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ASYMPTOTIC NORMALITY

OF KAPLAN–MEIER ESTIMATORS FOR MIXTURES

WITH VARYING CONCENTRATIONS
UDC 519.21

R. E. MAĬBORODA

Abstract. We consider a modified Kaplan–Meier estimator for the distribution of
components in a mixture with varying concentrations in the case of censored data.
The asymptotic normality of this estimator is proved in the uniform norm.

1. Introduction

The classical Kaplan–Meier estimator (KM estimator) is widely used in the analysis of
data similar to the failure times as a non-parametric estimator of the distribution function
constructed from censored data. A modification of this estimator (mKM estimator) is
introduced in the paper [11] for the case where the observations are obtained from a
mixture of several populations (components) with varying concentrations (MVC model).
The consistency of the mKM estimators and estimates of rate of convergence are obtained
in [11].

In the current paper, the asymptotic normality of the mKM estimator is proved in the
uniform norm on a finite interval. This result is a generalization of the classical theorem
on the asymptotic normality of the KM estimator [5] and allows us to obtain an analogue
of the Greenwood formula for the asymptotic variance of mKM estimator. The proof
is based on the asymptotic theory of weighted empirical functions [9, 10], the theory of
product integrals [5], and the classical results of the weak convergence of probability
measures in functional spaces [2].

We recall the definition of the KM estimator for homogeneous samples and provide
some results concerning its asymptotic normality in Section 2.1. The estimation of the
distribution function in the MVC model without censoring is considered in Section 2.2.
The definition of the mKM estimator and the main result of the paper on the asymptotic
normality of the mKM estimator is contained in Section 3. The proof is given in Section 4.

2. Preliminaries

2.1. Censoring and the Kaplan–Meier estimator for homogeneous samples.
We start with the description of a standard random right-censoring model and that of
the construction of the KM estimator.

Let ξj , j = 1, . . . , n, be the failure times of certain objects which are assumed to be
independent and identically distributed random variables. The failure times are observed
if they do not exceed some censoring moments Cj for the corresponding objects (that
is, they are observed if an object fails before it was censored). If censoring precedes the
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failure, then the censoring time is observed for this object. It is also known for every
object whether or not the censoring happens for it.

Therefore, the observations are X = (ξ∗j , δj , j = 1 . . . , n), where

ξ∗j = min(ξj , Cj)

are censored failure times and δj = �{ξj ≤ Cj} are indicators of whether or not the
censoring happens.

The distribution function F of random variables ξj is assumed to be unknown. The
empirical maximal likelihood estimator of F constructed from X coincides with the KM
estimator [13]. The latter is defined as follows.

Let

Ŷn(t) =
1

n

n∑
j=1

�{
ξ∗j ≥ t

}
,

N̂n(t) =
1

n

n∑
j=1

�{
ξ∗j ≤ t, δj = 1

}
.

Assume that all ξ∗j in a sample are different. Then the classical Kaplan–Meier estimator
for F (x) is defined by

(1) F̂ (t) = 1−
∏

j:ξ∗j≤t

(
1−

ΔN̂n(ξ
∗
j )

Ŷn(ξ∗j )

)
= 1−

∏
j:ξ∗j≤t

⎛⎜⎝1− δj
n−

∑
i:ξ∗i <ξ∗j

1

⎞⎟⎠ ,

where ΔN̂n(t) = N̂n(t)− N̂n(t−) means the jump of the function N̂n at a point t. The
limit from the left of the function F at a point t is denoted by F (t−) = lims<t,s→t F (s).

Assume that the censoring moments Cj are independent identically distributed ran-
dom variables with the distribution function G. If F and G are continuous and F (t) < 1
and G(t) < 1 for some t > 0, then

(2)
√
n

(
F̂n(t)− F (t)

)
w−→ N

(
0, σ2(t)

)
,

where

(3) σ2(t) =
(
1− F (t)

)2 ∫ t

0

F (du)(
1−G(u)

)(
1− F (u)

)2
(see [5]). Here and in what follows the symbol

w−→ denotes the weak convergence. Equal-
ity (3) is an asymptotic version of the classical Greenwood formula for the KM estima-
tor [6, equality (3.2.31)].

