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DIVIDENDS WITH TAX AND CAPITAL INJECTION

IN A SPECTRALLY NEGATIVE LÉVY RISK MODEL
UDC 519.21

H. SCHMIDLI

Abstract. We consider a risk model driven by a spectrally negative Lévy process.
From the surplus dividends are paid and capital injections have to be made in order
to keep the surplus positive. In addition, tax has to be paid for dividends, but
injections lead to an exemption from tax. We generalize the results from [12, 13]
and show that the optimal dividend strategy is a two-barrier strategy. The barrier
depends on whether an immediate dividend would be taxed or not. For a risk process
perturbed by diffusion with exponentially distributed claim sizes, we show how the
value function and the barriers can be determined.

1. Introduction

Consider a spectrally negative Lévy process {X0
t } and X0

0 = x with E[|X0
t |] < ∞.

This process models the surplus of an insurance portfolio. A classical measure for the
risk is the ruin probability P[inft Xt < 0]. For literature on the ruin problem, see, for
example, [1, 10] or [8, 9], where also the problem of differentiability is considered. An
alternative measure was introduced by de Finetti [5]. Dividends may be paid from the
surplus, and the value of the process is the expected discounted value of the dividend
payments until ruin. This problem was for example also considered in [4,6,11]. Kulenko
and Schmidli [7] considered in addition capital injections. Each time the surplus becomes
negative, capital injections have to be made in order to cover the deficit. That means,
the surplus process is reflected in zero. Choosing a dividend strategy {Dt}, the capital
injection process {Lt} is the minimal process such that

XD
t = X0

t −Dt + Lt

remains positive. Here, L and D are increasing processes with D0− = L0− = 0. The
first who considered this model were Shreve et al. [14] in a diffusion setup. For Lévy
processes, this problem has been considered in [3].

Recently, Schmidli [12, 13] has introduced tax payments on dividends. More specifi-
cally, from dividends a part 1 − γ has to be paid as tax and only γ dDt counts to the
value. But if a capital injection dLt is made, the same amount may be paid as dividend
without tax in the future. That means that no tax has to be paid for the next dLt

dividend payments. After that, tax is applied to dividends again. Note that if tax would
be applied to all of the dividends, the optimisation problem would just be the problem
considered in [7] with a modified penalizing factor η (defined below). It turns out that
the value function is strongly connected to the problem considered by [7]. The optimal
strategy is very simple. There are two dividend barriers b> and b0. The first barrier is
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applied if an immediate dividend would not be taxed. The second barrier is applied if
an immediate dividend is taxed. In this paper, we will show that the same holds true if
the underlying risk process is a Lévy process.

Note that Albrecher and Ivanovs [2] have shown recently how to calculate the value
function. However, they only consider two-barrier strategies. We will actually show
below that this kind of strategy is indeed optimal. Moreover, in general, it is hard to find
the scale functions used in [2]. Our approach via the HJB equation gives an alternative
way to calculate the solution.

The paper is organised as follows. We first recall the problem without tax. In Section 3,
we introduce taxes and show a verification theorem. The solution to the problem is given
in Section 4, and it is verified that the proposed solution satisfies the Hamilton–Jacobi–
Bellman equation (3). The proof is simpler than the corresponding proof in [12]. Then we
discuss the case η = 1, where dividends and capital injections are measured equally. We
discuss when one or both barriers are kept at zero. In particular, we find that the barrier
can only be at zero if the Brownian part is absent, or if η = 1. Finally, in Section 7, we
consider the example of a risk process perturbed by Brownian motion with exponentially
distributed claim sizes.

2. Dividends and capital injections

We first review the problem without tax. This model is considered in [2, 3], where
the approach is via scale functions. Choosing a dividend strategy D, the corresponding
value is

V D(x) = E

[∫ ∞

0

e−δt dDt − η

∫ ∞

0

e−δt dLt

]
,

where δ > 0 is a preference parameter and η ≥ 1 is a penalising factor for the capital
injections. In the problem without tax, η > 1 is necessary in order that it is not optimal
to keep the surplus at zero. The value function is then V n(x) = supD V D(x).

By the argument given in Lemma 1 of [7], the value function is concave. This implies
that there exists an optimal strategy and this strategy is of barrier type. Indeed, since
we have a linear upper bound, we can apply an argument given in [6] and show that
dividends will be paid for capital large enough. Because of the concavity, the derivative
of the value function must be one above any point where dividends are paid. That means
that all surplus above a dividend barrier b> is paid as dividend, whereas no dividend is
paid whenever the surplus is below b>.

