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CONSISTENT ESTIMATION IN COX PROPORTIONAL HAZARDS

MODEL WITH MEASUREMENT ERRORS AND UNBOUNDED

PARAMETER SET
UDC 519.21

A. G. KUKUSH AND O. O. CHERNOVA

Abstract. We study the Cox problem with proportional risks and measurement
errors. The asymptotic properties of the simultaneous estimator λn(·), βn of the
baseline hazard function λ(·) and regression parameter β are considered in the papers
[6] and [3] for the case of a bounded set of parameters Θ = Θλ ×Θβ . In the current
paper, the set Θλ is unbounded from above and is not separated from zero. The

estimator is constructed in the following two steps. First, one obtains a strictly
consistent estimator and, second, this estimator is corrected in order to obtain an
asymptotically normal estimator.

1. Introduction

We consider the Cox proportional hazards model [4]. According to this model, the
intensity function T of the lifetime is of the following form:

(1) λ(t|X;λ, β) = λ(t) exp
(
βTX

)
, t ≥ 0.

Here the regressor X is a random vector in R
m, β is the regression parameter in the set

Θβ ⊂ R
m, and λ(·) ∈ Θλ ⊂ C[0, τ ] is the baseline hazard function.

Observed are the censored data rather than the duration of life T ; namely one ob-
serves the random variables Y := min{T,C} and censorship indicator Δ := I{T≤C}. The
censor C is random and distributed in the interval [0, τ ]. The survival function of the
censor GC(u) = 1 − FC(u) is unknown, while τ is known. The conditional density of T
given X is given by

fT (t|X,λ, β) = λ(t|X;λ, β) exp

(
−
∫ t

0

λ(t|X;λ, β) ds

)
.

The variable W = X+U is observed instead of X, where the moment generating function

MU (β) := E eβ
TU of the random measurement error U is known. The pair (T,X), cen-

sor C, and error U are stochastically independent.
Consider independent copies of the model (Xi, Ti, Ci, Yi,Δi, Ui,Wi), i = 1, . . . , n.

Based on the observations (Yi,Δi,Wi), i = 1, . . . , n, our aim is to estimate the true
parameters β0 and λ0(t), t ∈ [0, τ ].

Following the paper [2], we use the corrected likelihood function

Qcor
n (λ, β) :=

1

n

n∑
i=1

q(Yi,Δi,Wi;λ, β),
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where

q(Y,Δ,W ;λ, β) := Δ
(
lnλ(Y ) + βTW

)
−

exp
(
βTW

)
MU (β)

∫ Y

0

λ(u) du.

The corrected estimator is given by

(2)
(
λ̂n, β̂n

)
= argmax

(λ,β)∈Θ

Qcor
n (λ, β),

where Θ := Θλ ×Θβ . If the sets of parameters are compact, then Θ is compact as well,
and the maximum on the right hand side of equality (2) is attained at a point of Θ.

Many papers are devoted to the estimation of β0 and cumulative risks

Λ(t) =

∫ t

0

λ(t|X;λ, β) dt.

In particular, Andersen and Gill [1] introduce general ideas of estimation by using the
partial likelihood function. A model with measurement errors is considered in [5], where
consistent and asymptotically normal estimators of β0 and Λ(t) are obtained with the
help of the corrected score method. Royston in [8] describes the problems where the
estimators of the risk function λ(·) rather than those of the cumulative risk Λ(t) play a
crucial role.

The model studied in the current paper is introduced in [2]. However, the risk function
belongs to a finite set of parameters in [2], while we consider the risk function in C[0, τ ].

The consistency of estimator (2) is proved in [6] for the case of a bounded set of
parameters. An asymptotically normal estimator is obtained in [3]. Note that the set Θλ

is defined in [6] without an assumption that the values λ(0) are bounded, while the proof
in [6] uses this property. We weaken this strong assumption as well as the assumption
that λ(·) is separated from zero.

The paper is organized as follows. The estimator is introduced in Section 2 under the
assumption that the set of parameters is unbounded. The consistency of the estimator
is also proved, and the procedure for calculating the estimator is described in Section 2.
The estimator considered in Section 2 is modified in Section 3 in such a way that the
resulting estimator is asymptotically consistent. Some concluding remarks are given in
Section 4.

2. Step 1: Consistent estimation

Below are the assumptions imposed on the set of parameters.