2.2. Mixtures with varying concentrations. It is assumed in the MVC model that
every object O belongs to one of M different populations. The true number ind(O) of
the population to which an object O belongs is unknown. Instead, one observes a certain
characteristic ξ = ξ(O) assumed to be a random variable with the distribution function
Fm that depends on a population, that is,

Fm(t) = P{ξ(O) ≤ t | ind(O) = m}.

Therefore the distribution function of ξ(O) is a mixture of Fm. The distribution functions
Fm are unknown, but the concentrations of components in the mixture are known and
different for different observations. Various problems related to this model are considered
in [1, 3, 10].
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If n independent objects Oj are observed, the statistical data are (ξj;n, j = 1, . . . , n),
where the distribution function of ξj;n = ξ(Oj) is

(4) P{ξj;n ≤ t} =

M∑
m=1

pmj Fm(t).

Here
pmj = P{ind(Oj) = m}

is the concentration (mixing probability) of the mth component (population) in the
mixture when the jth object is observed.

The set of all concentrations {pmj;n, j = 1, . . . , n; m = 1, . . . ,M ; n = 1, 2, . . . } is de-

noted by p. Let pm
;n = (pm1,n, . . . , p

m
n;n)

T be the vector column of the concentrations of the

mth component, pj;n = (p1j,n, . . . , p
M
j,n)

T be the vector column of the concentrations at the
moment when the jth object is observed, and let p;n = (pmj,n, j = 1, . . . , n; m = 1, . . . ,M)
be the matrix of concentrations for a sample of n elements with n columns and M rows.

Analogous notation is used for the set of weight coefficients

a = {amj;n, j = 1, . . . , n; m = 1, . . . ,M ; n = 1, 2, . . . }
to be introduced below.

The averaging for the whole sample (that is, the averaging with respect to the index j)
is denoted by

〈
pmak

〉
n
:〈

pmak
〉
n
=

1

n

n∑
j=1

pmj;na
k
j;n,

〈
(ak)2

〉
n
=

1

n

n∑
j=1

(
akj;n

)2
,

and so on. The addition, multiplication, and raising to the power within brackets is
performed coordinatewise. The angle brackets without a subscript mean the limit〈

pmak
〉
= lim

n→∞

〈
pmak

〉
n

if it exists. Put

Γn =
1

n
p;np

T
;n =

(〈
pmpk

〉
n

)M
m,k=1

, Γ = lim
n→∞

Γn =
(〈
pmpk

〉)M
m,k=1

.

It is proposed in [8, 9] (also see [10]) to use

F̂a(t) =
1

n

n∑
j=1

aj;n� {ξj;n ≤ t}

as an estimator of the distribution function Fm(t) constructed from a sample X.

It is shown in [10] that F̂m(t) = F̂am(t) is the minimax estimator of Fm in the class
of all unbiased estimators if

(5) am;n = Γ−1p;n.

The weight coefficients am;n are called minimax for the component m in a mixture.

3. Main results

Now we consider the censored data obtained from a mixture with varying concentra-
tions.

Let n objects Oj;n be observed and let each of them belong to one of M components
(subpopulations). Denote by ξj;n = ξ(Oj;n) > 0 the failure time (the variable under
consideration) of the object Oj;n and by Cj;n = C(Oj:n) the censoring time for Oj;n. We
assume that ξ(O) and C(O) are independent for a fixed component whom the object O
belongs to and that (ξj;n, Cj;n), j = 1, . . . , n, are independent if n is fixed. In what
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follows we consider the asymptotic theory in the scheme of series as n → ∞. We do not
assume that there exists a relation between observations for different n.

A censored sample Xn =
(
ξ∗j;n, δj;n, j = 1, . . . , n

)
is observed where

ξ∗j;n = min (ξj;n, Cj;n)

is the censored failure time of the observation j and where

δj;n = � {ξj;n < Cj;n}
is the indicator of censoring (δj;n equals 1 if and only if the observation j is not censored).

Note that the distribution of the censoring time in this model is the same for all
observations from the same component but may vary from a component to another
component. A different censoring model for the data belonging to a mixture with varying
concentrations is considered in [12].

Let κj;n = ind(Oj;n) be the index of a component containing the object Oj;n. We
assume that the concentrations of components pmj;n = P{κj;n = m} are known.

