
Teor�� �Imov�r. ta Matem. Statist. Theor. Probability and Math. Statist.
Vip. 96, 2017 No. 96, 2018, Pages 169–176

https://doi.org/10.1090/tpms/1042
Article electronically published on October 5, 2018

THE ASYMPTOTIC BEHAVIOR OF THE TOTAL NUMBER

OF PARTICLES IN A CRITICAL BRANCHING PROCESS

WITH IMMIGRATION
UDC 519.21

YA. M. KHUSANBAEV

Abstract. A sequence of branching processes with immigration is considered in the
case where the mean number of descendents of a particle tends to unity. The rate of
growth and asymptotic behavior of the total number of particles in the population
are found.

1. Introduction

Assume that
{
ξ
(n)
k,j , k, j ∈ N

}
and

{
ε
(n)
k , k ∈ N

}
are two independent families of

independent nonnegative integer valued and identically distributed random variables for

all n ∈ N. Let
{
X

(n)
k , k = 0, 1, . . .

}
, n ∈ N, be a sequence of branching processes with

immigration defined by the following recurrence relations:

(1) X
(n)
0 = 0, X

(n)
k =

X
(n)
k−1∑

j=1

ξ
(n)
k,j + ε

(n)
k , k, n ∈ N.

If the random variables ξ
(n)
k,j and ε

(n)
k , n ≥ 1, are treated as the number of descendents

of a jth particle in a (k − 1)th generation of a certain population of particles and the

number of particles immigrating into the kth generation, respectively, then X
(n)
k is the

total number of particles in the kth generation of the population.
A sequence of branching processes with immigration (1) is called almost critical if

Eξ
(n)
1,1 → 1 as n → ∞. Consider random stepwise processes Zn, n ∈ N, defined by

Zn(t) =

[nt]∑
k=1

X
(n)
k , t ≥ 0, n ∈ N.

It is clear that the trajectories of the processes Zn, n ∈ N, belong to the Skorokhod
space D[0,∞). The variable Zn(t) is the total number of particles (counted up to the

moment [nt]) in the branching process with immigration X
(n)
k , k ≥ 0.

Pakes [1] studies the rate of growth and asymptotic behavior (as n → ∞) of the
fluctuation of the total number of descendents of a particle in a branching Galton–Watson
process up to the moment n under the assumption that the process does not vanish.
Karpenko and Nagaev [2] investigate the limit behavior of the conditional distribution
of the total number of descendents of a particle in the Galton–Watson process under
the condition that the process vanishes at the moment n and in the case where the
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expectation of the number of particles generated by a single particle tends to unity as
n → ∞. A number of papers, say [3,4,8,9], are devoted to functional limit theorems for
a sequence of branching processes with immigration. On the other hand, the asymptotic
behavior of the total number of particles Zn has been studied quite a bit.

The aim of this paper is to study the asymptotic behavior of the process Zn as well as
that of its deviation from the mean value, Zn − EZn, for the case where the mean value
of the number of descendants of a single particle tends to unity from the left with a rate
being slower than n−1 as n → ∞.

2. Mainstream

We assume that

mn = Eξ
(n)
1,1 , σ2

n = Var ξ
(n)
1,1 , λn = Eε

(n)
1 , b2n = Var ε

(n)
1

are finite for all n ∈ N. Throughout below dn, n ∈ N, denotes a certain sequence of
positive numbers such that dn → ∞ and n−1dn → 0 as n → ∞; W (t), t ≥ 0, is a
standard Wiener process in the space D[0,∞); I(A) is the indicator of an event A; and

the symbol
P−→ denotes the convergence in probability of random variables.

Theorem 1 provides some information on the rate of growth of the process Zn.

Theorem 1. Assume that

(1) mn = 1 + αd−1
n + o

(
d−1
n

)
as n → ∞ for some fixed α < 0;

(2) the limit limn→∞ σ2
n = σ2 ≥ 0 exists and is finite;

(3) the limits limn→∞ = λ ≥ 0 and limn→∞ b2n = b2 ≥ 0 exist and are finite.

Then
Zn

ndn
→ Z as n → ∞

in the space D[0,∞) equipped with the Skorokhod J-topology, where the limit process Z
is defined by

Z(t) = |α|−1λt, t ≥ 0.

