THE ASYMPTOTIC BEHAVIOR OF THE TOTAL NUMBER OF PARTICLES IN A CRITICAL BRANCHING PROCESS WITH IMMIGRATION

UDC 519.21

YA. M. KHUSANBAEV

Abstract

A sequence of branching processes with immigration is considered in the case where the mean number of descendents of a particle tends to unity. The rate of growth and asymptotic behavior of the total number of particles in the population are found.

1. Introduction

Assume that $\left\{\xi_{k, j}^{(n)}, k, j \in \mathbb{N}\right\}$ and $\left\{\varepsilon_{k}^{(n)}, k \in \mathbb{N}\right\}$ are two independent families of independent nonnegative integer valued and identically distributed random variables for all $n \in \mathbb{N}$. Let $\left\{X_{k}^{(n)}, k=0,1, \ldots\right\}, n \in \mathbb{N}$, be a sequence of branching processes with immigration defined by the following recurrence relations:

$$
\begin{equation*}
X_{0}^{(n)}=0, \quad X_{k}^{(n)}=\sum_{j=1}^{X_{k-1}^{(n)}} \xi_{k, j}^{(n)}+\varepsilon_{k}^{(n)}, \quad k, n \in \mathbb{N} . \tag{1}
\end{equation*}
$$

If the random variables $\xi_{k, j}^{(n)}$ and $\varepsilon_{k}^{(n)}, n \geq 1$, are treated as the number of descendents of a j th particle in a $(k-1)$ th generation of a certain population of particles and the number of particles immigrating into the $k^{\text {th }}$ generation, respectively, then $X_{k}^{(n)}$ is the total number of particles in the k th generation of the population.

A sequence of branching processes with immigration (11) is called almost critical if $\mathrm{E} \xi_{1,1}^{(n)} \rightarrow 1$ as $n \rightarrow \infty$. Consider random stepwise processes $Z_{n}, n \in \mathbb{N}$, defined by

$$
Z_{n}(t)=\sum_{k=1}^{[n t]} X_{k}^{(n)}, \quad t \geq 0, \quad n \in \mathbb{N} .
$$

It is clear that the trajectories of the processes $Z_{n}, n \in \mathbb{N}$, belong to the Skorokhod space $D[0, \infty)$. The variable $Z_{n}(t)$ is the total number of particles (counted up to the moment $[n t])$ in the branching process with immigration $X_{k}^{(n)}, k \geq 0$.

Pakes [1] studies the rate of growth and asymptotic behavior (as $n \rightarrow \infty$) of the fluctuation of the total number of descendents of a particle in a branching Galton-Watson process up to the moment n under the assumption that the process does not vanish. Karpenko and Nagaev [2] investigate the limit behavior of the conditional distribution of the total number of descendents of a particle in the Galton-Watson process under the condition that the process vanishes at the moment n and in the case where the

[^0]expectation of the number of particles generated by a single particle tends to unity as $n \rightarrow \infty$. A number of papers, say [3, 4, 8, 9, are devoted to functional limit theorems for a sequence of branching processes with immigration. On the other hand, the asymptotic behavior of the total number of particles Z_{n} has been studied quite a bit.

The aim of this paper is to study the asymptotic behavior of the process Z_{n} as well as that of its deviation from the mean value, $Z_{n}-\mathrm{E} Z_{n}$, for the case where the mean value of the number of descendants of a single particle tends to unity from the left with a rate being slower than n^{-1} as $n \rightarrow \infty$.

2. Mainstream

We assume that

$$
m_{n}=\mathrm{E} \xi_{1,1}^{(n)}, \quad \sigma_{n}^{2}=\operatorname{Var} \xi_{1,1}^{(n)}, \quad \lambda_{n}=\mathrm{E} \varepsilon_{1}^{(n)}, \quad b_{n}^{2}=\operatorname{Var} \varepsilon_{1}^{(n)}
$$

are finite for all $n \in \mathbb{N}$. Throughout below $d_{n}, n \in \mathbb{N}$, denotes a certain sequence of positive numbers such that $d_{n} \rightarrow \infty$ and $n^{-1} d_{n} \rightarrow 0$ as $n \rightarrow \infty ; W(t), t \geq 0$, is a standard Wiener process in the space $D[0, \infty) ; I(A)$ is the indicator of an event A; and the symbol $\xrightarrow{\mathrm{P}}$ denotes the convergence in probability of random variables.