Let

Fm(x) = P{ξ(O) ≤ x | ind(O) = m}
be the distribution function of the failure time of an mth component and let

Gm(x) = P{C(O) ≤ x | ind(O) = m}
be the distribution function of the censoring time for the mth component.

The survival function constructed from a given distribution function F is denoted by
F̄ (t) = 1− F (t).

Let F (t) be a function of bounded variation defined in a measurable subset A of the
real line. Put

F (A) =

∫
A

F (dt).

This definition for A = ]t1, t2] reduces to F (A) = F (t2) − F (t1). In what follows, we
keep this notation for interals A even if the variation of F is unbounded.

The distribution functions Fm and Gm, m = 1, . . . ,M , are unknown. We introduce
the modified Kaplan–Meier estimator for Fk, 1 ≤ k ≤ M . Let

Ŷm;n(t) =
1

n

n∑
j=1

amj �{ξ∗j:n ≥ t}

be the weighted empirical distribution function of the censored data with weight coeffi-
cients akj;n, and let

N̂m;n(t) =
1

n

n∑
j=1

amj �{ξ∗j:n ≤ t, δj;n = 1}

be the weighted empirical distribution function of the uncensored data. Now the modified
Kaplan–Meier estimator for Fk(t) is defined by

(6) F̂k,n(t) = 1−
∏

j:ξ∗j;n≤t

(
1−

ΔN̂k;n(ξ
∗
j;n)

Ŷk;n(ξ∗j;n)

)
= 1−

∏
j:ξ∗j;n≤t

⎛⎜⎝1−
akj δj

n−
∑

i:ξ∗i;n<ξ∗j;n

aki

⎞⎟⎠ .

Note that the consistency of this estimator is proved in [11].
The main result of the current paper is the theorem on the asymptotic normality of

the empirical process

(7) Uk;n =
√
n

(
F̂k;n(t)− Fk(t)

)
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as an element of the space D[0, T ] of functions without discontinuities of the second
kind in the interval [0, T ], where T is a number in ]0,+∞[ such that Fm(T ) < 1 and
Gm(T ) < 1 for all m = 1, . . . ,M .

We need some additional notation in order to describe the limit Gaussian process in
the consistency theorem.

Let ξ(m) and C(m) be independent random variables whose distributions are Fm and
Gm, respectively. These variables are treated as the failure times and censoring moment,
respectively, of an object sampled randomly in the component with index m. Then
ξ∗(m) = min

(
ξ(m), C(m)

)
is the censored failure time and δ∗(m) = �

{
ξ(m) < C(m)

}
is the

indicator of whether or not a randomly sampled object of the component m is censored.
The survival function for the censored failure time of objects of the component m is

denoted by

Ym(t) = P
{
ξ∗(m) ≥ t

}
= Ḡm(t−)F̄m(t−).

Further let

Nm(t) = P
{
ξ∗(m) ≤ t, δ(m) = 1

}
=

∫
]0,t]

Ḡm(s−)Fm(ds).

Then

Λm(t) =

∫
]0,t]

Nm(dt)

Ym(t)

is the integral intensity of failure for objects belonging to the component m. In what
follows, we use the notation

Rm(A) = Nm(A)−
∫
A

Ym(t)
Nk(dt)

Yk(t)
.

Note that Rm(A) depends on the index k of a component for which the modified Kaplan–
Meier estimator is constructed. However we omit this index to simplify the notation.

Next we introduce the function ρ that describes the covariance of increments of the
Gaussian process Zk to be used in the construction of the limit of Uk;n. Given four
arbitrary numbers,

0 ≤ u1 < u2 ≤ u3 < u4,

we put A1 = ]u1, u2] and A2 = ]u3, u4].
The function ρ is defined by

ρ(A1, A2) =
M∑

m=1

〈
(ak)2pm

〉 [∫
A2

Ym(t2)Λk(dt2)

∫
A1

Λk(dt1)−Nm(A)

∫
A1

Λk(dt)

]

−
M∑

m1,m2=1

〈
(ak)2pm1pm2

〉
Rm1

(A1)Rm2
(A2)

(8)

and

ρ(A1, A1) =

M∑
m=1

〈
(ak)2pm

〉 [
Nm(A1)− 2

∫
A1

Nm(]t, u2])Λk(dt)

+

∫
A1×A1

Ym

(
max(t1, t2)

)
Λk(dt1)Λk(dt2)

]

−
M∑

m1,m2=1

〈
(ak)2pm1pm2

〉
Rm1

(A1)Rm2
(A1).