Theorem 2 describes the asymptotic behavior of the deviation of the process Zn from
its mean value.

Theorem 2. Assume that

(1) mn = 1 + αd−1
n + o

(
d−1
n

)
as n → ∞ for some fixed α < 0;

(2) the limit limn→∞ dnσ
2
n = σ2 ≥ 0 exists and is finite;

(3) the limits limn→∞ λn = λ ≥ 0 and limn→∞ b2n = b2 ≥ 0 exist and are finite;
(4) for all ε > 0,

dnE
(
ξ
(n)
1,1 −mn

)2
I
(∣∣ξ(n)1,1 −mn

∣∣ > ε
√
n
)
→ 0, n → ∞;

(5) for all ε > 0,

E
(
ε
(n)
1 − λn

)2
I
(∣∣ε(n)1 − λn

∣∣ > ε
√
n
)
→ 0, n → ∞.

Then (
dn

√
n
)−1

(Zn − EZn) → Y as n → ∞
in the space D[0,∞) equipped with the Skorokhod J-topology, where the limit process Y
is defined by

Y (t) = |α|−1
(
|α|−1λσ2 + b2

)1/2
W (t), t ≥ 0.

Remark 1. The asymptotic behavior of the process Zn and that of its deviation are easy
to extract from the results of papers [3, 4, 8] and Theorem 5.1 of [5] in the case where
mn = 1 + αn−1 + o

(
n−1

)
.
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Remark 2. Theorems 1 and 2 show that the rate of convergence of mn to unity influences
essentially the rate of growth and asymptotic behavior of the deviation of the process Zn.

Remark 3. In general, the conditions b2n → b2 > 0 and dnσ
2 → σ2 > 0 do not imply

assumptions (4) and (5) of Theorem 2, respectively. For example, let ε
(n)
k assume values

0, 1, and n with probabilities n−2, 1−2n−2, and n−2, respectively. Then λn = 1+n−1+
o
(
n−1

)
and b2n = 1− 2n−1 + o

(
n−1

)
as n → ∞. For every ε > 0,

E
(
ε
(n)
1 − λn

)2

I
(∣∣∣ε(n)1 − λn

∣∣∣ > ε
√
n
)
≈ (n− 1)2

n2
→ 1 as n → ∞.

Thus b2n → 1 as n → ∞ in this case, but assumption 5 does not hold.

3. Proofs

Proof of Theorem 1. It is easy to see that

(2) EX
(n)
k =

1−mk
n

1−mn
λn, k = 0, 1, 2, . . . .

Put Gn(t) = (ndn)
−1

Zn(t). The assumptions of Theorem 1 imply that

(3) EGn(t) → |α|−1λt as n → ∞.

We are going to estimate VarGn(t). Equality (2.13) of the paper [4] yields

VarGn(t) = (ndn)
−2

(
Un(t)b

2
n + Vn(t)λnσ

2
n

)
,

where

Un(t) =

[nt]+1∑
k=1

1−m
2(k−1)
n

1−m2
n

(
2
1−m

[nt]−k+2
n

1−mn
− 1

)
,

Vn(t) =

[nt]+1∑
k=1

(
1−mk−1

n

) (
1−mk−2

n

)
(1−mn) (1−m2

n)

(
2
1−m

[nt]−k+2
n

1−mn
− 1

)
.

It is easy to see that

Un(t) ≤
2(1 + nt)

(1−mn)2
, Vn(t) ≤

2(1 + nt)

(1−mn)3
.

Then

(4) VarGn(t) ≤ 2α−2

(
b2n
n

+
λnσ

2
ndn

αn

)
t → 0 as n → ∞

for all t ≥ 0. Applying the Chebyshev inequality we conclude from here that Gn(t)
P−→

Z(t) as n → ∞ for all t ≥ 0 in view of relation (3). Since the limit process Z is continuous
and nonrandom, it remains to show that the sequence of processes {Gn(t), t ≥ 0}, n ∈ N,
is dense (see Theorem 15.1 of [5]). Indeed, relations (3) and (4) imply that

E
(
Gn(t)−Gn(s)

)2 ≤ 3
(
VarGn(s) + VarGn(t) +

(
EGn(t)− EGn(s)

)2)
≤ 4α−2λ2(t− s)2

for all t, s ≥ 0 and all sufficiently large n. Hence the sequence of processes {Gn(t), t ≥ 0},
n ∈ N, is dense by the density criteria 15.5 and 12.3 of [5]. �



172 YA. M. KHUSANBAEV

Now we are going to prove the following three auxiliary results and then use them to
derive the statement of Theorem 2. Put

M
(n)
k =

X
(n)
k−1∑

j=1

(
ξ
(n)
k,j −mn

)
+ ε

(n)
k − λk, k = 1, 2, . . . .