Theorem 1 provides some information on the rate of growth of the process Z_{n}.
Theorem 1. Assume that
(1) $m_{n}=1+\alpha d_{n}^{-1}+o\left(d_{n}^{-1}\right)$ as $n \rightarrow \infty$ for some fixed $\alpha<0$;
(2) the limit $\lim _{n \rightarrow \infty} \sigma_{n}^{2}=\sigma^{2} \geq 0$ exists and is finite;
(3) the limits $\lim _{n \rightarrow \infty}=\lambda \geq 0$ and $\lim _{n \rightarrow \infty} b_{n}^{2}=b^{2} \geq 0$ exist and are finite.

Then

$$
\frac{Z_{n}}{n d_{n}} \rightarrow Z \quad \text { as } n \rightarrow \infty
$$

in the space $D[0, \infty)$ equipped with the Skorokhod J-topology, where the limit process Z is defined by

$$
Z(t)=|\alpha|^{-1} \lambda t, \quad t \geq 0 .
$$

Theorem 2 describes the asymptotic behavior of the deviation of the process Z_{n} from its mean value.

Theorem 2. Assume that

(1) $m_{n}=1+\alpha d_{n}^{-1}+o\left(d_{n}^{-1}\right)$ as $n \rightarrow \infty$ for some fixed $\alpha<0$;
(2) the limit $\lim _{n \rightarrow \infty} d_{n} \sigma_{n}^{2}=\sigma^{2} \geq 0$ exists and is finite;
(3) the limits $\lim _{n \rightarrow \infty} \lambda_{n}=\lambda \geq 0$ and $\lim _{n \rightarrow \infty} b_{n}^{2}=b^{2} \geq 0$ exist and are finite;
(4) for all $\varepsilon>0$,

$$
d_{n} \mathrm{E}\left(\xi_{1,1}^{(n)}-m_{n}\right)^{2} I\left(\left|\xi_{1,1}^{(n)}-m_{n}\right|>\varepsilon \sqrt{n}\right) \rightarrow 0, \quad n \rightarrow \infty ;
$$

(5) for all $\varepsilon>0$,

$$
\mathrm{E}\left(\varepsilon_{1}^{(n)}-\lambda_{n}\right)^{2} I\left(\left|\varepsilon_{1}^{(n)}-\lambda_{n}\right|>\varepsilon \sqrt{n}\right) \rightarrow 0, \quad n \rightarrow \infty
$$

Then

$$
\left(d_{n} \sqrt{n}\right)^{-1}\left(Z_{n}-\mathrm{E} Z_{n}\right) \rightarrow Y \quad \text { as } n \rightarrow \infty
$$

in the space $D[0, \infty)$ equipped with the Skorokhod J-topology, where the limit process Y is defined by

$$
Y(t)=|\alpha|^{-1}\left(|\alpha|^{-1} \lambda \sigma^{2}+b^{2}\right)^{1 / 2} W(t), \quad t \geq 0
$$

Remark 1. The asymptotic behavior of the process Z_{n} and that of its deviation are easy to extract from the results of papers [3, 4, 8] and Theorem 5.1 of [5] in the case where $m_{n}=1+\alpha n^{-1}+o\left(n^{-1}\right)$.

Remark 2. Theorems 1 and 2 show that the rate of convergence of m_{n} to unity influences essentially the rate of growth and asymptotic behavior of the deviation of the process Z_{n}. Remark 3. In general, the conditions $b_{n}^{2} \rightarrow b^{2}>0$ and $d_{n} \sigma^{2} \rightarrow \sigma^{2}>0$ do not imply assumptions (4) and (5) of Theorem 2, respectively. For example, let $\varepsilon_{k}^{(n)}$ assume values 0,1 , and n with probabilities $n^{-2}, 1-2 n^{-2}$, and n^{-2}, respectively. Then $\lambda_{n}=1+n^{-1}+$ $o\left(n^{-1}\right)$ and $b_{n}^{2}=1-2 n^{-1}+o\left(n^{-1}\right)$ as $n \rightarrow \infty$. For every $\varepsilon>0$,

$$
\mathrm{E}\left(\varepsilon_{1}^{(n)}-\lambda_{n}\right)^{2} I\left(\left|\varepsilon_{1}^{(n)}-\lambda_{n}\right|>\varepsilon \sqrt{n}\right) \approx \frac{(n-1)^{2}}{n^{2}} \rightarrow 1 \quad \text { as } n \rightarrow \infty .
$$

Thus $b_{n}^{2} \rightarrow 1$ as $n \rightarrow \infty$ in this case, but assumption 5 does not hold.

