ − s)k

k!
Uε(k)(0)

)

= −PW ε(0) +

∫ ∞

τ

Fx(ds)P

( ∞∑
k=1

ε2k
(τ − s)k

k!
Uε(k)(0)

)

+

∫ ∞

τ

F̄x(ds)

( ∞∑
k=1

ε2k
sk−1

(k − 1)!
(Vε(x))k

)
PU0(0) ds

+

∫ ∞

0

Fx(ds)

( ∞∑
k=1

ε2k
sk

k!
(Vε(x))k

)
P (Uε(0)− U0(0))

+

∫ ∞

0

Fx(ds)

( ∞∑
k=1

ε2k
sk

k!
(Vε(x))k

)
P

( ∞∑
k=1

ε2k
(τ − s)k

k!
Uε(k)(0)

)
.

If τ = 0, we consider the initial condition described in Remark 1.1, namely,

W ε(0) = −Uε(0) + ϕ(u) = −Uε(0) + U0(0),

and use the equalities

Q(0)W (0) = 0,

∫ ∞

0

Fx(ds)PW (0) = PW (0).

Then we conclude that

(P − I)W ε(0) =

( ∞∑
k=1

ε2k
mk(x)

k!
Lk

)
Uε(0),

which implies the equality for QW ε(0). Lemma 5.1 is proved. �

Corollary 5.1. We have

(I − P )[Uε(0) +W ε(0)] = 0

or, which is the same,

(I −Π)[Uk(0) +Wk(0)] = 0.

We see that the regular and singular parts of the solution imply that the initial con-
dition described in Remark 1.1 holds in the space of values of the operator Q.

At the same time, the initial conditions in the null-space of the operator Q are de-
termined by those for the “boundary layer”. Summarizing what has been said above we
derive the following result.

Corollary 5.2. Let ck(0, u) = −ΠWk(0), k ≥ 1.

Proof. It is obvious that Π[Wk(0) + Uk(0)] = ΠWk(0) + ck(0, u) = 0. �
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Corollary 5.3. The singular terms of the asymptotic expansion can be written in the
following explicit form:

W1(τ ) = R0

[
ψ1(τ ) + F̄x(τ )PU1(0) +

∫ ∞

τ

(τ − s)Fx(ds)PU ′
0(0)

]
,

Wk(τ ) = R0

⎡⎣ψk(τ )− ψk
0 (τ ) + F̄x(τ )PUk(0) +

[k/2]∑
n=1

∫ ∞

τ

(τ − s)n

n!
Fx(ds)PU

(n)
k−2n(0)

⎤⎦ .
Proof. Using relations (10)–(11) and Corollary 5.1, one easily obtains

∫ ∞

τ

Fx(ds)PWk(τ − s) =

∫ ∞

τ

Fx(ds)P

⎡⎣−Uk(0)−
[k/2]∑
n=1

(τ − s)n

n!
U

(n)
k−2n(0)

⎤⎦
= −F̄x(τ )PUk(0)−

[k/2]∑
n=1

∫ ∞

τ

(τ − s)n

n!
Fx(ds)PU

(n)
k−2n(0). �

6. Initial conditions for regular terms

Using the limit conditions as τ → ∞ (see Remark 1.1), we can describe the procedure
for finding the initial conditions for the regular component of the expansion at τ = 0.
The first singular term W1(τ ) satisfies the equation

(12)

∫ ∞

0

Q(ds)W1(τ − s)−W1(τ ) = F̄ (1)
x (τ )V(x)Pϕ(u)

(see (9)), where

F̄ (1)
x (τ ) =

∫ ∞

τ

F̄x(s) ds.

Splitting the first integral into two parts yields the equation∫ τ

0

Q(ds)W1(τ − s)−W1(τ ) = F̄ (1)(τ )V(x)Pϕ(u)−
∫ ∞

τ

Q(ds)W1(τ − s).

According to the renewal theorem (see [21]),

0 = W1(∞)

=

(∫
ρ(dx)

∫ ∞

0

∫ ∞

τ

F̄x(s)dsdτV(x)Pϕ(u)

−
∫

ρ(dx)

∫ ∞

0

∫ ∞

τ

Q(ds)W1(τ − s) dτ

)/
m̂,

(13)

where

m̂ =

∫
ρ(dx)m1(x).