Denote by F
(n)
k the σ-algebra generated by random variables

{
X

(n)
0 , X

(n)
1 , . . . , X

(n)
k

}
.

It is clear that
{
M

(n)
k , k ≥ 0

}
is a martingale-difference with respect to the flow of

σ-algebras F
(n)
k , k ≥ 0.

Lemma 1. The representation

Wn(t) = [dn (1−mn)]
−1

(
M̃ (1)

n (t)−mnM̃
(2)
n (t)

)
holds, where

Wn(t) =
(
dn

√
n
)−1 (

Zn(t)− EZn(t)
)
,

M̃ (1)
n (t) = n−1/2

[nt]∑
j=1

M
(n)
j , M̃ (2)

n (t) = n−1/2

[nt]∑
j=1

m[nt]−j
n M

(n)
j .

Proof of Lemma 1. The variable X
(n)
k is represented as

X
(n)
k = mnX

(n)
k−1 + λn +M

(n)
k , k = 1, 2, . . . ,

in view of equality (1), whence EX
(n)
k = mnEX

(n)
k−1 + λn, k = 1, 2, . . . . Therefore the

random variables X
(n)
k − EX

(n)
k , k ≥ 0, satisfy the recurrence equation

X
(n)
k − EX

(n)
k = mn

(
X

(n)
k−1 − EX

(n)
k−1

)
+M

(n)
k , k = 1, 2, . . . .

The solution of the latter recurrence equation is given by

X
(n)
k − EX

(n)
k =

k∑
j=1

mk−j
n M

(n)
j , k = 1, 2, . . . .

Summing up the latter equalities with respect to k from 1 to [nt] and normalizing the
result appropriately, we complete the proof of the lemma. �

Lemma 2. If assumptions (1)–(3) of Theorem 2 hold, then

M̃ (2)
n (t) → 0 as n → ∞

in the Skorokhod space D[0,∞).

Proof of Lemma 2. It is easy to see that

n−1

[nt]∑
j=1

m2([nt]−1)
n E

((
M

(n)
k

)2

/F
(n)
j−1

)

=
σ2
n

n

[nt]∑
j=1

m2([nt]−1)
n X

(n)
j−1 +

b2n
n

· 1−m
2[nt]
n

1−m2
n

.(5)

By assumptions (1)–(3) of Theorem 2 and by using relation (2) we get

b2n
n

· 1−m
2[nt]
n

1−m2
n

∼ b2

2|α| ·
dn
n

→ 0,
σ2
n

n

[nt]∑
j=1

m2([nt]−j)
n EX

(n)
j−1 ∼ λσ2

2α2
· dn
n

→ 0
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as n → ∞. This together with (5) implies that

n−1

[nt]∑
j=1

m2([nt]−j)
n E

((
M

(n)
j

)2

/F
(n)
j−1

)
P−→ 0 as n → ∞.

Then

n−1

[nt]∑
j=1

m2([nt]−j)
n E

((
M

(n)
j

)2

I
(
m[nt]−j

n

∣∣∣M (n)
j

∣∣∣ > ε
√
n
)
/F

(n)
j−1

)
P−→ 0

as n → ∞. Therefore all the assumptions of Theorem 7.1.11 of [6] hold, and we complete
the proof of Lemma 2. �

Lemma 3. Assume that all the assumptions of Theorem 2 hold. Then the weak conver-
gence

(6) M̃ (1)
n →

(
|α|−1 λσ2 + b2

)1/2

W as n → ∞

holds in the Skorokhod space D[0,∞).