3. Proofs

Proof of Theorem 1. It is easy to see that

$$
\begin{equation*}
\mathrm{E} X_{k}^{(n)}=\frac{1-m_{n}^{k}}{1-m_{n}} \lambda_{n}, \quad k=0,1,2, \ldots \tag{2}
\end{equation*}
$$

Put $G_{n}(t)=\left(n d_{n}\right)^{-1} Z_{n}(t)$. The assumptions of Theorem 1 imply that

$$
\begin{equation*}
\mathrm{E} G_{n}(t) \rightarrow|\alpha|^{-1} \lambda t \quad \text { as } n \rightarrow \infty . \tag{3}
\end{equation*}
$$

We are going to estimate $\operatorname{Var} G_{n}(t)$. Equality (2.13) of the paper 4 yields

$$
\operatorname{Var} G_{n}(t)=\left(n d_{n}\right)^{-2}\left(U_{n}(t) b_{n}^{2}+V_{n}(t) \lambda_{n} \sigma_{n}^{2}\right),
$$

where

$$
\begin{gathered}
U_{n}(t)=\sum_{k=1}^{[n t]+1} \frac{1-m_{n}^{2(k-1)}}{1-m_{n}^{2}}\left(2 \frac{1-m_{n}^{[n t]-k+2}}{1-m_{n}}-1\right), \\
V_{n}(t)=\sum_{k=1}^{[n t]+1} \frac{\left(1-m_{n}^{k-1}\right)\left(1-m_{n}^{k-2}\right)}{\left(1-m_{n}\right)\left(1-m_{n}^{2}\right)}\left(2 \frac{1-m_{n}^{[n t]-k+2}}{1-m_{n}}-1\right) .
\end{gathered}
$$

It is easy to see that

$$
U_{n}(t) \leq \frac{2(1+n t)}{\left(1-m_{n}\right)^{2}}, \quad V_{n}(t) \leq \frac{2(1+n t)}{\left(1-m_{n}\right)^{3}} .
$$

Then

$$
\begin{equation*}
\operatorname{Var} G_{n}(t) \leq 2 \alpha^{-2}\left(\frac{b_{n}^{2}}{n}+\frac{\lambda_{n} \sigma_{n}^{2} d_{n}}{\alpha n}\right) t \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{4}
\end{equation*}
$$

for all $t \geq 0$. Applying the Chebyshev inequality we conclude from here that $G_{n}(t) \xrightarrow{\mathrm{P}}$ $Z(t)$ as $n \rightarrow \infty$ for all $t \geq 0$ in view of relation (3). Since the limit process Z is continuous and nonrandom, it remains to show that the sequence of processes $\left\{G_{n}(t), t \geq 0\right\}, n \in \mathbb{N}$, is dense (see Theorem 15.1 of (5). Indeed, relations (3) and (4) imply that

$$
\begin{aligned}
\mathrm{E}\left(G_{n}(t)-G_{n}(s)\right)^{2} & \leq 3\left(\operatorname{Var} G_{n}(s)+\operatorname{Var} G_{n}(t)+\left(\mathrm{E} G_{n}(t)-\mathrm{E} G_{n}(s)\right)^{2}\right) \\
& \leq 4 \alpha^{-2} \lambda^{2}(t-s)^{2}
\end{aligned}
$$

for all $t, s \geq 0$ and all sufficiently large n. Hence the sequence of processes $\left\{G_{n}(t), t \geq 0\right\}$, $n \in \mathbb{N}$, is dense by the density criteria 15.5 and 12.3 of [5].