(9)
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Then Zk(t) is defined as a Gaussian stochastic process with the trajectories belonging to
the space D[0, T ], with zero expectation, and such that

EZk(A1)Zk(A2) = ρ(A1, A2), E
(
Zk(A1)

)2
= ρ(A1, A1).

Without loss of generality we assume that Zk(0) = 0. Thus, for u1 < u2,

Cov
(
Zk(u1), Zk(u2)

)
= CZ(u1, u2) = EZk(]0, u1])Zk(]0, u2])

= E
(
Zk(]0, u1])

)2
+ EZk(]0, u1])Zk(]u1, u2])

= ρ(]0, u1], ]0, u1]) + ρ(]0, u1], ]u1, u2]).

(10)

Note that Zk can also be described as a Gaussian process with zero mean and covari-
ance function (10). It is clear that this description is meaningful only if the right hand
side of (10) is a covariance function. We show that this is the case under the assumptions
of Theorem 3.1.

Theorem 3.1. Assume that

(1) detΓ �= 0.
(2)

〈
(ak)pm1pm2

〉
exist for all m1,m2 = 1, . . . ,M .

(3) Fm(T ) < 1 and Gm(T ) < 1 for all m = 1, . . . ,M .
(4) For all m = 1, . . . ,M , the functions Fm and Gm are continuously differentiable

in the interval [0, T ].

Then the empirical processes Uk;n defined by equality (7) weakly converge in the space
D[0, T ] equipped with the uniform metric as n → ∞ to the limit process Uk defined by

(11) Uk(t) =
(
1− Fk(t)

) ∫
]0,t]

Zk(du)

Yk(u)
.

Remark 3.1. The process Zk(t) is continuous almost surely in the interval [0, T ], and
1/Yk(u) is a function of bounded variation under the assumptions of Theorem 3.1. Thus
the integral in (11) can be viewed as a pathwise Riemann–Stieltjes integral. On the other
hand, it also can be defined as the mean square limit of integral sums. This integral is
sometimes called the quadratic mean (QM) integral. Both interpretations lead to the
same distribution of Uk(t).

QM-integral interpretation (11) allows us to evaluate the variance and covariance
function of the process Uk(t). For example, an analogue of the asymptotic version of the
Greenwood formula is obtained in Corollary 3.1.

Put

(12)

σ2
t =

(
1− Fk(t)

)2
×

[
M∑

m=1

(〈
(ak)2pm

〉 ∫ t

0

N ′
m(u) du

(Yk(u))2

)
+

∫∫
St

∂2ρ(u1, u2)

∂u1∂u2

du1 du2

Yk(u1)Yk(u2)

]
,

where

St = {(u1, u2) ∈ [0, t], u1 �= u2}, N ′
m(u) = dNm(u)/du.

Corollary 3.1. Let assumptions of Theorem 3.1 hold. Then, for all t ∈ [0, T ], the
distribution of Uk;n(t) weakly converges as n → ∞ to the normal distribution with zero
mean and variance σ2

t .
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4. Proofs

The proof of Theorem 3.1 is based on the ideas of the paper [5], where the asymp-
totic normality of the Kaplan–Meier estimator is obtained for the case of homogeneous
censored data. We start with two auxiliary results.

Let T be a fixed positive number. Given a function f : [0, T ] → R, we denote the
uniform metric by ‖f‖∞ = supt∈[0,T ] |f(t)| and the variation of f in [0, T ] by ‖f‖V .

Lemma 4.1. Let Gn, G, Fn, and F be some functions mapping the interval [0, T ] to R.
Assume that these functions have bounded variations and

(1) there exists a constant KF < ∞ such that ‖Fn‖V < KF for all n = 1, 2, . . . ;
(2) there exist two continuous functions f and g mapping [0, T ] to R and for which

gn =
√
n(Gn−G) → g and fn =

√
n(Fn−F ) → f as n → ∞ in the norm ‖ · ‖∞.