Proof of Lemma 3. Since the sequence
(
M

(n)
k , F

(n)
k

)
, k ≥ 1, is a martingale-difference,

Theorem 7.1.11 of [6] implies that we only need to show that

(7) n−1

[nt]∑
j=1

E

((
M

(n)
j

)2

/F
(n)
j−1

)
P−→

(
|α|−1

λσ2 + b2
)
t

and that, for all ε > 0,

(8) Rn(ε, t) = n−1

[nt]∑
j=1

E

((
M

(n)
j

)2

I
(∣∣∣M (n)

j

∣∣∣ > ε
√
n
)
/F

(n)
j−1

)
P−→ 0

as n → ∞. Relation (7) follows in view of

E

((
M

(n)
j

)2

/F
(n)
k

)
= σ2

nX
(n)
k−1 + b2n,

Theorem 1, and assumptions (1)–(3) of Theorem 2.
Now we pass to the proof of relation (8). Put

N
(1)
n,k =

X
(n)
k−1∑

j=1

(ξk,j −mn) , N
(2)
n,k = ε

(n)
k − λn.

Note that

(9) I(|X + Y | > 2ε) ≤ I(|X| > ε) + I(|Y | > ε)

for all random variables X and Y and for every ε > 0. This together with the elementary
inequality (a+ b)2 ≤ 2(a2 + b2) implies that

Rn(2ε, t) ≤ 2

2∑
i,j=1

R
(n)
i,j (ε, t)

with probability one, since M
(n)
k = N

(1)
n,k +N

(2)
n,k, where

R
(n)
i,j (ε, t) = n−1

[nt]∑
k=1

E

((
N

(i)
n,k

)2

I
(∣∣∣N (j)

n,k

∣∣∣ > ε
√
n
)
/F

(n)
k−1

)
, i, j = 1, 2.
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Therefore relation (8) follows if

(10) R
(n)
i,j (ε, t)

P−→ 0 as n → ∞
for i, j = 1, 2 and for all t > 0, ε > 0.

First we treat the case of i = j = 1 in (10). We have
(
N

(1)
n,k

)2
= J

(n)
k + L

(n)
k , where

J
(n)
k =

X
(n)
k−1∑

j=1

(
ξ
(n)
k,j −mn

)2

, L
(n)
k = 2

X
(n)
k−1∑
i=1

X
(n)
k−1∑

j=i+1

(
ξ
(n)
k,i −mn

)(
ξ
(n)
k,j −mn

)
.

Now we introduce the random variables

S
(n)
k,j = N

(1)
n,k −

(
ξ
(n)
k,j −mn

)
, j = 1, 2, . . . , X

(n)
k−1.

Using inequality (9) we get

n−1

[nt]∑
k=1

E
(
J
(n)
k I

(∣∣∣N (1)
n,k

∣∣∣ > 2ε
√
n
)
/F

(n)
k−1

)

≤ n−1

[nt]∑
k=1

E

⎛⎜⎝X
(n)
k−1∑

j=1

(
ξ
(n)
k,j −mn

)2

I
(∣∣∣ξ(n)k,j −mn

∣∣∣ > ε
√
n
)
/F

(n)
k−1

⎞⎟⎠
+ n−1

[nt]∑
k=1

E

⎛⎜⎝X
(n)
k−1∑

j=1

(
ξ
(n)
k,j −mn

)2

I
(∣∣∣S(n)

k,j

∣∣∣ > ε
√
n
)
/F

(n)
k−1

⎞⎟⎠
= An +Bn.

(11)

Since the random variables ξ
(n)
k,j , k, j ∈ N, are independent and identically distributed,

assumptions (3) in Theorem 2 and in Theorem 1 yield,

(12) An
P∼ |α|−1λtdnE

((
ξ
(n)
1,1 −mn

)2

I
(∣∣∣ξ(n)1,1 −mn

∣∣∣ > ε
√
n
))

→ 0 as n → ∞

for all t > 0, where ϕ
P∼ ψ means that ϕψ−1 P−→ 1 as n → ∞.