Because the Lévy process is spectrally negative, the moment generating function of X0
t

exists and is of the form

E
[
exp

{
r
(
X0

t − x
)}]

= exp{tψ(r)},

where

ψ(r) = cr +
1

2
σ2r2 −

∫ ∞

0

(1− e−rz) dM(z).

Here M is the so called Lévy measure and ψ(r) is finite for all r ≥ 0 and strictly convex.
Since the process is integrable, we have

∫∞
0

z dM(z) < ∞ and the usual term z�|z|≤1 in
the integral can be dropped. The diffusion approximation is obtained with M(R) = 0. In
the classical model, σ = 0 and dM(z) = λ dF (z), where λ is the claim intensity and F (z)
is the claim size distribution. If, in addition, σ > 0, we obtain the risk model perturbed
by Brownian motion. If σ = 0 and dM(z) = γe−βz/z, we obtain the Gamma process.

Because ψ is convex, ψ(0) = 0 and limr→∞ ψ(r) = ∞, there is a unique solution ρ > 0
to ψ(ρ) = δ. We will need the coefficient ρ below.
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Standard arguments show that below the barrier x ≤ b>, the value function is a
viscosity solution for x ≥ 0 to the integro-differential equation

(1)
1

2
σ2V n

xx(x) + cV n
x (x)− δV n(x)−

∫ ∞

0

(
V n(x)− V n(x− z)

)
dM(z) = 0

with V n(x) = V n(0) + ηx for x < 0. Above the barrier, V n(x) = V n(b>) + x − b> for
x > b>. The function V n(x) solves then the Hamilton–Jacobi–Bellman equation

(2)

0 = max

{
1

2
σ2V n

xx(x) + cV n
x (x)− δV n(x)−

∫ ∞

0

(
V n(x)− V n(x− z)

)
dM(z),

1− V n
x (x), V n

x (x)− η

}
.

Since any solution f to (1) on (−∞, b] for a value b such that fx(b) = 1 is the value
of the barrier strategy with the barrier at b, we have to choose the solution such that
infx fx(x) = 1. The barrier is then chosen such that V n

x (b>) = 1. In particular, we get
V n
xx(b>) = 0. If σ > 0, then we have, in addition, the boundary condition V n

x (0) = η. If
σ = 0, the condition V n(x) = V n(0)+ηx for x < 0 implies that V n

x (0+) < η; see also [7].
For further use, we denote by V 0(x) the (viscosity) solution to (1) that coincides with

the value function on [0, b>]. That is,

V n(x) =

{
V 0(x), if x ≤ b>,

V 0(b>) + x− b>, if x > b>.

As in Lemma 5 of [12], it follows that limx→∞ V 0(x)e−ρx > 0.

3. The model with tax

We suppose now that tax at rate 1− γ has to be paid. If a capital injection is made,
the same amount is exempt from tax. Denote by Yt the amount of dividends that could
immediately be paid without tax. Then for Y0 = y,

Yt = y + Lt −
∫ t

0

�Ys>0 dD
c
s −

∑
s≤t

min{ΔDs, Ys−},

where Dc
t = Dt−

∑
s≤tΔDs is the continuous part of the dividend payments. The value

of a dividend strategy D is

V D(x, y) =

∫ ∞

0

e−δt(�Yt>0 + γ�Yt=0) dD
c
t

+
∑
t≥0

e−δt
[
min{ΔDt, Yt−}+ γ(ΔDt − Yt−)

+
]
− η

∫ ∞

0

e−δt dLt,

where x+ = max{x, 0} denotes the positive part of x. Our value function is then
V (x, y) = supD V D(x, y).

Denote by

Tt =
∫ t

0

�Ys=0 dD
c
s +

∑
s≤t

(ΔDt − Yt−)
+

the amount of dividends for which tax has been paid. Then it is easy to see that

Dt + Yt = y + Lt + Tt.
See also [12].

Lemma 1. The value function V (x, y) is concave in the first coordinate. Moreover, the
function z �→ V (x+ z, y + z) is concave.
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Proof. The proof of Lemma 2 of [12] is also valid for the Lévy risk model. An analogous
proof is applied to z �→ V (x+ z, y + z). �

It can only be optimal to pay dividends if Vx(x, 0) = γ or Vx(x, y) + Vy(x, y) = 1 for
y > 0. Concavity, therefore, implies that the optimal strategy will be of barrier type.
That is, there is a function b(y). Dividends are paid if Xt ≥ b(Yt). More specifically, the
process is reflected at the barrier b(y). We will verify below that the function b(y) is of
the very simple form b(y) = b0�y=0 + b>�y>0.

