Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Local normal forms for geodesically equivalent pseudo-Riemannian metrics
HTML articles powered by AMS MathViewer

by Alexey V. Bolsinov and Vladimir S. Matveev PDF
Trans. Amer. Math. Soc. 367 (2015), 6719-6749 Request permission

Abstract:

Two pseudo-Riemannian metrics $g$ and $\bar g$ are geodesically equivalent if they share the same (unparameterized) geodesics. We give a complete local description of such metrics which solves the natural generalisation of the Beltrami problem for pseudo-Riemannian metrics.
References
  • A. V. Aminova, Pseudo-Riemannian manifolds with general geodesics, Uspekhi Mat. Nauk 48 (1993), no. 2(290), 107–164 (Russian); English transl., Russian Math. Surveys 48 (1993), no. 2, 105–160. MR 1239862, DOI 10.1070/RM1993v048n02ABEH001014
  • A. V. Aminova, Projective transformations of pseudo-Riemannian manifolds, J. Math. Sci. (N.Y.) 113 (2003), no. 3, 367–470. Geometry, 9. MR 1965077, DOI 10.1023/A:1021041802041
  • E. Beltrami, Risoluzione del problema: riportare i punti di una superficie sopra un piano in modo che le linee geodetiche vengano rappresentate da linee rette, Ann. Mat. 1 (1865), no. 7, 185–204.
  • E. Beltrami, Saggio di interpetrazione della geometria non-euclidea, Giornale di matematiche, vol. VI (1868).
  • E. Beltrami, Teoria fondamentale degli spazii di curvatura costante, Annali. di Mat., ser. II 2 (1968), 232–255.
  • Alexey V. Bolsinov and Vladimir S. Matveev, Geometrical interpretation of Benenti systems, J. Geom. Phys. 44 (2003), no. 4, 489–506. MR 1943174, DOI 10.1016/S0393-0440(02)00054-2
  • Alexey V. Bolsinov, Vladimir S. Matveev, and Giuseppe Pucacco, Normal forms for pseudo-Riemannian 2-dimensional metrics whose geodesic flows admit integrals quadratic in momenta, J. Geom. Phys. 59 (2009), no. 7, 1048–1062. MR 2536861, DOI 10.1016/j.geomphys.2009.04.010
  • Alexey V. Bolsinov, Vladimir S. Matveev, G. Pucacco, Dini theorem for pseudo-Riemannian metrics, Math. Ann. 352 (2012), 900–909, arXiv:math/0802.2344.
  • Alexey V. Bolsinov and Vladimir S. Matveev, Splitting and gluing lemmas for geodesically equivalent pseudo-Riemannian metrics, Trans. Amer. Math. Soc. 363 (2011), no. 8, 4081–4107. MR 2792981, DOI 10.1090/S0002-9947-2011-05187-1
  • Alexey V. Bolsinov and Vladimir S. Matveev, Local normal forms for geodesically equivalent pseudo-Riemannian metrics, arXiv:1301.2492.
  • Alexey Bolsinov and Dragomir Tsonev, On a new class of holonomy groups in pseudo-Riemannian geometry, J. Differential Geom. 97 (2014), no. 3, 377–394. MR 3233515
  • Ch. Boubel, On the algebra of parallel endomorphisms of a pseudo-Riemannian metric, to appear in J. Diff. Geom. arXiv:math.DG/1207.6544.
  • Robert L. Bryant, Gianni Manno, and Vladimir S. Matveev, A solution of a problem of Sophus Lie: normal forms of two-dimensional metrics admitting two projective vector fields, Math. Ann. 340 (2008), no. 2, 437–463. MR 2368987, DOI 10.1007/s00208-007-0158-3
  • Robert Bryant, Maciej Dunajski, and Michael Eastwood, Metrisability of two-dimensional projective structures, J. Differential Geom. 83 (2009), no. 3, 465–499. MR 2581355
  • Lennart Carleson, Mergelyan’s theorem on uniform polynomial approximation, Math. Scand. 15 (1964), 167–175. MR 198209, DOI 10.7146/math.scand.a-10741
  • Gaston Darboux, Leçons sur la théorie générale des surfaces. III, IV, Les Grands Classiques Gauthier-Villars. [Gauthier-Villars Great Classics], Éditions Jacques Gabay, Sceaux, 1993 (French). Lignes géodésiques et courbure géodésique. Paramètres différentiels. Déformation des surfaces. [Geodesic lines and geodesic curvature. Differential parameters. Deformation of surfaces]; Déformation infiniment petite et représentation sphérique. [Infinitely small deformation and spherical representation]; Reprint of the 1894 original (III) and the 1896 original (IV); Cours de Géométrie de la Faculté des Sciences. [Course on Geometry of the Faculty of Science]. MR 1365962
  • U. Dini, Sopra un problema che si presenta nella teoria generale delle rappresentazioni geografice di una superficie su un’altra, Ann. di Math., ser. 2, 3 (1869), 269–293.