Now we are going to prove the following three auxiliary results and then use them to derive the statement of Theorem 2 Put

$$
M_{k}^{(n)}=\sum_{j=1}^{X_{k-1}^{(n)}}\left(\xi_{k, j}^{(n)}-m_{n}\right)+\varepsilon_{k}^{(n)}-\lambda_{k}, \quad k=1,2, \ldots
$$

Denote by $F_{k}^{(n)}$ the σ-algebra generated by random variables $\left\{X_{0}^{(n)}, X_{1}^{(n)}, \ldots, X_{k}^{(n)}\right\}$. It is clear that $\left\{M_{k}^{(n)}, k \geq 0\right\}$ is a martingale-difference with respect to the flow of σ-algebras $F_{k}^{(n)}, k \geq 0$.
Lemma 1. The representation

$$
W_{n}(t)=\left[d_{n}\left(1-m_{n}\right)\right]^{-1}\left(\widetilde{M}_{n}^{(1)}(t)-m_{n} \widetilde{M}_{n}^{(2)}(t)\right)
$$

holds, where

$$
\begin{gathered}
W_{n}(t)=\left(d_{n} \sqrt{n}\right)^{-1}\left(Z_{n}(t)-\mathrm{E} Z_{n}(t)\right), \\
\widetilde{M}_{n}^{(1)}(t)=n^{-1 / 2} \sum_{j=1}^{[n t]} M_{j}^{(n)}, \quad \widetilde{M}_{n}^{(2)}(t)=n^{-1 / 2} \sum_{j=1}^{[n t]} m_{n}^{[n t]-j} M_{j}^{(n)} .
\end{gathered}
$$

Proof of Lemma 1. The variable $X_{k}^{(n)}$ is represented as

$$
X_{k}^{(n)}=m_{n} X_{k-1}^{(n)}+\lambda_{n}+M_{k}^{(n)}, \quad k=1,2, \ldots
$$

in view of equality (11), whence $\mathrm{E} X_{k}^{(n)}=m_{n} \mathrm{E} X_{k-1}^{(n)}+\lambda_{n}, k=1,2, \ldots$. Therefore the random variables $X_{k}^{(n)}-\mathrm{E} X_{k}^{(n)}, k \geq 0$, satisfy the recurrence equation

$$
X_{k}^{(n)}-\mathrm{E} X_{k}^{(n)}=m_{n}\left(X_{k-1}^{(n)}-\mathrm{E} X_{k-1}^{(n)}\right)+M_{k}^{(n)}, \quad k=1,2, \ldots
$$

The solution of the latter recurrence equation is given by

$$
X_{k}^{(n)}-\mathrm{E} X_{k}^{(n)}=\sum_{j=1}^{k} m_{n}^{k-j} M_{j}^{(n)}, \quad k=1,2, \ldots
$$

Summing up the latter equalities with respect to k from 1 to $[n t]$ and normalizing the result appropriately, we complete the proof of the lemma.

Lemma 2. If assumptions (1)-(3) of Theorem 2 hold, then

$$
\widetilde{M}_{n}^{(2)}(t) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

in the Skorokhod space $D[0, \infty)$.
Proof of Lemma 2. It is easy to see that

$$
\begin{align*}
& n^{-1} \sum_{j=1}^{[n t]} m_{n}^{2([n t]-1)} \mathrm{E}\left(\left(M_{k}^{(n)}\right)^{2} / F_{j-1}^{(n)}\right) \\
& \quad=\frac{\sigma_{n}^{2}}{n} \sum_{j=1}^{[n t]} m_{n}^{2([n t]-1)} X_{j-1}^{(n)}+\frac{b_{n}^{2}}{n} \cdot \frac{1-m_{n}^{2[n t]}}{1-m_{n}^{2}} \tag{5}
\end{align*}
$$

By assumptions (1)-(3) of Theorem 2 and by using relation (2) we get

$$
\frac{b_{n}^{2}}{n} \cdot \frac{1-m_{n}^{2[n t]}}{1-m_{n}^{2}} \sim \frac{b^{2}}{2|\alpha|} \cdot \frac{d_{n}}{n} \rightarrow 0, \quad \frac{\sigma_{n}^{2}}{n} \sum_{j=1}^{[n t]} m_{n}^{2([n t]-j)} \mathrm{E} X_{j-1}^{(n)} \sim \frac{\lambda \sigma^{2}}{2 \alpha^{2}} \cdot \frac{d_{n}}{n} \rightarrow 0
$$

as $n \rightarrow \infty$. This together with (5) implies that

$$
n^{-1} \sum_{j=1}^{[n t]} m_{n}^{2([n t]-j)} \mathrm{E}\left(\left(M_{j}^{(n)}\right)^{2} / F_{j-1}^{(n)}\right) \xrightarrow{\mathrm{P}} 0 \quad \text { as } n \rightarrow \infty .
$$