Then ‖In − I‖∞ → 0 as n → ∞, where

In(t) =
√
n

(∫ t

0

Gn(u)Fn(du)−
∫ t

0

G(u)F (du)

)
,

I(t) =

∫ t

0

G(u) f(du) +

∫ t

0

g(u)F (du).

Remark 4.1. We do not assume that the function f in Lemma 4.1 is of bounded variation.
On the other hand, we do assume that f is continuous and ‖G‖V < ∞. Thus the integral∫ t

0
G(u) f(du) exists as the limit of Riemann–Stieltjes integral sums and is equal to

G(u)f(u)
∣∣t
0
−

∫ t

0

f(u)G(du).

The existence of integrals
∫ T

0
Gn(u)Fn(du) as the unique limits of Riemann–Stieltjes

integral sums does not follow from assumptions of Lemma 4.1, but the statement of the
lemma is valid for any pair of partial limits of these sums.

Proof. First we consider

Jn(t) =
√
n

∫ t

0

(
Gn(u)−G(u)

)(
Fn(du)− F (du)

)
and show that

(13) ‖Jn‖∞ → 0 as n → ∞.

For all m,

|Jn(t)| =
∣∣∣∣∫ t

0

gn(u)
(
Fn(du)− F (du)

)∣∣∣∣
≤

∣∣∣∣∫ t

0

(
gn(u)− gm(u)

)(
Fn(du)− F (du)

)∣∣∣∣ + ∣∣∣∣∫ t

0

gm(u)
(
Fn(du)− F (du)

)∣∣∣∣
≤ ‖gn − gm‖∞ ‖Fn − F‖V +

(
2 ‖gm‖∞ + ‖gm‖V

)
‖Fn − F‖∞ .

We used the integration by parts∫ t

0

gm(u)
(
Fn(du)− F (du)

)
= gm(u)

(
Fn(u)− F (u)

)∣∣t
0
−

∫ t

0

(
Fn(u)− F (u)

)
gm(du)

when estimating the second term in the latter inequality. Passing to the limit as n → ∞
we obtain

lim sup
n→∞

‖Jn‖∞ ≤ (KF + ‖F‖V ) lim sup
n→∞

‖gn − gm‖∞ ,
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since ‖gm‖∞ < ∞ and ‖gm‖V < ∞ for a fixed m, whence

‖Fn − F‖∞ =
1√
n
‖fn‖∞ → 0 as n → ∞

by the second assumption of the lemma.
Taking into account the inequality ‖gn − gm‖∞ ≤ ‖gn − g‖∞ + ‖gm − g‖∞, we get

lim sup
n→∞

‖Jn‖∞ ≤ (KF + ‖F‖V ) ‖gm − g‖∞

for all positive integer numbers m. Passing to the limit as m → ∞ we prove relation (13).
Note that

(14) In(t) = I1n(t) + I2n(t),

where

I1n(t) =
√
n

∫ t

0

(
Gn(u)−G(u)

)
Fn(du),

I2n(t) =
√
n

∫ t

0

G(u)
(
Fn(du)− F (du)

)
.

Thus

I2n =

∫ t

0

G(u) fn(du) = G(u)fn(u)
∣∣t
0
−

∫ t

0

fn(u)G(du)

→ G(u)f(u)
∣∣t
0
−

∫ t

0

f(u)G(du)

=

∫ t

0

G(u) f(du)

(15)

as n → ∞ uniformly in t ∈ [0, T ]. Relation (13) implies that

(16) I1n(t) = Jn(t) +

∫ t

0

gn(u)F (du) →
∫ t

0

g(u)F (du).

Considering (14)–(16) we complete the proof of Lemma 4.1. �
Put

ζj(A) = �{
ξ∗j;n ∈ A, δj;n = 1

}
−

∫
A

�{
ξ∗j;n > t

}
Λk(dt),

Zk;n(A) =
1√
n

∑
j=1

akj;nζj(A)

and let Zk;n(t) = Zk;n(]0, t]) for t > 0.

Lemma 4.2. Let assumptions of Theorem 3.1 hold. Then the process Zk(t) exists, its
trajectories are continuous in [0, T ], and the processes Zk;n(t) weakly converge to Zk(t)
as n → ∞ in the space D[0, T ] equipped with the norm ‖ · ‖∞.

