Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Configurations of lines in del Pezzo surfaces with Gosset polytopes
HTML articles powered by AMS MathViewer

by Jae-Hyouk Lee PDF
Trans. Amer. Math. Soc. 366 (2014), 4939-4967 Request permission

Abstract:

In this article, we classify and describe the configuration of the divisor classes of del Pezzo surfaces, which are written as the sum of distinct lines with fixed intersection according to combinatorial data in Gosset polytopes.

We introduce the $k$-Steiner system and cornered simplexes, and characterize the configurations of positive degree $m(\leq 3)$-simplexes with them via monoidal transforms.

Higher dimensional $m\ (4\leq m\leq 7)$-simplexes of $1$-degree exist in $4_{21}$ in the Picard group of del Pezzo surface of degree $1$, and their configurations are nontrivial. The configurations of $4$- and $7$-simplexes are related to rulings in $S_{8}$, and the configurations of $5$- and $6$-simplexes correspond to the skew $3$-lines and skew $7$-lines in $S_{8}$. In particular, the seven lines in a $6$-simplex produce a Fano plane.

References
  • Victor V. Batyrev and Oleg N. Popov, The Cox ring of a del Pezzo surface, Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002) Progr. Math., vol. 226, Birkhäuser Boston, Boston, MA, 2004, pp. 85–103. MR 2029863, DOI 10.1007/978-0-8176-8170-8_{5}
  • J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, 3rd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1999. With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 1662447, DOI 10.1007/978-1-4757-6568-7
  • H. S. M. Coxeter, Regular complex polytopes, 2nd ed., Cambridge University Press, Cambridge, 1991. MR 1119304
  • H. S. M. Coxeter, Regular and semiregular polytopes. II, Math. Z. 188 (1985), no. 4, 559–591. MR 774558, DOI 10.1007/BF01161657
  • H. S. M. Coxeter, Regular and semi-regular polytopes. III, Math. Z. 200 (1988), no. 1, 3–45. MR 972395, DOI 10.1007/BF01161745
  • H. S. M. Coxeter, The polytope $2_{21}$, whose twenty-seven vertices correspond to the lines on the general cubic surface, Amer. J. Math. 62 (1940), 457–486. MR 2180, DOI 10.2307/2371466
  • H. S. M. Coxeter, Integral Cayley numbers, Duke Math. J. 13 (1946), 561–578. MR 19111
  • M. Demazure, Surfaces de Del Pezzo I, II, III, IV, V, in Séminaire sur les singularités des surfaces, edited by M. Demazure, H. Pinkham and B. Teissier, Lecture Notes in Mathematics 777 (Springer–Verlag, 1980).
  • I. V. Dolgachev. Topics in Classical Algebraic Geometry. Part I (2009), http://www.math. lsa.umich.edu/\symbol{126}idolga/lecturenotes.html.
  • Patrick du Val, On the Directrices of a Set of Points in a Plane, Proc. London Math. Soc. (2) 35 (1933), 23–74. MR 1577398, DOI 10.1112/plms/s2-35.1.23
  • Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
  • Jae-Hyouk Lee, Gosset polytopes in Picard groups of del Pezzo surfaces, Canad. J. Math. 64 (2012), no. 1, 123–150. MR 2932172, DOI 10.4153/CJM-2011-063-6
  • N.C. Leung, ADE-bundles over rational surfaces, configuration of lines and rulings, arXiv:math/0009192.
  • N.C. Leung and J.J. Zhang. Moduli of Bundles over Rational Surfaces and Elliptic Curves I: Simply Laced cases, http://www.ims.cuhk.edu.hk/\symbol{126}leung/Conan%20Paper/ Conan%20Paper.html.
  • Yu. I. Manin, Cubic forms, 2nd ed., North-Holland Mathematical Library, vol. 4, North-Holland Publishing Co., Amsterdam, 1986. Algebra, geometry, arithmetic; Translated from the Russian by M. Hazewinkel. MR 833513
  • L. Manivel, Configurations of lines and models of Lie algebras, J. Algebra 304 (2006), no. 1, 457–486. MR 2256401, DOI 10.1016/j.jalgebra.2006.04.029
Similar Articles
Additional Information
  • Jae-Hyouk Lee
  • Affiliation: Department of Mathematics, Ewha Womans University, Seodaemun-Gu Daehyun- dong, Seoul, Korea
  • Email: jaehyoukl@ewha.ac.kr
  • Received by editor(s): April 17, 2012
  • Received by editor(s) in revised form: December 12, 2012, and January 26, 2013
  • Published electronically: January 30, 2014
  • © Copyright 2014 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Trans. Amer. Math. Soc. 366 (2014), 4939-4967
  • MSC (2010): Primary 51M20, 14J26, 14N99, 52B20
  • DOI: https://doi.org/10.1090/S0002-9947-2014-06098-4
  • MathSciNet review: 3217705