Then

$$
n^{-1} \sum_{j=1}^{[n t]} m_{n}^{2([n t]-j)} \mathrm{E}\left(\left(M_{j}^{(n)}\right)^{2} I\left(m_{n}^{[n t]-j}\left|M_{j}^{(n)}\right|>\varepsilon \sqrt{n}\right) / F_{j-1}^{(n)}\right) \xrightarrow{\mathrm{P}} 0
$$

as $n \rightarrow \infty$. Therefore all the assumptions of Theorem 7.1.11 of [6] hold, and we complete the proof of Lemma 2

Lemma 3. Assume that all the assumptions of Theorem 2 hold. Then the weak convergence

$$
\begin{equation*}
\widetilde{M}_{n}^{(1)} \rightarrow\left(|\alpha|^{-1} \lambda \sigma^{2}+b^{2}\right)^{1 / 2} W \quad \text { as } n \rightarrow \infty \tag{6}
\end{equation*}
$$

holds in the Skorokhod space $D[0, \infty)$.
Proof of Lemma 3. Since the sequence $\left(M_{k}^{(n)}, F_{k}^{(n)}\right), k \geq 1$, is a martingale-difference, Theorem 7.1.11 of [6] implies that we only need to show that

$$
\begin{equation*}
n^{-1} \sum_{j=1}^{[n t]} \mathrm{E}\left(\left(M_{j}^{(n)}\right)^{2} / F_{j-1}^{(n)}\right) \xrightarrow{\mathrm{P}}\left(|\alpha|^{-1} \lambda \sigma^{2}+b^{2}\right) t \tag{7}
\end{equation*}
$$

and that, for all $\varepsilon>0$,

$$
\begin{equation*}
R_{n}(\varepsilon, t)=n^{-1} \sum_{j=1}^{[n t]} \mathrm{E}\left(\left(M_{j}^{(n)}\right)^{2} I\left(\left|M_{j}^{(n)}\right|>\varepsilon \sqrt{n}\right) / F_{j-1}^{(n)}\right) \xrightarrow{\mathrm{P}} 0 \tag{8}
\end{equation*}
$$

as $n \rightarrow \infty$. Relation (7) follows in view of

$$
\mathrm{E}\left(\left(M_{j}^{(n)}\right)^{2} / F_{k}^{(n)}\right)=\sigma_{n}^{2} X_{k-1}^{(n)}+b_{n}^{2}
$$

Theorem 1 and assumptions (1)-(3) of Theorem 2.
Now we pass to the proof of relation (8). Put

$$
N_{n, k}^{(1)}=\sum_{j=1}^{X_{k-1}^{(n)}}\left(\xi_{k, j}-m_{n}\right), \quad N_{n, k}^{(2)}=\varepsilon_{k}^{(n)}-\lambda_{n} .
$$

Note that

$$
\begin{equation*}
I(|X+Y|>2 \varepsilon) \leq I(|X|>\varepsilon)+I(|Y|>\varepsilon) \tag{9}
\end{equation*}
$$

for all random variables X and Y and for every $\varepsilon>0$. This together with the elementary inequality $(a+b)^{2} \leq 2\left(a^{2}+b^{2}\right)$ implies that

$$
R_{n}(2 \varepsilon, t) \leq 2 \sum_{i, j=1}^{2} R_{i, j}^{(n)}(\varepsilon, t)
$$

with probability one, since $M_{k}^{(n)}=N_{n, k}^{(1)}+N_{n, k}^{(2)}$, where

$$
R_{i, j}^{(n)}(\varepsilon, t)=n^{-1} \sum_{k=1}^{[n t]} \mathrm{E}\left(\left(N_{n, k}^{(i)}\right)^{2} I\left(\left|N_{n, k}^{(j)}\right|>\varepsilon \sqrt{n}\right) / F_{k-1}^{(n)}\right), \quad i, j=1,2 .
$$