(i) Kλ ⊂ C[0, τ ] is a closed convex set of non-negative functions,

Kλ :=
{
f : [0, τ ] → R

∣∣ f(t) ≥ 0, ∀t ∈ [0, τ ]

and |f(t)− f(s)| ≤ L |t− s| , ∀t, s ∈ [0, τ ]
}
,

where L > 0 is a fixed constant.
(ii) Θβ ⊂ R

m is a compact set.

The following assumptions (iii)–(vi) are introduced in the paper [6].

(iii) EU = 0 and

E eD‖U‖ < ∞, where D := max
β∈Θβ

‖β‖+ ε

for some ε > 0.
(iv) E eD‖X‖ < ∞, where the number D is defined in assumption (iii).
(v) τ is the right end point of the distribution of the censor C, that is, a number

such that P(C > τ ) = 0 and P(C > τ − ε) > 0 for all ε > 0.
(vi) The covariance matrix of the random vector X is positive definite.
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Let

(3) K = Kλ ×Θβ .

If λ(Y ) = 0, then we put lnλ(Y ) = −∞. For the same case of λ(Y ) = 0, we also put

Δ · lnλ(Y ) =

{
0, if Δ = 0,

−∞, if Δ = 1.

Definition 1. Let {εn} be a fixed sequence of positive numbers such that εn ↓ 0, n → ∞.

The modified estimator
(
λ̂
(1)
n , β̂

(1)
n

)
for (λ, β) is defined as a Borel function of observations

(Yi,Δi,Wi), i = 1, . . . , n, assuming values in K and such that

(4) Qcor
n

(
λ̂(1)
n , β̂(1)

n

)
≥ sup

(λ,β)∈K

Qcor
n (λ, β)− εn.

Results of the paper [7] guarantee that such an estimator exists. A crucial property
here is that the upper bound in (4) is finite.

Below is an additional assumption.

(vii) The true values of parameters (λ0, β0) belong to the set K defined in (3), and
moreover

λ0(t) > 0, t ∈ [0, τ ].

Definition 2. Let An = An(ω), n ≥ 1, be a sequence of statements that depend on
an elementary random event ω ∈ Ω. We say that statements An hold eventually if, for
almost all ω ∈ Ω, there exists a positive integer number n0 = n0(ω) such that statement
An(ω) holds for all n ≥ n0(ω).

Theorem 3. Assume that assumptions (i)–(vii) hold. Then
(
λ̂
(1)
n , β̂

(1)
n

)
is a strongly

consistent estimator of the true parameters (λ0, β0); that is,

max
t∈[0,τ ]

∣∣∣λ̂(1)
n (t)− λ0(t)

∣∣∣ → 0, β̂(1)
n → β0

almost surely as n → ∞.

Proof. For R > 0, denote

KR
λ = Kλ ∩ B̄(0, R), KR = KR

λ ×Θβ ,

where B̄(0, R) is the closed ball in C[0, τ ] of radius R centered at the origin.
1. In the first part of the proof, we show that

(5) sup
(λ,β)∈KR

Qcor
n (λ, β) > sup

(λ,β)∈K\KR

Qcor
n (λ, β)

eventually for sufficiently large non-random numbers R > ‖λ0‖.
The Lipschitz condition for λ ∈ Kλ implies that

(6) λ(0)− Lτ ≤ λ(t) ≤ λ(0) + Lτ,

whence

q(Yi,Δi,Wi;λ, β) ≤ Δi

(
ln(λ(0) + Lτ ) + βTWi

)
−

exp
(
βTWi

)
Yi

MU (β)
(λ(0)− Lτ ).

Using the Lipschitz condition for λ ∈ Kλ, one can show that λ(t) > R− Lτ for all
t ∈ [0, τ ] if λ(t1) > R for some t1 ∈ [0, τ ]. On the other hand, λ(0) > R implies that
λ(t) > R − Lτ , t ∈ [0, τ ]. Thus the supremum on the right hand side of inequality (5)
can be considered in the set {λ ∈ Kλ : λ(0) > R} ×Θβ.