We derive from (10)–(11) that

(14) W1(τ ) = W1(0)
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for τ < 0. Substituting the latter expression into equation (13) we conclude that(∫
ρ(dx)

∫ ∞

0

∫ ∞

τ

F̄x(s) ds dτV(x)Pϕ(u)−
∫

ρ(dx)

∫ ∞

0

∫ ∞

τ

Q(ds)W1(0) dτ

)/
m̂

=

(∫
ρ(dx)

∫ ∞

0

F̄ (1)
x (s) dτV(x)Pϕ(u)

−
∫

ρ(dx)

∫ ∞

0

∫ ∞

τ

Fx(s)PW1(0) ds dτ

)/
m̂

=

(∫
ρ(dx)

m2(x)

2
V(x)Pϕ(u)−

∫
ρ(dx)m1(x)PW1(0)

)/
m̂

=

(
−
∫

ρ(dx)m1(x)μ2(x)V(x)Pϕ(u)

−
∫

ρ(dx)m1(x)(P − I)W1(0)−
∫

ρ(dx)m1(x)W1(0)

)/
m̂

=

(
−
∫

ρ(dx)m1(x)μ2(x)V(x)Pϕ(u)−
∫

ρ(dx)m1(x)(P − I)W1(0)

)/
m̂

− c1(0, u)

= 0,

(15)

where μ2(x) = m2(x)/(2m1(x)).
Setting τ = 0 in (12), we get∫ ∞

0

Q(ds)W1(−s)−W1(0) =

∫ ∞

0

F̄x(s) dsV(x)Pϕ(u).

Now (14) implies that W1(−s) = W1(0). Substituting this expression into the latter
relation results in ∫ ∞

0

Q(ds)W1(0)−W1(0) = m1(x)V(x)Pϕ(u).

Therefore

[P − I]W1(0) = m1(x)V(x)Pϕ(u).

Finally, we substitute this expression into (15) and conclude that

0 =

(
−
∫

ρ(dx)m1(x)μ2(x)V(x)Pϕ(u) +

∫
ρ(dx)m2

1(x)V(x)Pϕ(u)

)/
m̂− c1(0, u)

or

c1(0, u) =

∫
π(dx)ν1(x)V(x)Pϕ(u)/m̂,

where

π(dx) = ρ(dx)m1(x), ν1(x) = m1(x)− μ2(x) =
2m2

1(x)−m2(x)

2m1(x)
.

Remark 6.1. It is known that Fx(t) has the exponential distribution if ν1(x) = 0. In this
case,

c1(0, u) = 0.

The procedure for finding the other terms of the asymptotic expansion is explained
for a particular case of the second term W2(τ ). We start this procedure by writing the
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equality ∫ ∞

0

Q(ds)W2(τ − s)−W2(τ )

= F̄ (2)
x (τ )V2(x)Pϕ(u)−

∫ ∞

0

s

1!
Fx(ds)V(x)PW1(τ − s),

(16)

where F̄ (2)(τ ) =
∫∞
τ

sF̄x(s) ds.
Splitting the first integral in equality (16) into two parts we arrive at the equation∫ τ

0

Q(ds)W2(τ − s)−W2(τ )

= F̄ (2)(τ )V2(x)Pϕ(u)−
∫ ∞

0

s

1!
Fx(ds)V(x)PW1(τ − s)−

∫ ∞

τ

Q(ds)W2(τ − s).

Now we pass to the limit as τ → ∞ and derive from the renewal theorem (see, for
example, [21]) that

0 = W2(∞)

=

(∫
ρ(dx)

∫ ∞

0

∫ ∞

τ

sF̄x(s) ds dτV
2(x)Pϕ(u)

−
∫

ρ(dx)

∫ ∞

0

[∫ τ

0

s

1!
Fx(ds)V(x)PW1(τ − s) dτ

+

∫ ∞

τ

s

1!
Fx(ds)V(x)PW1(τ − s) dτ

]
−
∫

ρ(dx)

∫ ∞

0

∫ ∞

τ

Q(ds)W2(τ − s) dτ

)/
m̂.