The problem is connected to a Hamilton–Jacobi–Bellman equation.

Theorem 1. Suppose that f(x, y) is a continuous function such that

f(x, y) = f(0, y − x) + ηx for x < 0.

Suppose further that for x ≥ 0, f(x, y) is a viscosity solution to

(3a)

0 = max

{
1

2
σ2fxx(x, y) + cfx(x, y)− δf(x, y)

−
∫ ∞

0

(
f(x, y)− f(x− z, y)

)
dM(z),

1− fx(x, y)− fy(x, y), fx(x, y) + fy(x, y)− η

}
if y > 0, and

(3b)

0 = max

{
1

2
σ2fxx(x, 0) + cfx(x, 0)− δf(x, 0)

−
∫ ∞

0

(
f(x, 0)− f(x− z, 0)

)
dM(z),

γ − fx(x, 0)

}
.

If σ > 0, assume that fx(0, y) + fy(0, y) = η. We further assume that there is a func-
tion b(y), such that fx(x, y) + �y>0fy(x, y) > �y>0 + γ�y=0 for x < b(y) and

fx(x, y) + �y>0fy(x, y) = �y>0 + γ�y=0 for x ≥ b(y).

Then f(x, y) = V (x, y).

Proof. Let D be an arbitrary dividend strategy. Let n > 0. We stop the process when n
is reached, τDn = inf{t > 0: XD

t > n}. Then{
f
(
XD

τD
n ∧t, Y

D
τD
n ∧t

)
e−δ(τD

n ∧t) −
∫ τD

n ∧t

0

[
Af

(
XD

s , Y D
s

)
− δf

(
XD

s , Y D
s

)]
e−δs ds

−
∫ τD

n ∧t

0

e−δs
[
fx

(
XD

s , Y D
s

)
+ fy

(
XD

s , Y D
s

)]
dLc

s

−
∑

s≤τD
n ∧t

ΔLs>0

(
f
(
XD

s , Y D
s

)
− f

(
XD

s−, Y
D
s−

))
e−δs

+

∫ τD
n ∧t

0

e−δs
(
fx

(
XD

s , Y D
s

)
+ �Y D

s >0fy
(
XD

s , Y D
s

))
dDc

s

−
∑

s≤τD
n ∧t

ΔDs>0

(
f
(
XD

s , Y D
s

)
− f

(
XD

s−, Y
D
s−

))
e−δs

}
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is a (local) martingale, where

Ag(x, y) =
1

2
σ2gxx(x, y) + cgx(x, y)−

∫ ∞

0

(
g(x, y)− g(x− z, y)

)
dM(z).

We can choose a localisation sequence τ̃Dn,m ≤ τDn in order to obtain a martingale. We
further assume that ΔDtΔLt = 0, since it does not make sense to pay dividends and make
capital injections at the same time because η ≥ 1. By (3), we haveAf(x, y)−δf(x, y) ≤ 0,
fx(x, y) + fy(x, y) ≤ η, fx(x, y) + fy(x, y) ≥ 1 for y > 0 and fx(x, 0) ≥ γ. Suppose
ΔLs > 0. Then

f
(
XD

s , Y D
s

)
− f

(
XD

s−, Y
D
s−

)
= f

(
XD

s , Y D
s

)
− f

(
XD

s −ΔLs, Y
D
s −ΔLs

)
=

∫ ΔLs

0

[
fx

(
XD

s − z, Y D
s − z

)
+ fy

(
XD

s − z, Y D
s − z

)]
dz

≤ ηΔLs.

Suppose ΔDs > 0. Then

f
(
XD

s , Y D
s

)
− f

(
XD

s−, Y
D
s−

)
= f

(
XD

s− −ΔDs,
(
Y D
s− −ΔDs

)+)− f
(
XD

s−, Y
D
s−

)
= f

(
XD

s− −ΔDs,
(
Y D
s− −ΔDs

)+)
− f

(
XD

s− −min
{
ΔDs, Y

D
s−

}
,
(
Y D
s− −ΔDs

)+)
+ f

(
XD

s− −min
{
ΔDs, Y

D
s−

}
,
(
Y D
s− −ΔDs

)+)
− f

(
XD

s−, Y
D
s−

)
.

We get

f
(
XD

s− −min
{
ΔDs, Y

D
s−

}
,
(
Y D
s− −ΔDs

)+)− f
(
XD

s−, Y
D
s−

)
= −

∫ min{ΔDs,Y
D
s−}

0

[
fx

(
XD

s− − z, Y D
s− − z

)
+ fy

(
XD

s− − z, Y D
s− − z

)]
dz

≤ −min
{
ΔDs, Y

D
s−

}
.