Put
D1 = max

β∈Θβ

‖β‖ .
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We have
sup

(λ,β)∈K\KR

Qcor
n (λ, β) ≤ I1 + sup

λ∈Kλ:
λ(0)>R

I2 + I3,

where

I1 = −(R− Lτ )
1

n

∑
i:Δi=0

exp(−D1 ‖Wi‖)Yi

max
β∈Θβ

MU (β)
,

I2 = ln(λ(0) + Lτ )
1

n

∑
i:Δi=1

Δi − (λ(0) + Lτ )
1

n

∑
i:Δi=1

exp(−D1 ‖Wi‖)Yi

max
β∈Θβ

MU (β)
,

I3 =
1

n

∑
i:Δi=1

D1 ‖Wi‖+ 2Lτ
1

n

∑
i:Δi=1

exp(−D1 ‖Wi‖)Yi

max
β∈Θβ

MU (β)
.

The strong law of large numbers yields

I1 → −(R− Lτ )
E
[
C · I(Δ = 0) exp (−D1 ‖W‖)

]
max
β∈Θβ

MU (β)

almost surely as n → ∞. This means that

I1 ≤ −(R− Lτ )D2

eventually where D2 > 0.
Let

An =
1

n

n∑
i=1

Δi, Bn =
1

n

n∑
i=1

exp(−D1 ‖Wi‖)Yi

max
β∈Θβ

MU (β)
1{Δi=1}.

Since An > 0 and Bn > 0 eventually, we obtain

I2 ≤ max
z>0

(An ln z − zBn) = An

(
ln

(
An

Bn

)
− 1

)
for λ(0) > R. By the strong law of large numbers,

An → P(Δ = 1) > 0, Bn →
E
[
T · I(Δ = 1) exp (−D1 ‖W‖)

]
max
β∈Θβ

MU (β)
> 0

almost surely as n → ∞. Hence I2 is eventually bounded from above by some positive
constant D3.

Further, it follows from the strong law of large numbers that I3 is eventually bounded
from above by some positive constant D4. Hence

lim
n→∞

sup
(λ,β)∈K\KR

Qcor
n (λ, β) ≤ −(R− Lτ )D2 +D3 +D4.

Note that the constants D2, D3, and D4 introduced above do not depend on β ∈ Θβ.
Letting R → +∞, we get

lim
n→∞

sup
(λ,β)∈K\KR

Qcor
n (λ, β) → −∞, R → +∞.

This proves that inequality (5) holds eventually for sufficiently large R. In particular,
one can substitute KR for K in Definition 1.

Therefore, we can assume that

(7) Qcor
n

(
λ̂(1)
n , β̂(1)

n

)
≥ sup

(λ,β)∈KR

Qcor
n (λ, β)− εn

and
(
λ̂
(1)
n , β̂

(1)
n

)
∈ KR for all n ≥ 1. Note that KR is a compact set in C[0, τ ].
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2. Since R > ‖λ0‖, we have (λ0, β0) ∈ KR. Then the inequality

(8) Qcor
n

(
λ̂(1)
n , β̂(1)

n

)
≥ Qcor

n (λ0, β0)− εn

follows from (7). Fix ω ∈ A ⊂ Ω, where P(A) = 1. In what follows we impose on A some
extra assumption. Our aim is to show that(

λ̂(1)
n , β̂(1)

n

)
→ (λ0, β0)

at a point ω. We have

(9) Qcor
n (λ0, β0) → q∞(λ0, β0) := E[q(Y,Δ,W ;λ0, β0)].

This relation holds almost surely, and we can assume that (9) holds for a fixed ω. This
means that the first extra condition on A is

Qcor
n (λ0, β0;ω) → q∞(λ0, β0), ω ∈ A.

The sequence
{(

λ̂
(1)
n (ω), β̂

(1)
n (ω)

)
, n ≥ 1

}
belongs to the compact set KR. Consider an

arbitrary convergent subsequence

(10)
(
λ̂
(1)
n′ (ω), β̂

(1)
n′ (ω)

)
→ (λ∗, β∗) ∈ KR.

It follows from (8) and (9) that

q∞(λ0, β0) ≤ lim
n′→∞

Qcor
n′

(
λ̂
(1)
n′ , β̂

(1)
n′

)

= lim
n′→∞

1

n′

n′∑
i=1

Δi ln λ̂
(1)
n′ (Yi)

+ lim
n′→∞

1

n′

n′∑
i=1

(
Δi · β̂(1)T

n′ Wi −
exp(β̂

(1)T
n′ Wi)

MU (β̂
(1)
n′ )

∫ Yi

0

λ̂
(1)
n′ (u) du

)
.