(17)

For τ < 0, we use (10)–(11):

(18) W2(τ ) = W2(0)− τU ′
0(0).

Substituting the latter expression into equation (17) gives(∫
ρ(dx)

∫ ∞

0

∫ ∞

τ

sF̄x(s) ds dτV
2(x)Pϕ(u)

−
∫

ρ(dx)

∫ ∞

0

[∫ τ

0

s

1!
Fx(ds)V(x)PW1(τ − s) dτ

+

∫ ∞

τ

s

1!
Fx(ds)V(x)PW1(0)

]
×
∫

ρ(dx)

∫ ∞

0

∫ ∞

τ

Q(ds)[W2(0)− (τ − s)U ′
1(0)] dτ

)/
m̂

=

(∫
ρ(dx)

m3(x)

3!
V

2(x)Pϕ(u)(19)

−
∫

ρ(dx)

∫ ∞

0

∫ τ

0

s

1!
Fx(ds)V(x)PW1(τ − s) dτ

−
∫

ρ(dx)
m2(x)

2!
V(x)PW1(0)−

∫
ρ(dx)

∫ ∞

0

∫ ∞

τ

Q(ds)W2(0) dτ

+

∫
ρ(dx)

∫ ∞

0

∫ ∞

τ

Q(ds)(τ − s)U ′
1(0) dτ

)/
m̂
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=

(∫
ρ(dx)

m3(x)

3!
V

2(x)Pϕ(u)

−
∫

ρ(dx)

∫ ∞

0

∫ τ

0

s

1!
Fx(ds)V(x)PW1(τ − s) dτ

+

∫
ρ(dx)

m2(x)

2!
V(x)PW1(0)−

∫
ρ(dx)m(x)[P − I]W2(0)

−
∫

ρ(dx)m1(x)U2(0)−
∫

ρ(dx)
m2(x)

2!
PU ′

1(0)

)/
m̂

=

(
−
∫

ρ(dx)m1(x)μ2(x) (V(x)PU1(0)− PU ′
1(0))

−
∫

ρ(dx)m1(x)μ3(x)V
2(x)PU0(0)−

∫
ρ(dx)m1(x)(P − I)W2(0)

−
∫

ρ(dx)

∫ ∞

0

∫ τ

0

s

1!
Fx(ds)V(x)PW1(τ − s)dτ

)
/m̂− c2(0, u)

= 0.

Setting τ = 0 in (16) yields∫ ∞

0

Q(ds)W2(−s)−W2(0) = m2(x)V
2(x)Pϕ(u)−

∫ ∞

0

sFx(ds)V(x)PW1(−s),

whence∫ ∞

0

Q(ds)[W2(0) + sU ′
1(0)]−W2(0) = m2(x)V

2(x)Pϕ(u)−
∫ ∞

0

sFx(ds)V(x)PW1(0).

Therefore

[P − I]W2(0) = m2(x)V
2(x)Pϕ(u)−m1(x)PU ′

1(0) +m1(x)V(x)PU1(0)

= m2(x)V
2(x)PU0(0)−m1(x)(V(x)PU1(0)− PU ′

1(0)).

Finally we substitute this expression into (17):

c2(0, u) =

[∫
π(dx)ν2(x)V

2(x)PU0(0) +

∫
π(dx)ν1(x) (V(x)PU1(0)− PU ′

1(0))

−
∫

ρ(dx)

∫ ∞

0

∫ τ

0

s

1!
Fx(ds)V(x)PW1(τ − s) dτ

]/
m̂,

where

ν2(x) = μ3(x)−m2(x) =
m3(x)− 2m1(x)m2(x)

3!m1(x)
.

We proceed analogously for other terms:

ck(0, u) =

[
k−1∑
r=0

∫
π(dx)νk−r(x)L̂k−r(x)Ur(0)

−
k−1∑
r=1

∫
ρ(dx)

∫ ∞

0

∫ τ

0

sr

r!
Fx(ds)V

r(x)PWk−r(τ − s) dτ

]/
m̂,

νk(x) = (−1)k[mk(x)− μk+1(x)], L̂k−1(x) :=

k−1∑
n=0

(−1)nCn
kV

k−n(x)PU (n)(t),

L̂k(x) := V
k(x)P.
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