Note that XD
s− −min{ΔDs, Y

D
s−} �= XD

s− −ΔDs if and only if Y D
s− < ΔDs. Thus, in this

case

f
(
XD

s− −ΔDs, 0
)
−f

(
XD

s− − Y D
s−, 0

)
= −

∫ ΔDs

Y D
s−

fx
(
XD

s− − z, 0
)
dz ≤ −γ

(
ΔDs − Y D

s−
)
.

Putting the above considerations together shows that{
f
(
XD

τD
n,m∧t, Y

D
τD
n,m∧t

)
e−δ(τD

n,m∧t) − η

∫ τD
n,m∧t

0

e−δs dLs

+

∫ τD
n,m∧t

0

e−δs
(�Y D

s >0 + γ�Y D
s =0

)
dDc

s

+
∑

s≤τD
n,m∧t

[
min

{
ΔDs, Y

D
s−

}
+ γ

(
ΔDs − Y D

s−
)+]

e−δs

}



182 H. SCHMIDLI

is a supermartingale. Taking expected values shows that

f(x, y) ≥ E

[
f
(
XD

τD
n,m∧t, Y

D
τD
n,m∧t

)
e−δ(τD

n,m∧t) − η

∫ τD
n,m∧t

0

e−δs dLs

+

∫ τD
n,m∧t

0

e−δs
(�Y D

s >0 + γ�Y D
s =0

)
dDc

s

+
∑

s≤τD
n,m∧t

[
min

{
ΔDs, Y

D
s−

}
+ γ

(
ΔDs − Y D

s−
)+]

e−δs

]
.

Lettingm → ∞, by bounded convergence and monotone convergence, respectively, we get

f(x, y) ≥ E

[
f
(
XD

τD
n ∧t, Y

D
τD
n ∧t

)
e−δ(τD

n ∧t) − η

∫ τD
n ∧t

0

e−δs dLs

+

∫ τD
n ∧t

0

e−δs
(�Y D

s >0 + γ�Y D
s =0

)
dDc

s

+
∑

s≤τD
n ∧t

[
min

{
ΔDs, Y

D
s−

}
+ γ

(
ΔDs − Y D

s−
)+]

e−δs

]
.

As a concave function, f(x, y) is bounded by a linear function. As in the case without tax,
we conclude that {f(XD

t , Y D
t )e−δt} is uniformly integrable. Thus, we can let n → ∞,

and using, in addition, monotone convergence, we get

f(x, y) ≥ E

[
f
(
XD

t , Y D
t

)
e−δt − η

∫ t

0

e−δs dLs +

∫ t

0

e−δs
(�Y D

s >0 + γ�Y D
s =0

)
dDc

s

+
∑
s≤t

[
min

{
ΔDs, Y

D
s−

}
+ γ

(
ΔDs − Y D

s−
)+]

e−δs

]
.

Finally, letting t → ∞, by the same argument, we obtain

f(x, y) ≥ E

[∫ ∞

0

e−δs
(�Y D

s >0 + γ�Y D
s =0

)
dDc

s

+
∑
s<∞

[
min

{
ΔDs, Y

D
s−

}
+ γ

(
ΔDs − Y D

s−
)+]

e−δs − η

∫ ∞

0

e−δs dLs

]

= V D(x, y).

We have used that f(x, y) is bounded by a linear function and thus E[f(XD
t , Y D

t )] is
bounded by a linear function in t. Because the strategy D is arbitrary, we have shown
that f(x, y) ≥ V D(x, y).

Choose the strategy D∗ such that no dividends are paid if X∗
t < b(Y ∗

t ) and all capital
above b(y) is paid as dividend. That is, the process X is reflected at zero and at the
barrier b(y). Repeating the arguments above, all inequalities become equalities. Thus,
f(x, y) = V ∗(x, y) ≤ V (x, y). �

4. The solution to the problem

We have defined before the function V 0(x) as the (viscosity) solution to (1) that
coincides on [0, b>] with the value function of the problem without tax. Recall that ρ is
the solution to ψ(ρ) = δ. Consider the function

g(x, y) = V 0(x)− Ceρ(x−y).
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We choose C such that infx≥0 gx(x, 0) = γ. Note that such a C exists because we have
lim infx→∞ V 0(x)e−ρx > 0. Denote the value for which the infimum is attained by b0.
Note that [

1

2
σ2ρ2 + cρ− δ −

∫ ∞

0

(1− e−ρz) dM(z)

]
eρ(x−y) = 0

by the definition of ρ. Thus g(x, y) solves (1). Further, gx(x.y) + gy(x, y) = V 0
x (x), and

in particular, gx(b>, y) + gy(b>, y) = V 0
x (b>) = 1. This implies b0 > b>, unless b> = 0.