The second extra condition which is imposed on A reads as follows: for every ω ∈ A,
the sequence of random functions

1

n

n∑
i=1

(
Δiβ

TWi −
exp(βTWi)

MU (β)

∫ Yi

0

λ(u) du

)

converges uniformly in (λ, β) ∈ KR to

E

[
ΔβTW −

exp
(
βTW

)
MU (β)

∫ Y

0

λ(u) du

]
=: q2∞(λ, β).

This condition does not restrict the generality, since, for fixed (λ, β) ∈ KR,

(1) the above sequence converges almost surely to q2∞,
(2) this sequence is equicontinuous almost surely in the compact set KR,
(3) the limit function is continuous in KR.

These three properties imply that the above sequence converges almost surely to q2∞ in
the set KR.

Note that the function q2∞ is continuous with respect to (λ, β) ∈ KR, whence

q∞(λ0, β0) ≤ lim
n′→∞

1

n′

n′∑
i=1

Δi ln λ̂
(1)
n′ (Yi) + q2∞(λ∗, β∗).
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For sufficiently large n′,

λ̂
(1)
n′ (t) ≤ λ∗(t) + ε, t ∈ [0, τ ],

where ε > 0 is fixed.
In what follows we assume that

1

n

n∑
i=1

Δi lnλ(Yi) → E[Δλ(Y )]

uniformly with respect to (λ, β) ∈
(
KR+δk

λ ∩ {λ : λ(t) ≥ δk}
)
× Θβ for all k ≥ 1 and

ω ∈ A, where δk ↓ 0 and {δk} is a fixed sequence of positive numbers.
Then the strong law of large numbers implies that

lim
n′→∞

1

n′

n′∑
i=1

Δi ln λ̂
(1)
n′ (Yi) ≤ lim

n′→∞

1

n′

n′∑
i=1

Δi ln(λ∗(Yi) + ε)

= E[Δ · ln(λ∗(Y ) + ε)] =: q1,ε∞ (λ∗),

whence

q∞(λ0, β0) ≤ q1,ε∞ (λ∗) + q2∞(λ∗, β∗)

for all ε > 0. Letting ε → 0 we obtain

q1,ε∞ (λ∗) = E
[
Δ · ln(λ∗(Y ) + ε)I

(
λ∗(Y ) > 1

2

)]
+ E

[
Δ · ln(λ∗(Y ) + ε)I

(
λ∗(Y ) ≤ 1

2

)]
.

The first expectation converges to

E
[
Δ · ln(λ∗(Y ))I

(
λ∗(Y ) > 1

2

)]
as ε → 0 by the Lebesgue dominated convergence theorem. Accordingly, the second
expectation converges to

E
[
Δ · ln(λ∗(Y ))I

(
λ∗(Y ) ≤ 1

2

)]
as ε → 0 by the Lebesgues monotone convergence theorem. Then

q1,ε∞ (λ∗) → q1∞(λ∗) := E[Δ · lnλ∗(Y )]

as ε → 0. Thus

q∞(λ0, β0) ≤ q1∞(λ∗) + q2∞(λ∗, β∗) = q∞(λ∗, β∗).

According to [6],

q∞(λ0, β0) ≥ q∞(λ∗, β∗).

Moreover, the inequality becomes an equality if and only if λ∗ = λ0 and β∗ = β0. Hence
subsequence (10) converges to (λ0, β0). Since the whole sequence belongs to a compact
set, we conclude that (

λ̂(1)
n (ω), β̂(1)

n (ω)
)
→ (λ0, β0), n → ∞.

This relation holds for almost all ω ∈ Ω. The strong consistency is proved. �

Our next aim is to explain the procedure for calculating such an estimator. Similarly

to [3] we prove that the function λ̂
(1)
n that minimizes Qcor

n is a linear spline for a fixed
β ∈ Θβ .
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Theorem 4. Assumptions (i) and (ii) imply that the function λ̂
(1)
n that minimizes Qcor

n

is a linear spline.

Proof. Let (Yi1 , . . . , Yin) denote the order statistics constructed from the observations

Y1, . . . , Yn. Fix β ∈ Θβ and assume that λ̂
(1)
n ∈ Θλ maximizes Qcor

n (·, β). Along with(
λ̂
(1)
n , β

)
consider

(
λ̄n, β

)
, where λ̄n is the function constructed below. Put

λ̄n(Yik) = λ̂(1)
n (Yik), k = 1, . . . , n.