  • Michael Eastwood and Vladimir Matveev, Metric connections in projective differential geometry, Symmetries and overdetermined systems of partial differential equations, IMA Vol. Math. Appl., vol. 144, Springer, New York, 2008, pp. 339–350. MR 2384718, DOI 10.1007/978-0-387-73831-4_{1}6
  • Luther Pfahler Eisenhart, Non-Riemannian geometry, American Mathematical Society Colloquium Publications, vol. 8, American Mathematical Society, Providence, RI, 1990. Reprint of the 1927 original. MR 1466961, DOI 10.1090/coll/008
  • Luther Pfahler Eisenhart, The geometry of paths and general relativity, Ann. of Math. (2) 24 (1923), no. 4, 367–392. MR 1502647, DOI 10.2307/1967681
  • G. Fubini, Sui gruppi transformazioni geodetiche, Mem. Acc. Torino 53 (1903), 261–313.
  • V. I. Golikov, Geodesic mapping of gravitational fields of general type, Trudy Sem. Vektor. Tenzor. Anal. 12 (1963), 97–129 (Russian). MR 0159670
  • Nicholas J. Higham, Functions of matrices, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008. Theory and computation. MR 2396439, DOI 10.1137/1.9780898717778
  • Volodymyr Kiosak and Vladimir S. Matveev, Complete Einstein metrics are geodesically rigid, Comm. Math. Phys. 289 (2009), no. 1, 383–400. MR 2504854, DOI 10.1007/s00220-008-0719-7
  • G. I. Kručkovič and A. S. Solodovnikov, Constant symmetric tensors in Riemannian spaces, Izv. Vysš. Učebn. Zaved. Matematika 1959 (1959), no. 3 (10), 147–158 (Russian). MR 0133084
  • G. I. Kručkovič, Equations of semireducibility and geodesic correspondence of Lorentz spaces, Trudy Vsecsoyuz. Zaochn. Energet. Inst. 24 (1963), 74–87.
  • J.-L. Lagrange, Sur la construction des cartes géographiques, Novéaux Mémoires de l’Académie des Sciences et Bell-Lettres de Berlin, 1779.
  • Peter Lancaster and Leiba Rodman, Canonical forms for Hermitian matrix pairs under strict equivalence and congruence, SIAM Rev. 47 (2005), no. 3, 407–443. MR 2178635, DOI 10.1137/S003614450444556X
  • David B. Leep and Laura Mann Schueller, Classification of pairs of symmetric and alternating bilinear forms, Exposition. Math. 17 (1999), no. 5, 385–414. MR 1733879
  • T. Levi-Civita, Sulle trasformazioni delle equazioni dinamiche, Ann. di Mat., serie $2^a$, 24 (1896), 255–300.
  • Sophus Lie, Untersuchungen über geodätische Curven, Math. Ann. 20 (1882), no. 3, 357–454 (German). MR 1510173, DOI 10.1007/BF01443601
  • R. Liouville, Sur les invariants de certaines équations différentielles et sur leurs applications, Journal de l’École Polytechnique 59 (1889), 7–76.