Further, if σ > 0, then gx(0, y) + gy(0, y) = V 0
x (0) = η.

Our candidate for a solution is the function

(4) f(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(x, y), if y > 0 and 0 ≤ x ≤ b>,

g(x, 0), if y = 0 and 0 ≤ x ≤ b0,

g(b0, 0) + γ(x− b0), if y = 0 and x > b0,

f (max{x− y, b>}, (y + b> − x)+)

+min{y, x− b>}, if y > 0 and x > b>,

f(0, y − x) + ηx, if x < 0.

This is indeed the case.

Theorem 2. Let f(x, y) be the function defined by (4). Then f(x, y) = V (x, y).

Proof. First note that for x < 0,

f(x, y) = f(0, y − x) + ηx = V 0(0) + ηx− Ceρ(x−y) = V n(x)− Ceρ(x−y).

Assume for the moment that f(x, y) is concave in x. We then need to show that f(x, y)
fulfils the HJB equation (3). For 0 ≤ x ≤ b> if y > 0 and 0 ≤ x ≤ b0 if y = 0, we have

1

2
σ2gxx(x, y) + cgx(x, y)− δg(x, y)−

∫ ∞

0

(
g(x, y)− g(x− z, y)

)
dM(z) = 0

by definition. Further, fx(x, y) + fy(x, y) = V 0
x (x) ≥ 1 if y > 0, and by the definition

of g(x, y), fx(x, 0) ≥ γ. Further, fx(x, y) + fy(x, y) = V 0
x (x) ≤ η for y > 0. This shows

that the equation holds below the barrier.
Let y = 0 and x > b0. Then f(x, 0) = f(b0, 0) + γ(x− b0) and, therefore, fx(x, 0) = γ

and fxx(x, 0) = 0. We have to consider

cγ − δ[f(b0, 0) + γ(x− b0)] +

∫ ∞

0

(
f(x− z, 0)− f(b0, 0)− γ(x− b0)

)
dM(z).

The integrand is a concave function and therefore also the expression is concave. It
vanishes at x = b0 because (1) is fulfilled at that point. The derivative at x = b0 is

−δγ +

∫ ∞

0

(
fx(b0 − z, 0)− γ

)
dM(z),

because we can interchange integral and derivative for a concave integrand. We claim
that this derivative is non-positive. This will show (3b) by the concavity. Consider for
x > b0 small enough,

c
gx(x, 0)− γ

x− b0
− δ

g(x, 0)− g(b0, 0)

x− b0

+

∫ ∞

0

(
g(x− z, 0)− g(b0 − z, 0)

x− b0
− g(x, 0)− g(b0, 0)

x− b0

)
dM(z)

= −1

2
σ2 gxx(x, 0)

x− b0
≤ 0,
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where the last inequality follows because the function changes from concave to convex
at b0. Thus, we can let x ↓ b0 and our claim is shown. In particular,

1

2
σ2fxx(x, y) + cfx(x, y)− δf(x, y)−

∫ ∞

0

(
f(x, y)− f(x− z, y)

)
dM(z)

is decreasing in x.
Let now y > 0 and b> < x ≤ b> + y. Then

f(x, y) = f(b>, y + b> − x) + x− b> = V 0(b>)− Ceρ(x−y) + x− b>.

Hence

fx(x, y) = 1− Cρeρ(x−y) = 1− fy(b>, y + b> − x)

and

fxx(x, y) = −Cρ2eρ(x−y).

In particular,

fx(x, y) + fy(x, y) = 1.

Then, using the definition of ρ, we obtain

− 1

2
σ2Cρ2eρ(x−y) + c

(
1− Cρeρ(x−y)

)
+

∫ x−b>

0

[
Ceρ(x−y) − Ceρ(x−y−z) − z

]
dM(z)

−
∫ ∞

x−b>

[
V 0(b>)− Ceρ(x−y) + x− b> − V 0(x− z) + Ceρ(x−y−z)

]
dM(z)

− δ
(
V 0(b>)− Ceρ(x−y) + x− b>

)

= c−
∫ x−b>

0

z dM(z)−
∫ ∞

x−b>

[
V 0(b>)− V 0(x− z) + x− b>

]
dM(z)

− δ
(
V 0(b>) + x− b>

)
= c−

∫ ∞

0

[V n(x)− V n(x− z)] dM(z)− δV n(x)