Therefore relation (8) follows if

$$
\begin{equation*}
R_{i, j}^{(n)}(\varepsilon, t) \xrightarrow{\mathrm{P}} 0 \quad \text { as } n \rightarrow \infty \tag{10}
\end{equation*}
$$

for $i, j=1,2$ and for all $t>0, \varepsilon>0$.
First we treat the case of $i=j=1$ in (10). We have $\left(N_{n, k}^{(1)}\right)^{2}=J_{k}^{(n)}+L_{k}^{(n)}$, where

$$
J_{k}^{(n)}=\sum_{j=1}^{X_{k-1}^{(n)}}\left(\xi_{k, j}^{(n)}-m_{n}\right)^{2}, \quad L_{k}^{(n)}=2 \sum_{i=1}^{X_{k-1}^{(n)}} \sum_{j=i+1}^{X_{k-1}^{(n)}}\left(\xi_{k, i}^{(n)}-m_{n}\right)\left(\xi_{k, j}^{(n)}-m_{n}\right) .
$$

Now we introduce the random variables

$$
S_{k, j}^{(n)}=N_{n, k}^{(1)}-\left(\xi_{k, j}^{(n)}-m_{n}\right), \quad j=1,2, \ldots, X_{k-1}^{(n)} .
$$

Using inequality (9) we get

$$
\begin{align*}
& n^{-1} \sum_{k=1}^{[n t]} \mathrm{E}\left(J_{k}^{(n)} I\left(\left|N_{n, k}^{(1)}\right|>2 \varepsilon \sqrt{n}\right) / F_{k-1}^{(n)}\right) \\
& \leq n^{-1} \sum_{k=1}^{[n t]} \mathrm{E}\left(\sum_{j=1}^{X_{k-1}^{(n)}}\left(\xi_{k, j}^{(n)}-m_{n}\right)^{2} I\left(\left|\xi_{k, j}^{(n)}-m_{n}\right|>\varepsilon \sqrt{n}\right) / F_{k-1}^{(n)}\right) \tag{11}\\
&+n^{-1} \sum_{k=1}^{[n t]} \mathrm{E}\left(\sum_{j=1}^{X_{k-1}^{(n)}}\left(\xi_{k, j}^{(n)}-m_{n}\right)^{2} I\left(\left|S_{k, j}^{(n)}\right|>\varepsilon \sqrt{n}\right) / F_{k-1}^{(n)}\right) \\
&=A_{n}+B_{n} .
\end{align*}
$$

Since the random variables $\xi_{k, j}^{(n)}, k, j \in \mathbb{N}$, are independent and identically distributed, assumptions (3) in Theorem 2 and in Theorem 1 yield,

$$
\begin{equation*}
A_{n} \stackrel{\mathrm{P}}{\sim}|\alpha|^{-1} \lambda t d_{n} \mathrm{E}\left(\left(\xi_{1,1}^{(n)}-m_{n}\right)^{2} I\left(\left|\xi_{1,1}^{(n)}-m_{n}\right|>\varepsilon \sqrt{n}\right)\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{12}
\end{equation*}
$$

for all $t>0$, where $\varphi \stackrel{\mathrm{P}}{\sim} \psi$ means that $\varphi \psi^{-1} \xrightarrow{\mathrm{P}} 1$ as $n \rightarrow \infty$.
Next we consider B_{n}. Since the random variables $\xi_{k, j}^{(n)}-m_{n}$ and $S_{k, j}^{(n)}$ are independent, we apply the Chebyshev inequality for conditional probabilities to make sure that

$$
\begin{equation*}
B_{n} \leq \frac{4}{\varepsilon^{2} n^{2}} \sigma_{n}^{4} \sum_{k=1}^{[n t]}\left(X_{k}^{(n)}\right)^{2} \tag{13}
\end{equation*}
$$

with probability one. Applying Lemma 2.1 of [2] we obtain

$$
\begin{equation*}
\sigma_{n}^{4} n^{-2} \sum_{k=1}^{[n t]} \mathrm{E}\left(X_{k}^{(n)}\right)^{2} \leq 2 \alpha^{-2}\left(d_{n} \sigma_{n}^{2}\right)^{2}\left(|\alpha| b_{n}^{2}+\lambda_{n}^{2}\right)[n t] n^{-2} \rightarrow 0 \tag{14}
\end{equation*}
$$