On each interval [Yik , Yik+1
], k = 1, . . . , n− 1, consider the segments of the two straight

lines

L1
ik
(t) = λ̂(1)

n (Yik) + L(Yik − t),

L2
ik
(t) = λ̂(1)

n

(
Yik+1

)
+ L

(
t− Yik+1

)
,

where L is defined in (i). By Bik , we denote the point of intersection of L1
ik
(t) and L2

ik
(t).

We also agree that Bi0 := 0, Bin := τ and Yi0 := 0, Yin+1
:= τ . Then the function λ̄n(t)

is constructed as follows:

(11) λ̄n(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
L2
i0
(t), if t ∈ [0, Yi1 ],

max{L1
ik
(t), 0}, if t ∈ [Yik , Bik ], k = 1, . . . , n− 1,

max{L2
ik
(t), 0}, if t ∈ [Bik , Yik+1

], k = 1, . . . , n− 1,

L1
in
(t), if t ∈ [Yin , τ ].

It is easy to see that λ̄n ∈ Θλ. By construction, λ̂
(1)
n ≥ λ̄n. Thus

Qcor
n

(
λ̂(1)
n , β

)
≤ Qcor

n

(
λ̄n, β

)
,

whence λ̂
(1)
n = λ̄n. This completes the proof. �

Note that λ̄n(Bik) > 0 eventually, whence we conclude that the minimum in (11) is
not needed anymore.

Having constructed linear spline

λ̄n(β) = argmax
λ : (λ,β)∈Θ

Qcor
n ,

we minimize Q(β) := Qcor
n

(
λ̄n(β), β

)
with respect to β ∈ Θβ . In other words, we search

for β̂ ∈ Θβ such that

Q
(
β̂
)
≥ sup

β∈Θβ

Q(β)− εn.

Since Q(β) is bounded, such a number β̂ exists.
Now

Qcor
n

(
λ̄n

(
β̂
)
, β̂

)
≥ sup

β∈Θβ

max
λ∈Θλ

Q(β)− εn = sup
(λ,β)∈Θ

Qcor
n (λ, β)− εn.

Hence the estimator
(
λ̄n

(
β̂
)
, β̂

)
satisfies conditions of Definition 1, and its evaluation is

a parametric problem.

3. Step 2: Construction of an asymptotically normal estimator

Our aim in this section is to modify the estimator
(
λ̂
(1)
n (ω), β̂

(1)
n (ω)

)
constructed in

Definition 1 in order to obtain an asymptotically normal estimator.



108 A. G. KUKUSH AND O. O. CHERNOVA

Definition 5. A modified estimator
(
λ̂
(2)
n , β̂

(2)
n

)
for (λ, β) is defined as a Borel function

of observations (Yi,Δi,Wi), i = 1, . . . , n, assuming values in K and such that

(
λ̂(2)
n , β̂(2)

n

)
=

⎧⎨
⎩
argmax

{
Qcor

n (λ, β)
∣∣ (λ, β) ∈ K, μλ ≥ 1

2μλ̂
(1)
n

}
, if μ

λ̂
(1)
n

> 0,(
λ̂
(1)
n , β̂

(1)
n

)
, if μ

λ̂
(1)
n

≤ 0,

where μλ := mint∈[0,τ ] λ(t).

The existence of such an estimator follows from some results of the paper [7].
According to Theorem 3, μ

λ̂
(1)
n

→ μλ0
> 0 almost surely and hence

K1 :=
{
(λ, β) ∈ K|μλ ≥ 3

4μλ0

}
⊂

{
(λ, β) ∈ K|μλ ≥ 1

2μλ̂
(1)
n

}
⊂

{
(λ, β) ∈ K|μλ ≥ 1

4μλ0

}
=: K2

eventually. The estimator

(12)
(
λ̂(3)
n , β̂(3)

n

)
= argmax

(λ,β)∈K2

Qcor
n (λ, β)

is strongly consistent under the assumptions (i)–(vii), since, in view of Theorem 3, this

estimator can eventually be chosen as the estimator
(
λ̂
(1)
n , β̂

(1)
n

)
. Thus

(
λ̂
(3)
n , β̂

(3)
n

)
∈ K1

eventually, and
(
λ̂
(3)
n , β̂

(3)
n

)
can be chosen as the estimator

(
λ̂
(2)
n , β̂

(2)
n

)
. This implies the

strong consistency of
(
λ̂
(2)
n , β̂

(2)
n

)
.