=
1

2
σ2V n

xx(x) + cV n
x (x)−

∫ ∞

0

[V n(x)− V n(x− z)] dM(z)− δV n(x) ≤ 0

with equality in x = b>, where we used that V n(x) solves (2). Thus, we have shown
that (3a) is fulfilled for y > 0 and b> < x ≤ b> + y. Note that the derivative of the
right-hand side ∫ ∞

0

[V n
x (x− z)− 1] dM(z)− δ

is decreasing in x. That implies that

1

2
σ2fxx(x, y) + cfx(x, y)− δf(x, y)−

∫ ∞

0

(
f(x, y)− f(x− z, y)

)
dM(z)

is concave and thus decreasing in x.
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Let now y > 0 and b> + y < x ≤ b0 + y. Then f(x, y) = f(x− y, 0)+ y. In particular,
fx(x, y) + fy(x, y) = 1. Further, fx(x, y) = fx(x− y, 0), fxx(x, y) = fxx(x− y, 0) and

1

2
σ2fxx(x− y, 0) + cfx(x− y, 0)−

∫ x−y−b>

0

[f(x− y, 0)− f(x− y − z, 0)] dM(z)

−
∫ x−b>

x−y−b>

[f(x− y, 0) + y − f(b>, y + b> + z − x)− x+ z + b>] dM(z)

−
∫ ∞

x−b>

[f(x− y, 0) + y − f(x− z, y)] dM(z)− δ[f(x− y, 0) + y]

=

∫ x−b>

x−y−b>

[f(b>, y + b> + z − x)− f(x− y − z, 0) + x− y − z − b>] dM(z)

+

∫ ∞

x−b>

[f(x− z, y)− f(x− y − z, 0)− y] dM(z)− δy

=

∫ x−b>

x−y−b>

[
V 0(b>)− V 0(x− y − z) + x− y − z − b>

]
dM(z)

+

∫ ∞

x−b>

[
V 0(x− z)− V 0(x− y − z)− y

]
dM(z)− δy

=

∫ ∞

x−y−b>

[V n(x− z)− V n(x− y − z)− y] dM(z)− δy

=

∫ ∞

0

[V n(x− z)− V n(x− y − z)− y] dM(z)− δy

=
1

2
σ2V n

xx(x) + cV n
x (x)− δV n(x)−

∫ ∞

0

[V n(x)− V n(x− z)] dM(z)

−
[
1

2
σ2V n

xx(x− y) + cV n
x (x− y)− δV n(x− y)

−
∫ ∞

0

[V n(x− y)− V n(x− y − z)] dM(z)

]
≤ 0,

where we used that

0 =
1

2
σ2fxx(x− y, 0) + cfx(x− y, 0)− δf(x− y, 0)

−
∫ ∞

0

[f(x− y, 0)− f(x− y − z, 0)] dM(z).

For the last inequality we used that

1

2
σ2V n

xx(v) + cV n
x (v)− δV n(v)−

∫ ∞

0

[V n(v)− V n(v − z)] dM(z)

is a decreasing function in v. See also the argument in the case y = 0 and x > b0. Thus,
(3a) is fulfilled for x ≤ b0 + y. Note that the derivative of the expression considered is∫ ∞

0

[V n
x (x− z)− V n

x (x− y − z)− y] dM(z) ≤ 0,

because V n(v) is concave. This implies that

1

2
σ2fxx(x, y) + cfx(x, y)− δf(x, y)−

∫ ∞

0

(
f(x, y)− f(x− z, y)

)
dM(z)

is decreasing in x.
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Let now y > 0 and b0 + y < x. Then

f(x, y) = f(x− y, 0) + y = f(b0, 0) + y + γ(x− y − b0).

We have fx(x, y) = γ, fy(x, y) = 1− γ and fxx(x, y) = 0. Thus, fx(x, y) + fy(x, y) = 1.
We consider

cγ − δf(x, y)−
∫ ∞

0

[f(x, y)− f(x− z, y)] dM(z).

As proved above, this expression is negative for x = b0 + y because fx(b0, 0) = γ and
fx(b0, 0) = 0. Taking the derivative yields∫ ∞

0

{fx(x− z, y)− γ} dM(z)− δγ.

We see that this expression is decreasing in x. Thus, the expression considered is concave
in x. At x = b0 + y, we obtain∫ ∞

0

{fx(b0 + y − z, y)− γ} dM(z)− δγ.

We claim that the derivative at b0 + y is non-positive. Then concavity will show that
(3a) is fulfilled.

