Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Krull-Gabriel dimension of domestic string algebras


Authors: Rosanna Laking, Mike Prest and Gena Puninski
Journal: Trans. Amer. Math. Soc.
MSC (2010): Primary 16G20, 16G60, 03C60
DOI: https://doi.org/10.1090/tran/7093
Published electronically: December 26, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We calculate the Krull-Gabriel dimension of the category of modules over any domestic string algebra, in particular showing that it is finite, thus confirming a conjecture of Schröer. We also compute the Cantor-Bendixson rank of each point of its Ziegler spectrum and determine the topology on this space.


References [Enhancements On Off] (What's this?)

  • [1] K. Burke, Some model-theoretic properties of functor categories for modules, Doctoral Thesis, University of Manchester, 1994.
  • [2] Kevin Burke and Mike Prest, The Ziegler and Zariski spectra of some domestic string algebras, Algebr. Represent. Theory 5 (2002), no. 3, 211-234. MR 1921759, https://doi.org/10.1023/A:1016581927685
  • [3] M. C. R. Butler and Claus Michael Ringel, Auslander-Reiten sequences with few middle terms and applications to string algebras, Comm. Algebra 15 (1987), no. 1-2, 145-179. MR 876976, https://doi.org/10.1080/00927878708823416
  • [4] W. W. Crawley-Boevey, Maps between representations of zero-relation algebras, J. Algebra 126 (1989), no. 2, 259-263. MR 1024991, https://doi.org/10.1016/0021-8693(89)90304-9
  • [5] William Crawley-Boevey, Infinite-dimensional modules in the representation theory of finite-dimensional algebras, Algebras and modules, I (Trondheim, 1996) CMS Conf. Proc., vol. 23, Amer. Math. Soc., Providence, RI, 1998, pp. 29-54. MR 1648602
  • [6] S. Garavaglia, Dimension and rank in the model theory of modules, preprint, University of Michigan, 1979, revised 1980.
  • [7] Werner Geigle, The Krull-Gabriel dimension of the representation theory of a tame hereditary Artin algebra and applications to the structure of exact sequences, Manuscripta Math. 54 (1985), no. 1-2, 83-106. MR 808682, https://doi.org/10.1007/BF01171701
  • [8] Werner Geigle, Krull dimension and Artin algebras, Representation theory, I (Ottawa, Ont., 1984) Lecture Notes in Math., vol. 1177, Springer, Berlin, 1986, pp. 135-155. MR 842464, https://doi.org/10.1007/BFb0075263
  • [9] R. Harland, Pure-injective modules over tubular algebras and string algebras, Doctoral Thesis, University of Manchester, 2011, available at www.maths.manchester.ac.uk/~mprest/publications.html
  • [10] Richard Harland and Mike Prest, Modules with irrational slope over tubular algebras, Proc. Lond. Math. Soc. (3) 110 (2015), no. 3, 695-720. MR 3342102, https://doi.org/10.1112/plms/pdu068
  • [11] Ivo Herzog, The endomorphism ring of a localized coherent functor, J. Algebra 191 (1997), no. 1, 416-426. MR 1444506, https://doi.org/10.1006/jabr.1997.6920
  • [12] Henning Krause, Maps between tree and band modules, J. Algebra 137 (1991), no. 1, 186-194. MR 1090218, https://doi.org/10.1016/0021-8693(91)90088-P
  • [13] Henning Krause, Generic modules over Artin algebras, Proc. London Math. Soc. (3) 76 (1998), no. 2, 276-306. MR 1490239, https://doi.org/10.1112/S0024611598000094
  • [14] Henning Krause, The spectrum of a module category, Mem. Amer. Math. Soc. 149 (2001), no. 707, x+125. MR 1803703
  • [15] Mike Prest, Model theory and modules, London Mathematical Society Lecture Note Series, vol. 130, Cambridge University Press, Cambridge, 1988. MR 933092
  • [16] Mike Prest, Representation embeddings and the Ziegler spectrum, J. Pure Appl. Algebra 113 (1996), no. 3, 315-323. MR 1417396, https://doi.org/10.1016/0022-4049(95)00155-7
  • [17] Mike Prest, Morphisms between finitely presented modules and infinite-dimensional representations, Algebras and modules, II (Geiranger, 1996) CMS Conf. Proc., vol. 24, Amer. Math. Soc., Providence, RI, 1998, pp. 447-455. MR 1648645
  • [18] Mike Prest, Ziegler spectra of tame hereditary algebras, J. Algebra 207 (1998), no. 1, 146-164. MR 1643078, https://doi.org/10.1006/jabr.1998.7472
  • [19] Mike Prest, Purity, spectra and localisation, Encyclopedia of Mathematics and its Applications, vol. 121, Cambridge University Press, Cambridge, 2009. MR 2530988
  • [20] Mike Prest and Gena Puninski, One-directed indecomposable pure injective modules over string algebras, Colloq. Math. 101 (2004), no. 1, 89-112. MR 2106184, https://doi.org/10.4064/cm101-1-6
  • [21] Gena Puninski, Band combinatorics of domestic string algebras, Colloq. Math. 108 (2007), no. 2, 285-296. MR 2291639, https://doi.org/10.4064/cm108-2-10
  • [22] Gena Puninski, Krull-Gabriel dimension and Cantor-Bendixson rank of 1-domestic string algebras, Colloq. Math. 127 (2012), no. 2, 185-211. MR 2968961, https://doi.org/10.4064/cm127-2-4
  • [23] Gena Puninski and Mike Prest, Ringel's conjecture for domestic string algebras, Math. Z. 282 (2016), no. 1-2, 61-77. MR 3448374, https://doi.org/10.1007/s00209-015-1532-6
  • [24] Claus Michael Ringel, Some algebraically compact modules. I, Abelian groups and modules (Padova, 1994) Math. Appl., vol. 343, Kluwer Acad. Publ., Dordrecht, 1995, pp. 419-439. MR 1378216
  • [25] Claus Michael Ringel, The Ziegler spectrum of a tame hereditary algebra, Colloq. Math. 76 (1998), no. 1, 105-115. MR 1611289
  • [26] J. Schröer, Hammocks for string algebras, PhD Thesis, Sonderforschungsbereich 343, Ergänzungreihe 97-010, Universität Bielefeld, 1997.
  • [27] Jan Schröer, On the Krull-Gabriel dimension of an algebra, Math. Z. 233 (2000), no. 2, 287-303. MR 1743438, https://doi.org/10.1007/PL00004799
  • [28] Jan Schröer, On the infinite radical of a module category, Proc. London Math. Soc. (3) 81 (2000), no. 3, 651-674. MR 1781151, https://doi.org/10.1112/S0024611500012600
  • [29] Jan Schröer, The Krull-Gabriel dimension of an algebra--open problems and conjectures, Infinite length modules (Bielefeld, 1998) Trends Math., Birkhäuser, Basel, 2000, pp. 419-424. MR 1789229
  • [30] Martin Ziegler, Model theory of modules, Ann. Pure Appl. Logic 26 (1984), no. 2, 149-213. MR 739577, https://doi.org/10.1016/0168-0072(84)90014-9