Proof. Consider the random vector
(
ξ(m), δ(m), ξ

∗
(m)

)
whose distribution coincides with

the conditional distribution of
(
ξ(O), δ(O), ξ∗(O)

)
given ind(O) = m.

Note that

EZk;n(A) =
1

n

n∑
j=1

M∑
m=1

akj;n

(
P

{
ξ∗(m) ∈ A, δ(m) = 1

}
−

∫
A

P
{
ξ∗(m) > t

}
Λk(dt)

)

=

M∑
m=1

〈
akp

〉
n

(
Nm(A)−

∫
A

Ym(t)
Nm(dt)

Yk(t)

)
= 0,
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since
〈
akp

〉
n
= �{k = m}.

It is easy to see that

EZk;n(A1)Zk;n(A2) = ρn(A1, A2), E(Zk;n(A1))
2 = ρn(A1, A1),

where

ρn(A1, A2) =

M∑
m=1

〈
(ak)2pm

〉
n

×
[∫

A2

Ym(t2)Λk(dt2)

∫
A1

Λk(dt1)−Nm(A)

∫
A1

Λk(dt)

]

−
M∑

m1,m2=1

〈
(ak)2pm1pm2

〉
n
Rm1

(A1)Rm2
(A2)

(17)

and

ρn(A1, A1) =
M∑

m=1

〈
(ak)2pm

〉
n

×
[
Nm(A1)− 2

∫
A1

Nm(]t, u2]) Λk(dt)

+

∫
A1×A1

Ym

(
max(t1, t2)

)
Λk(dt1) Λk(dt2)

]

−
M∑

m1,m2=1

〈
(ak)2pm1pm2

〉
n
Rm1

(A1)Rm2
(A1).

(18)

For example, consider

E(Zk;n(A1))
2 =

1

n

n∑
j=1

(
akj;n

)2
E
(
ζj(A1)− E ζj(A1)

)2
=

M∑
m=1

〈
(ak)2pm

〉
n
E

(
ζ(m)(A1)

)2
−

M∑
m1,m2=1

〈
(ak)2pm1pm2

〉
n
E ζ(m1)(A1)E ζ(m2)(A1)

for the proof of (18), where

ζ(m)(A) = �{
ξ∗(m) ∈ A, δ(m) = 1

}
−

∫
A

�{
ξ∗(m) > t

}
Λk(dt).

It is obvious that

E ζ(m)(A1) = Rm(A1),
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E(ζ(m)(A1))
2 = E�

{
ξ∗(m) ∈ A1, δ(m) = 1

}
− 2E

∫
A1

�{
ξ∗(m) ∈ A1, δ(m) = 1

}�{
ξ∗(m) > t

}
Λk(dt)

+ E

∫
A1

∫
A1

�{
ξ∗(m) > t1

}�{
ξ∗(m) > t2

}
Λk(dt1) Λk(dt2)

= Nm(A1)− 2

∫
A1

Nm(]t, u2]) Λk(dt)

+

∫
A1×A1

Ym

(
max(t1, t2)

)
Λk(dt1) Λk(dt2).

This implies equality (18). Equality (17) is proved analogously.
This, in particular, means that assumptions of Theorem 3.1 imply the convergence of

the covariance function of Zk;n to the function CZ(u1, u2) defined by relation (10). Thus
CZ(u1, u2) is the covariance function of some Gaussian stochastic process in [0, T ]. Under
the assumptions of Theorem 3.1, the functions Nm(t), m = 1, . . . ,M , are continuously
differentiable and Yk(t) is separated from zero in [0, T ]. In view of definition (9),

E
(
Zk(t2)− Zk(t1)

)2 ≤ K(t2 − t1)
2

for some K < ∞ and all t1, t2 ∈ [0, T ]. Applying Kolmogorov’s theorem [4, Theorem 7,
Section III] we conclude that there exists an almost surely continuous version of the
Gaussian process Zk(t) (denoted by the same symbol).