For b> + y < x ≤ b0 + y, note that f(x, y) = f(x− y, 0) + y and, therefore,

fxx(b0 + y, y) = fxx(b0, 0) = 0, fx(b0 + y, y) = fx(b0, 0) = γ

and f(b0, y) = f(b0, 0) + y. We have seen that

1

2
σ2fxx(x, y) + cfx(x, y)− δf(x, y)−

∫ ∞

0

[f(x, y)− f(x− z − y)] dM(z)

is a decreasing function in x. Thus, using that fxx(x, y) ≤ 0, we get

0 ≥ −1

2
σ2 fxx(x, y)

b0 + y − x
+ c

γ − fx(x, y)

b0 + y − x
− δ

f(b0, 0)− f(x− y, 0)

b0 + y − x

+

∫ ∞

0

[
f(b0 + y − z, y)− f(x− z, y)

b0 + y − x
− f(b0, 0)− f(x− y, 0)

b0 + y − x

]
dM(z)

≥ c
γ − fx(x, y)

b0 + y − x
− δ

f(b0, 0)− f(x− y, 0)

b0 + y − x

+

∫ ∞

0

[
f(b0 + y − z, y)− f(x− z, y)

b0 + y − x
− f(b0, 0)− f(x− y, 0)

b0 + y − x

]
dM(z).

Letting x ↑ b0 + y, we obtain

0 ≥
∫ ∞

0

[fx(b0 + y − z, y)− γ] dM(z)− δγ,

which proves the claim.
Finally, we need to show that indeed f(x, y) is concave in x. Suppose that f(x, y) is

not concave. By the construction of the solution, this means that f(x, 0) is not concave.
Let b> < x0 < b0 such that f(x, 0) is concave in (0, x0) and fx(x0, 0) has a minimum on
(0, x0 + ε) for some ε > 0. Then γ < fx(x0, 0) =: γ̃ < 1. The proof above implies that
for x ≤ x0, f(x, y) is the value function of the problem with γ̃ instead of γ. Because less
tax is paid, we have f(b>, 0) > V (b>, 0). On the other hand, by the proof of Theorem 1,
f(x, y) is the value of the strategy with barriers at b> and b0. Note that in this proof
concavity only was used for the value above the barriers. Thus, f(b>, 0) ≤ V (b>, 0).
This is a contradiction, and hence f(x, 0) must be concave on (0, b0). �
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An alternative to solving equation (3) is to use the approach proposed in [2]. For any
barriers b> and b0, the value function can be expressed in terms of scale functions. One
then can find the optimal barriers by maximising the value function.

5. No penalty for injections

Consider now the case η = 1. Then b> = 0. In order for the value function to make
sense, we write ∫ ∞

0

δe−δt(Dc
t − Lc

t) dt

instead of ∫ ∞

0

e−δt dDc
t −

∫ ∞

0

e−δt dLc
t .

As in [13, Example 1], the value function without tax is

V n(0) = δ

∫ ∞

0

E
[
X0

t

]
e−δt dt = x+ μ/δ,

where μ = E[X0
1 − x]. It follows readily that (2) is fulfilled. Thus, we have the initial

condition for the solution V 0(x). If σ > 0, then V n
x (0) = 1 = η by the principle of

smooth fit. The solution V 0(x) can also be found in terms of scale function as in [2].
We are now interested in the question when the second barrier is also at zero. The

same approach as in [12, Prop. 1] gives that the value function with both barriers at zero
becomes

min{x, y}+ γ(x− y)+ + δ−1 E[X0
1 − x]− (1− γ)ρ−1e−ρ(y−x)+ .

By the proof of Theorem 2, we only need to check (3b). That is

0 ≥ cγ − δ
(
γx+ μ/δ − (1− γ)/ρ

)
−
∫ x

0

γz dM(z)

−
∫ ∞

x

[
γx− (1− γ)/ρ+ (1− γ)e−ρ(z−x)/ρ+ (z − x)

]
dM(z)

= −(1− γ)

[
μ+ δ

γ

1− γ
x− δ/ρ+

∫ ∞

x

[
z − x−

(
1− e−ρ(z−x)

)
/ρ

]
dM(z)

]

= −(1− γ)

[
μ+

δγ

1− γ
x− δ/ρ+

∫ ∞

x

(
1− e−ρ(v−x)

)
M

(
(v,∞)

)
dv

]
.

For x = 0, the right-hand side is (1 − γ) 12σ
2ρ. This means that if σ > 0, the barrier

cannot be at zero. Therefore, assume σ = 0. At x = 0, the equation is fulfilled. The
derivative of the right-hand side is

−δγ + (1− γ)ρ

∫ ∞

x

e−ρ(v−x)M
(
(v,∞)

)
dv = −δγ + (1− γ)ρ

∫ ∞

0

e−ρvM
(
(v+ x,∞)

)
dv.