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 16G20, 16G60, 03C60

Retrieve articles in all journals with MSC (2010): 16G20, 16G60, 03C60


Additional Information

Rosanna Laking
Affiliation: School of Mathematics, Alan Turing Building, University of Manchester, Manchester M13 9PL, United Kingdom
Address at time of publication: Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany
Email: rlaking@mpim-bonn.mpg.de

Mike Prest
Affiliation: School of Mathematics, Alan Turing Building, University of Manchester, Manchester M13 9PL, United Kingdom
Email: mprest@manchester.ac.uk

Gena Puninski
Affiliation: Department of Mechanics and Mathematics, Belarusian State University, Praspekt Nezalezhnosti 4, Minsk 220030, Belarus

DOI: https://doi.org/10.1090/tran/7093
Keywords: Domestic string algebra, Krull--Gabriel dimension, Cantor--Bendixson rank, m-dimension, Ziegler spectrum, pure-injective module, transfinite radical, pointed module, pp formula
Received by editor(s): May 19, 2016
Received by editor(s) in revised form: September 27, 2016
Published electronically: December 26, 2017
Additional Notes: This paper was started during a visit of the third author to the University of Manchester, supported by EPSRC grant EP/K022490/1, and was completed during a visit of the second author to the Belarusian State University. The authors thank both universities and EPSRC for their support
Dedicated: Gena Puninski died on April 29, 2017. The other two authors dedicate this paper to his memory
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society