  • V. S. Matveev and P. Ĭ. Topalov, Trajectory equivalence and corresponding integrals, Regul. Chaotic Dyn. 3 (1998), no. 2, 30–45 (English, with English and Russian summaries). MR 1693470, DOI 10.1070/rd1998v003n02ABEH000069
  • Vladimir S. Matveev, Hyperbolic manifolds are geodesically rigid, Invent. Math. 151 (2003), no. 3, 579–609. MR 1961339, DOI 10.1007/s00222-002-0263-6
  • Vladimir S. Matveev, On projectively equivalent metrics near points of bifurcation, Topological methods in the theory of integrable systems, Camb. Sci. Publ., Cambridge, 2006, pp. 215–240. MR 2454556
  • Vladimir S. Matveev, Proof of the projective Lichnerowicz-Obata conjecture, J. Differential Geom. 75 (2007), no. 3, 459–502. MR 2301453
  • Vladimir S. Matveev, Geodesically equivalent metrics in general relativity, J. Geom. Phys. 62 (2012), no. 3, 675–691. MR 2876790, DOI 10.1016/j.geomphys.2011.04.019
  • Vladimir S. Matveev, Two-dimensional metrics admitting precisely one projective vector field, Math. Ann. 352 (2012), no. 4, 865–909. MR 2892455, DOI 10.1007/s00208-011-0659-y
  • J. Mikeš, Geodesic mappings of affine-connected and Riemannian spaces, J. Math. Sci. 78 (1996), no. 3, 311–333. Geometry, 2. MR 1384327, DOI 10.1007/BF02365193
  • P. Painlevé, Sur les intégrale quadratiques des équations de la Dynamique, Compt. Rend. 124 (1897), 221–224.
  • A. Z. Petrov, Geodesic mappings of Riemannian spaces of an indefinite metric (Russian), Uchen. Zap. Kazan. Univ. 109 (1949), no. 3, 7–36.
  • N. S. Sinjukov, Geodezicheskie otobrazheniya rimanovykh prostranstv, “Nauka”, Moscow, 1979 (Russian). MR 552022
  • A. S. Solodovnikov, Projective transformations of Riemannian spaces, Uspehi Mat. Nauk (N.S.) 11 (1956), no. 4(70), 45–116 (Russian). MR 0084826
  • Peter Topalov, Geodesic compatibility and integrability of geodesic flows, J. Math. Phys. 44 (2003), no. 2, 913–929. MR 1953103, DOI 10.1063/1.1526939
  • T. Y. Thomas, On the projective theory of two dimensional Riemann spaces, Proc. Nat. Acad. Sci. U.S.A. 31 (1945), 259–261. MR 12520, DOI 10.1073/pnas.31.8.259
  • Oswald Veblen and Tracy Yerkes Thomas, The geometry of paths, Trans. Amer. Math. Soc. 25 (1923), no. 4, 551–608. MR 1501260, DOI 10.1090/S0002-9947-1923-1501260-2
  • Oswald Veblen and Joseph Miller Thomas, Projective invariants of affine geometry of paths, Ann. of Math. (2) 27 (1926), no. 3, 279–296. MR 1502733, DOI 10.2307/1967848
  • H. Weyl, Zur Infinitisimalgeometrie: Einordnung der projektiven und der konformen Auffasung, Nachrichten von der K. Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1921; “Selecta Hermann Weyl”, Birkhäuser Verlag, Basel und Stuttgart, 1956.
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 53B30, 53C50
  • Retrieve articles in all journals with MSC (2010): 53B30, 53C50
Additional Information
  • Alexey V. Bolsinov
  • Affiliation: School of Mathematics, Loughborough University, Loughborough, LE11 3TU, United Kingdom
  • MR Author ID: 248231
  • Email: A.Bolsinov@lboro.ac.uk
  • Vladimir S. Matveev
  • Affiliation: Institute of Mathematics, Friedrich-Schiller University Jena, 07737, Jena, Germany
  • MR Author ID: 609466
  • Email: vladimir.s.matveev@gmail.com
  • Received by editor(s): January 22, 2013
  • Received by editor(s) in revised form: October 25, 2013, and February 28, 2014
  • Published electronically: December 10, 2014
  • Additional Notes: The first author was partially supported by Ministry of Education and Science of the Russian Federation (14.B37.21.1935)
    The second author was partially supported by DFG (GK 1523) and DAAD (Programm Ostpartnerschaft)
  • © Copyright 2014 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 367 (2015), 6719-6749
  • MSC (2010): Primary 53B30; Secondary 53C50
  • DOI: https://doi.org/10.1090/S0002-9947-2014-06416-7
  • MathSciNet review: 3356952