This is decreasing in x. Hence, the considered expression is concave in x. Thus, the (3b)
is fulfilled if the derivative in zero is non-positive. This gives the condition

δγ ≥ (1− γ)

∫ ∞

0

(
1− e−ρz

)
dM(z) = (1− γ)(cρ− δ),

or equivalently δ ≥ ρc(1− γ).
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6. Barriers at zero

A simple strategy is to choose one or both barriers at zero. We can assume that η > 1.
Consider first the problem without tax. Since V n

x (x) = η �= 1 in the case σ > 0, we
conclude that the barrier can only be at zero if σ = 0. Indeed, in any interval an infinite
dividend and capital injection would occur and yield the value −∞. In order that the
barrier b> is at zero, the value of the corresponding strategy V n(x) = x+(c−η(c−μ))/δ
has to fulfil (2). Thus,

0 ≥ c− δx−
(
c− η(c− μ)

)
−
∫ x

0

z dM(z)−
∫ ∞

x

(
x+ η(z − x)

)
dM(z)

= (η − 1)(c− μ)− δx− (η − 1)

∫ ∞

x

M
(
(v,∞)

)
dv.

It follows that the right-hand side is concave. Thus, the required equation is fulfilled if
the derivative at zero is non-positive, that is

(η − 1)M
(
(0,∞)

)
− δ ≤ 0.

We see that this is only the case if δ ≥ (η − 1)M((0,∞)). So necessarily b> = 0 is only
possible if M((0,∞)) is finite, that means for the classical Cramér–Lundberg risk model.
This case is treated in [12].

7. Perturbed risk processes with exponential claims

If dM(x) = λαe−αx dx for some α, λ > 0 and σ2 > 0, then we have to solve the
equation

(5)

1

2
σ2V 0

xx(x) + cV 0
x (x)− (λ+ δ)V 0(x) + λαe−αx

∫ x

0

V (z)eαz dz

+ λe−αx
(
V 0(0)− η/α

)
= 0.

Taking the derivative yields

0 =
1

2
σ2V 0

xxx(x) + cV 0
xx(x)− (λ+ δ)V 0

x (x)

− α

[
λαe−αx

∫ x

0

V (z)eαz dz + λe−αx
(
V 0(0)− η/α

)
− λV 0(x)

]

=
1

2
σ2V 0

xxx(x) +

(
c+

1

2
σ2α

)
V 0
xx(x)− (λ+ δ − αc)V 0

x (x)− αδV 0(x),

where we used (5) to replace the integral. We get V 0(x) = C1e
ρx +C2e

−R1x +C3e
−R2x,

where ρ > 0 > −R1 > −α > −R2. Note that the characteristic polynom can be
written as

1

2
σ2r2 + cr − λ

r

α+ r
− δ = 0.

Using V 0(0) = C1 + C2 + C3, we find from (5) the equation

C1 + C2 + C3 −
η

α
− C1

α

α+ ρ
− C2

α

α−R1
− C3

α

α−R2
= 0.

Together with V 0
x (0) = η and V 0

xx(b>) = 0, that is

C1ρ− C2R1 − C3R2 = η and C1ρ
2eρb> + C2R

2
1e

−R1b> + C3R
2
2e

−R2b> = 0,

we can determine the constant Ck as functions of b>. Then solving numerically the
equation V 0

x (b>) = 1, we find the barrier b>. This yields the constants Ck.
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The solution to the problem with tax becomes

V (x, y) = eρx(C1 − Ce−ρy) + C2e
−R1x + C3e

−R2x.

From Vxx(b0, 0) = 0, that is

C = C1 +
(
C2R

2
1e

−R1b0 + C3R
2
2e

−R2b0
)
ρ−2e−ρb0 ,

the constant C is determined as a function of b0. Solving numerically Vx(b0, 0) = γ yields
the barrier b0. Then, C can be determined.

If, for example, λ = α = 1, c = 1.2, δ = 0.1, η = 1.1, σ2 = 0.05 and γ = 0.8, we find

ρ = 0.247264, R1 = 0.330707, R2 = 48.9166.

The barrier is b> = 0.133638 and the solution to (5) becomes

V 0(x) = 2.28668eρx − 1.313e−R1x − 0.00205183e−R2x.

For the problem with tax we get b0 = 0.719681 and

V (x, y) = (2.28668− 0.737207e−ρy)eρx − 1.313e−R1x − 0.00205183e−R2x.
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