as $n \rightarrow \infty$. This together with (13) and Markov's inequality implies that

$$
B_{n} \xrightarrow{\mathrm{P}} 0 \quad \text { as } n \rightarrow \infty .
$$

The latter relation together with (12) leads to

$$
\begin{equation*}
n^{-1} \sum_{k=1}^{[n t]} \mathrm{E}\left(J_{k}^{(n)} I\left(\left|N_{n, k}^{(1)}\right|>\varepsilon \sqrt{n}\right) / F_{k-1}^{(n)}\right) \xrightarrow{\mathrm{P}} 0 \quad \text { as } n \rightarrow \infty \tag{15}
\end{equation*}
$$

in view of (11). Next, we apply the Cauchy-Bunyakovskiĭ and Chebyshev inequalities for conditional probabilities and conclude that

$$
\begin{equation*}
n^{-1} \sum_{k=1}^{[n t]} \mathrm{E}\left(\left|L_{k}^{(n)}\right| I\left(\left|N_{n, k}^{(1)}\right|>\varepsilon \sqrt{n}\right) / F_{k-1}^{(n)}\right) \leq 2^{1 / 2} \varepsilon^{-1} n^{-3 / 2} \sigma_{n}^{3} \sum_{k=1}^{[n t]}\left(X_{k-1}^{(n)}\right)^{2} \tag{16}
\end{equation*}
$$

with probability one. Similarly to inequality (14),

$$
\left(n d_{n}\right)^{-3 / 2} \sum_{k=1}^{[n t]} \mathrm{E}\left(X_{k-1}^{(n)}\right)^{2} \leq 2\left(n^{-1} d_{n}\right)^{1 / 2} \alpha^{-2}\left(|\alpha| b_{n}^{2}+\lambda_{n}^{2}\right) t \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

This together with (16) and (15) implies (10) for the case of $i=j=1$.
Next we consider the case of $i=1, j=2$. Since $N_{n, k}^{(1)}$ and $N_{n, k}^{(2)}$ are independent, the Chebyshev inequality for conditional probabilities and Theorem imply that

$$
R_{1,2}^{(n)}(\varepsilon, t) \leq \frac{b_{n}^{2} \sigma_{n}^{2}}{\varepsilon^{2} n^{2}} \sum_{k=1}^{[n t]} X_{k-1}^{(n)} \stackrel{\mathrm{P}}{\sim} \frac{\lambda \sigma^{2} b^{2}}{\varepsilon^{2}|\alpha|} t \cdot \frac{1}{n} \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

Similarly we have

$$
R_{2,1}^{(n)}(\varepsilon, t) \xrightarrow{\mathrm{P}} 0 \quad \text { as } n \rightarrow \infty .
$$

Relation (10) follows directly from assumption (4) in the case of $i=j=2$, since the random variables $\varepsilon_{k}^{(n)}, k \in \mathbb{N}$, are independent and identically distributed. The proof of Lemma 3 is completed.

The proof of Theorem 2 follows directly from Lemmas 1 3 and Theorem 4.1 of 5 .

4. Examples

Below are two examples of sequences of branching processes with immigration for which assumptions of Theorems 1 and 2 hold.
Example 1. Let $\xi_{1,1}^{(n)}$ have the Bernoulli distribution with success probability p_{n} such that $p_{n}=1+\alpha d_{n}^{-1}+o\left(d_{n}^{-1}\right)$ as $n \rightarrow \infty$, where $\alpha<0$ is a fixed number, the immigration process is governed by a Poisson law with parameter $\lambda_{n} \geq 0$, and there exists a finite nonnegative number λ such that $\lambda_{n} \rightarrow \lambda$ as $n \rightarrow \infty$. It is easy to check that all the assumptions of Theorems 1 and 2 hold. In this case,

$$
Z(t)=|\alpha|^{-1} \lambda t, \quad Y(t)=|\alpha|^{-1}(2 \lambda)^{1 / 2} W(t)
$$