Below are some extra conditions needed for an estimator
(
λ̂
(2)
n , β̂

(2)
n

)
to be asymptot-

ically consistent.

(viii) β0 is an inner point of Θβ .
(ix) λ0 ∈ Θε

λ for some ε > 0, where

Θε
λ :=

{
f : [0, τ ] → R

∣∣ f(t) ≥ ε, ∀t ∈ [0, τ ],

|f(t)− f(s)| ≤ (L− ε)|t− s|, ∀t, s ∈ [0, τ ]
}
.

(x) P(C > 0) = 1.
(xi) EU = 0 and

E e2D‖U‖ < ∞, D := max
β∈Θβ

‖β‖+ ε

for some ε > 0.
(xii) E e2D‖X‖ < ∞, where the number D is defined in condition (xi).

In what follows we use the notation introduced in [3]. Let

a(t) = E
[
Xeβ

T
0 XGT (t|X)

]
, b(t) = E

[
eβ

T
0 XGT (t|X)

]
,

p(t) = E
[
XXT eβ

T
0 XGT (t|X)

]
, T (t) = p(t)b(t)− a(t)aT (t), K(t) =

λ0(t)

b(t)
,

A = E

[
XXT eβ

T
0 X

∫ Y

0

λ0(u) du

]
, M =

∫ τ

0

T (u)K(u)Gc(u) du.

For i ≥ 1, consider the random vectors

ζi = −Δia(Yi)

b(Yi)
+

exp
(
βT
0 Wi

)
MU (β0)

∫ Yi

0

a(u)K(u) du+
∂q

∂β
(Yi,Δi,Wi, β0, λ0),

where

∂q

∂β
(Y,Δ,W ;λ, β) = Δ ·W − MU (β)W − E(Ueβ

TU )

MU (β)2
exp(βTW )

∫ Y

0

λ(u) du.
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Let

Σβ = 4 · Cov(ζ1), m(ϕλ) =

∫ τ

0

ϕλ(u)a(u)GC(u) du,

σ2
ϕ = 4 ·Var〈q′(Y,Δ,W, λ0, β0), ϕ〉

= 4 ·Var
[
Δ · ϕλ(Y )

λ0(Y )
−

exp
(
βT
0 W

)
MU (β0)

∫ Y

0

ϕλ(u) du+Δ · ϕT
βW

+ ϕT
β

MU (β0)W − E
(
Ueβ

T
0 U

)
MU (β0)2

exp
(
βT
0 W

) ∫ Y

0

λ0(u) du

⎤
⎦

with ϕ = (ϕλ, ϕβ) ∈ C[0, τ ]×R
m, where the symbol q′ stands for the Frechet derivative.

Now we are in position to apply Theorem 1 of [3] and obtain the asymptotic normality

of β̂
(2)
n and λ̂

(2)
n . Note that this result follows from the asymptotic normality of the

consistent estimators β̂
(3)
n and λ̂

(3)
n .

Theorem 6. Let assumptions (i), (ii), (v)–(xii) hold. Then M is nonsingular and

√
n
(
β̂(2)
n − β0

)
d−→ Nm

(
0,M−1ΣβM

−1
)
.

Moreover,
√
n

∫ τ

0

(
λ̂(2)
n − λ0

)
(u)f(u)GC(u) du

d−→ N
(
0, σ2

ϕ(f)
)

for all continuous functions f satisfying the Lipschitz condition in the interval [0, τ ],
where σ2

ϕ(f) = σ2
ϕ, ϕ = (ϕλ, ϕβ), ϕβ = −A−1m(ϕλ), and ϕλ is a unique solution of the

integral Fredholm equation

ϕλ

K(u)
− aT (u)A−1m(ϕλ) = f(u).

One can use the method of [3] to evaluate the estimator
(
λ̂
(2)
n , β̂

(2)
n

)
.

4. Concluding remarks

In this paper, an estimator is constructed for the baseline hazard function λ(·) and
parameter β in the Cox proportional risks model with measurement errors under com-
paratively weak assumptions. In contrast to the papers [6] and [3], the set of parameters
is unbounded in our setting. The estimator considered is consistent and can be modified
in such a way that the modified estimator is asymptotically normal. The procedure for
evaluating the estimators is described. Further investigations will be devoted to con-
structions of confidence regions.
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