Next we consider Bn. Since the random variables ξ
(n)
k,j −mn and S

(n)
k,j are independent,

we apply the Chebyshev inequality for conditional probabilities to make sure that

(13) Bn ≤ 4

ε2n2
σ4
n

[nt]∑
k=1

(
X

(n)
k

)2

with probability one. Applying Lemma 2.1 of [2] we obtain

(14) σ4
nn

−2

[nt]∑
k=1

E
(
X

(n)
k

)2

≤ 2α−2
(
dnσ

2
n

)2 (|α|b2n + λ2
n

)
[nt]n−2 → 0

as n → ∞. This together with (13) and Markov’s inequality implies that

Bn
P−→ 0 as n → ∞.

The latter relation together with (12) leads to

(15) n−1

[nt]∑
k=1

E
(
J
(n)
k I

(∣∣∣N (1)
n,k

∣∣∣ > ε
√
n
)
/F

(n)
k−1

)
P−→ 0 as n → ∞
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in view of (11). Next, we apply the Cauchy–Bunyakovskĭı and Chebyshev inequalities
for conditional probabilities and conclude that

(16) n−1

[nt]∑
k=1

E
(∣∣∣L(n)

k

∣∣∣ I (∣∣∣N (1)
n,k

∣∣∣ > ε
√
n
)
/F

(n)
k−1

)
≤ 21/2ε−1n−3/2σ3

n

[nt]∑
k=1

(
X

(n)
k−1

)2

with probability one. Similarly to inequality (14),

(ndn)
−3/2

[nt]∑
k=1

E
(
X

(n)
k−1

)2

≤ 2
(
n−1dn

)1/2
α−2

(
|α|b2n + λ2

n

)
t → 0 as n → ∞.

This together with (16) and (15) implies (10) for the case of i = j = 1.

Next we consider the case of i = 1, j = 2. Since N
(1)
n,k and N

(2)
n,k are independent, the

Chebyshev inequality for conditional probabilities and Theorem 1 imply that

R
(n)
1,2 (ε, t) ≤

b2nσ
2
n

ε2n2

[nt]∑
k=1

X
(n)
k−1

P∼ λσ2b2

ε2|α| t ·
1

n
→ 0 as n → ∞.

Similarly we have

R
(n)
2,1 (ε, t)

P−→ 0 as n → ∞.

Relation (10) follows directly from assumption (4) in the case of i = j = 2, since the

random variables ε
(n)
k , k ∈ N, are independent and identically distributed. The proof of

Lemma 3 is completed. �
The proof of Theorem 2 follows directly from Lemmas 1–3 and Theorem 4.1 of [5].

4. Examples

Below are two examples of sequences of branching processes with immigration for
which assumptions of Theorems 1 and 2 hold.

Example 1. Let ξ
(n)
1,1 have the Bernoulli distribution with success probability pn such

that pn = 1+αd−1
n +o

(
d−1
n

)
as n → ∞, where α < 0 is a fixed number, the immigration

process is governed by a Poisson law with parameter λn ≥ 0, and there exists a finite
nonnegative number λ such that λn → λ as n → ∞. It is easy to check that all the
assumptions of Theorems 1 and 2 hold. In this case,

Z(t) = |α|−1λt, Y (t) = |α|−1(2λ)1/2W (t).

If both ξ
(n)
1,1 and ε

(n)
1 have the Bernoulli distribution with the same success probability

pn = 1 + αd−1
n , α < 0, then

Z(t) = |α|−1t, Y (t) = |α|−1W (t).

Example 2. Let ξ
(n)
1,1 assume three values 0, 1, and 2 with probabilities 2d−1

n , 1− 3d−1
n ,

and d−1
n , respectively, and let the random variable ε

(n)
1 have the geometric distribution

with success probability pn, that is,

P
(
ε
(n)
1 = k

)
= pn(1− pn)

k−1, k = 1, 2, . . . .

We have

mn = 1− d−1
n , σ2

n = d−1
n (3− d−1

n ), λn = p−1
n , b2n = (1− pn)p

−2
n .

Let pn → p > 0. It is clear that assumptions (1), (2), and (3) of Theorems 1 and 2 hold
and moreover that

α = −1, σ2 = 3, λ = p−1, b2 = (1− p)p−2.
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Assumptions (4) and (5) of Theorem 2 can also be easily checked. In the case under
consideration,

Z(t) = p−1t, Y (t) =
(
p−1

(
2 + p−1

))1/2
W (t).
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