If both $\xi_{1,1}^{(n)}$ and $\varepsilon_{1}^{(n)}$ have the Bernoulli distribution with the same success probability $p_{n}=1+\alpha d_{n}^{-1}, \alpha<0$, then

$$
Z(t)=|\alpha|^{-1} t, \quad Y(t)=|\alpha|^{-1} W(t)
$$

Example 2. Let $\xi_{1,1}^{(n)}$ assume three values 0,1 , and 2 with probabilities $2 d_{n}^{-1}, 1-3 d_{n}^{-1}$, and d_{n}^{-1}, respectively, and let the random variable $\varepsilon_{1}^{(n)}$ have the geometric distribution with success probability p_{n}, that is,

$$
\mathrm{P}\left(\varepsilon_{1}^{(n)}=k\right)=p_{n}\left(1-p_{n}\right)^{k-1}, \quad k=1,2, \ldots
$$

We have

$$
m_{n}=1-d_{n}^{-1}, \quad \sigma_{n}^{2}=d_{n}^{-1}\left(3-d_{n}^{-1}\right), \quad \lambda_{n}=p_{n}^{-1}, \quad b_{n}^{2}=\left(1-p_{n}\right) p_{n}^{-2} .
$$

Let $p_{n} \rightarrow p>0$. It is clear that assumptions (1), (2), and (3) of Theorems 1 and 2 hold and moreover that

$$
\alpha=-1, \quad \sigma^{2}=3, \quad \lambda=p^{-1}, \quad b^{2}=(1-p) p^{-2} .
$$

Assumptions (4) and (5) of Theorem 2 can also be easily checked. In the case under consideration,

$$
Z(t)=p^{-1} t, \quad Y(t)=\left(p^{-1}\left(2+p^{-1}\right)\right)^{1 / 2} W(t)
$$

Acknowledgment

The author expresses his appreciation to a referee who pointed out some shortcomings in the manuscript. The comments made by the referee improved the style of this paper.

Bibliography

[1] A. G. Pakes, Some limit theorems for the total progeny of a branching process, Adv. Appl. Probab. 3 (1971), no. 1, 176-192. MR0283892
[2] A. V. Karpenko and S. V. Nagaev, Limit theorems for the complete number of descendants in a Galton-Watson branching process, Teor. Veroyatnost. Primenen. 38 (1993), no. 3, 503-528; English transl. in Theory Probab. Appl. 38 (1993), no. 3, 433-455; MR1404661
[3] T. N. Sriram, Invalidity of bootstrap for critical branching process with immigration, Ann. Statist. 22 (1994), 1013-1023. MR 1292554
[4] M. Ispany, G. Pap, and M. C. A. Van Zuijlen, Fluctuation limit of branching processes with immigration and estimation of the mean, Adv. Appl. Probab. 37 (2005), 523-528. MR2144565
[5] P. Billingsley, Convergence of Probability Measures, John Wiley \& Sons, Inc., New York-LondonSydney, 1968. MR0233396
[6] R. Sh. Liptser and A. N. Shiryayev, Theory of Martingales, "Nauka", Moscow, 1986; English transl. Kluwer Academic Publishers Group, Mathematics and its Applications (Soviet Series), vol. 49, Dordrecht, 1989. MR 1022664
[7] D. S. Silvestrov, Limit Theorems for Composite Random Functions, "Vyshcha Shkola", Kiev, 1974. (Russian) MR0415731
[8] C. Z. Wei and J. Winicki, Some asymptotic results for the branching process with immigration, Stochastic Process. Appl. 31 (1989), 261-282. MR998117
[9] Ya. M. Khusanbaev, On the rate of convergence in a limit theorem for branching processes with immigration, Sibirsk. Matem. Zh. 55 (2014), no. 1, 221-227. English transl. in Sib. Math. J. 55 (2014), no. 1, 178-184. MR 3220599
V. I. Romanovskiy Institute of Mathematics, 81, Mirzo Ulugbek street, Tashkent, 100041, Uzbekistan

Email address: yakubjank@mail.ru
Received 16/JAN/2017
Translated by S. V. KVASKO

[^0]: 2010 Mathematics Subject Classification. Primary 60J80; Secondary 60F17.
 Key words and phrases. Branching processes with immigration, total number of particles, weak convergence.