The asymptotic (as n → ∞) normality of finite dimensional distributions of Zk;n(t)
can be derived from the Lindeberg central limit theorem in the same way as this result
is proved in [10] for weighted empirical functions. Equality (17) implies that

E
(
Zn;k(t3)− Zn;k(t2)

)(
Zn;k(t2)− Zn;k(t1)

)
≤ K(t3 − t2)(t2 − t1) ≤ K(t3 − t1)

2

for some K < ∞ and all 0 ≤ t1 < t2 < t3 ≤ T . Recalling the convergence of finite
dimensional distributions we obtain the convergence of Zk;n to Zk in the space D[0, T ]
equipped with the Skorokhod metric [2, Theorem 13.5]. Since the limit process Zk is
almost surely continuous, the weak convergence in the Skorokhod metric implies the
weak convergence in the uniform metric. �
Proof of Theorem 3.1 (outlined). Put

Λ̂k;n(t) =

∫ t

0

N̂k;n(du)

Ŷk;n(u)
,

ZY
k;n(t) =

√
n

(
Ŷk;n(t)− Yk(t)

)
,

ZN
k;n(t) =

√
n

(
N̂k;n(t)−Nk(t)

)
.

Then

Zk;n(t) =

∫ t

0

(
ZN
k;n(du)− ZY

k;n(u)Λk(du)
)
.

Similarly to the proof of Lemma 4.2, one can show that the process
(
ZY
k;n(·), ZN

k;n(·)
)

weakly converges to some process
(
ZY
k (·), ZN

k (·)
)
with respect to the uniform metric in

the space of functions mapping the interval [0, T ] to R2; this process has no discontinuities
of the second kind and its trajectories are almost surely continuous.

Using Lemma 4.1 and the method of a common probability space we conclude that

√
n

(
Λ̂k;n(t)− Λk(t)

)
=

√
n

(∫ t

0

1

Ŷk;n(u)
N̂k;n(du)−

∫ t

0

1

Yk(u)
Nk(du)

)
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weakly converges in [0, T ] to∫ t

0

(
1

Yk(u)
ZN
k (du)− ZY

k (u)Nk(du)

(Yk(u))2

)
=

∫ t

0

Z̃k(du)

Yk(u)
,

where

Z̃k(t) = ZN
k (t) +

∫ t

0

ZY
k (u) Λk(du).

It is clear that Z̃k(t) is the limit of Zk;n(t) and hence Lemma 4.2 yields Z̃k(t) = Zk(t).
Using equality (66) of [5] we obtain

√
n

(
F̂k;n(t)− Fk(t)

)
=

(
1− Fk(t)

) ∫ t

0

1− F̂k;n(u−)

1− F̂k;n(u)

√
n

(
Λ̂k;n − Λk

)
(du).

Since
∥∥F̂k;n − Fk

∥∥
∞ ≤ K

√
log(n)/n (see [11]), we get

1− F̂k;n(u−)

1− F̂k;n(u)
→ 1

and
√
n

(
F̂k;n(t)− Fk(t)

)
w−→

(
1− F (t)

) ∫ t

0

Zk(du)

Yk(u)

as n → ∞ in the uniform norm. The rigorous proof of this convergence uses the same
technique as that in the proof of Lemma 4.1. �

Proof of Corollary 3.1. The integral in (11) is considered as the mean square limit of
integral sums

J(T ) =
I∑

i=1

Zk(]ti−1, ti])

Yk(ti)

as diam(T ) → 0, where T = {0 = t0 < t1 < · · · < tI = T} is a partition of the
interval [0, 1] and diam(T ) = supi=1,...,I(ti−ti−1). Such QM-integrals are usually defined
for processes with independent increments; however, this property fails for Zk in the case
under consideration. The theory of QM-integration with respect to the processes with
dependent increments is described in [7, Section 37.3]. In particular, it follows from
results of [7, Section 37.3] that

Var

(∫ T

0

Zk(dt)

Yk(t)

)
= lim

diam(T )→0

∑
i �=j

EZk(]ti−1, ti])Zk(]tj−1, tj ])

Yk(ti)Yk(tj)

+ lim
diam(T )→0

I∑
i=1

E
(
Zk(]ti−1, ti])

)2
(Yk(ti))2

.

(19)

Under the assumptions of Theorem 3.1,

EZk(]ti−1, ti])Zk(]tj−1, tj ]) =
∂2ρ(ti, tj)

∂ti∂tj
+ o

(
diam(T )2

)
and

E
(
Zk(]ti−1, ti])

)2
=

M∑
m=1

〈
(ak)2pm

〉
N ′

m(ti) + o
(
diam(T )

)
.

This implies equality (12). �
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