Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

The irreducible modules and fusion rules for the parafermion vertex operator algebras


Authors: Chunrui Ai, Chongying Dong, Xiangyu Jiao and Li Ren
Journal: Trans. Amer. Math. Soc.
MSC (2010): Primary 17B69
DOI: https://doi.org/10.1090/tran/7302
Published electronically: November 14, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The irreducible modules for the parafermion vertex operator algebra associated to any finite dimensional Lie algebra $ \mathfrak{g}$ and any positive integer $ k$ are classified, the quantum dimensions are computed and the fusion rules are determined.


References [Enhancements On Off] (What's this?)

  • [1] Toshiyuki Abe, Geoffrey Buhl, and Chongying Dong, Rationality, regularity, and $ C_2$-cofiniteness, Trans. Amer. Math. Soc. 356 (2004), no. 8, 3391-3402. MR 2052955, https://doi.org/10.1090/S0002-9947-03-03413-5
  • [2] Toshiyuki Abe, Chongying Dong, and Haisheng Li, Fusion rules for the vertex operator algebra $ M(1)$ and $ V^+_L$, Comm. Math. Phys. 253 (2005), no. 1, 171-219. MR 2105641, https://doi.org/10.1007/s00220-004-1132-5
  • [3] Tomoyuki Arakawa, Ching Hung Lam, and Hiromichi Yamada, Zhu's algebra, $ C_2$-algebra and $ C_2$-cofiniteness of parafermion vertex operator algebras, Adv. Math. 264 (2014), 261-295. MR 3250285, https://doi.org/10.1016/j.aim.2014.07.021
  • [4] T. Arakawa, C. H. Lam, and H. Yamada, Parafermion vertex operator algebras and W-algebras, arXiv:1701.06229.
  • [5] Bojko Bakalov and Alexander Kirillov Jr., Lectures on tensor categories and modular functors, University Lecture Series, vol. 21, American Mathematical Society, Providence, RI, 2001. MR 1797619
  • [6] Richard E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), no. 10, 3068-3071. MR 843307, https://doi.org/10.1073/pnas.83.10.3068
  • [7] S. Carnahan and M. Miyamoto, Regularity of fixed-point vertex operator subalgebras, arXiv:1603.05645.
  • [8] Hsian-Yang Chen and Ching Hung Lam, Quantum dimensions and fusion rules of the VOA $ V^\tau_{L_{\mathcal C\times\mathcal D}}$, J. Algebra 459 (2016), 309-349. MR 3503976, https://doi.org/10.1016/j.jalgebra.2016.03.038
  • [9] R. Coquereaux, Global dimensions for Lie groups at level $ k$ and their conformally exceptional quantum subgroups, Rev. Un. Mat. Argentina 51 (2010), no. 2, 17-42. MR 2840162
  • [10] Alexei Davydov, Michael Müger, Dmitri Nikshych, and Victor Ostrik, The Witt group of non-degenerate braided fusion categories, J. Reine Angew. Math. 677 (2013), 135-177. MR 3039775
  • [11] Chongying Dong, Vertex algebras associated with even lattices, J. Algebra 161 (1993), no. 1, 245-265. MR 1245855, https://doi.org/10.1006/jabr.1993.1217
  • [12] Chongying Dong, Xiangyu Jiao, and Feng Xu, Quantum dimensions and quantum Galois theory, Trans. Amer. Math. Soc. 365 (2013), no. 12, 6441-6469. MR 3105758, https://doi.org/10.1090/S0002-9947-2013-05863-1
  • [13] Chongying Dong, Ching Hung Lam, and Hiromichi Yamada, $ W$-algebras related to parafermion algebras, J. Algebra 322 (2009), no. 7, 2366-2403. MR 2553685, https://doi.org/10.1016/j.jalgebra.2009.03.034
  • [14] Chongying Dong, Ching Hung Lam, Qing Wang, and Hiromichi Yamada, The structure of parafermion vertex operator algebras, J. Algebra 323 (2010), no. 2, 371-381. MR 2564844, https://doi.org/10.1016/j.jalgebra.2009.08.003
  • [15] Chongying Dong and James Lepowsky, Generalized vertex algebras and relative vertex operators, Progress in Mathematics, vol. 112, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1233387
  • [16] Chongying Dong, Haisheng Li, and Geoffrey Mason, Compact automorphism groups of vertex operator algebras, Internat. Math. Res. Notices 18 (1996), 913-921. MR 1420556, https://doi.org/10.1155/S1073792896000566
  • [17] Chongying Dong, Haisheng Li, and Geoffrey Mason, Regularity of rational vertex operator algebras, Adv. Math. 132 (1997), no. 1, 148-166. MR 1488241, https://doi.org/10.1006/aima.1997.1681
  • [18] Chongying Dong, Haisheng Li, and Geoffrey Mason, Twisted representations of vertex operator algebras, Math. Ann. 310 (1998), no. 3, 571-600. MR 1615132, https://doi.org/10.1007/s002080050161
  • [19] Chongying Dong, Haisheng Li, and Geoffrey Mason, Modular-invariance of trace functions in orbifold theory and generalized Moonshine, Comm. Math. Phys. 214 (2000), no. 1, 1-56. MR 1794264, https://doi.org/10.1007/s002200000242
  • [20] Chongying Dong, Haisheng Li, and Geoffrey Mason, Vertex operator algebras and associative algebras, J. Algebra 206 (1998), no. 1, 67-96. MR 1637252, https://doi.org/10.1006/jabr.1998.7425
  • [21] Chongying Dong, Haisheng Li, and Geoffrey Mason, Twisted representations of vertex operator algebras and associative algebras, Internat. Math. Res. Notices 8 (1998), 389-397. MR 1628239, https://doi.org/10.1155/S1073792898000269
  • [22] C. Dong, H. Li, G. Mason, and P. S. Montague, The radical of a vertex operator algebra, The Monster and Lie algebras (Columbus, OH, 1996) Ohio State Univ. Math. Res. Inst. Publ., vol. 7, de Gruyter, Berlin, 1998, pp. 17-25. MR 1650625
  • [23] Chongying Dong, Xingjun Lin, and Siu-Hung Ng, Congruence property in conformal field theory, Algebra Number Theory 9 (2015), no. 9, 2121-2166. MR 3435813, https://doi.org/10.2140/ant.2015.9.2121
  • [24] Chongying Dong and Geoffrey Mason, On quantum Galois theory, Duke Math. J. 86 (1997), no. 2, 305-321. MR 1430435, https://doi.org/10.1215/S0012-7094-97-08609-9
  • [25] Chongying Dong and Li Ren, Representations of the parafermion vertex operator algebras, Adv. Math. 315 (2017), 88-101. MR 3667581, https://doi.org/10.1016/j.aim.2017.05.016
  • [26] Chongying Dong, Li Ren, and Feng Xu, On orbifold theory, Adv. Math. 321 (2017), 1-30. MR 3715704
  • [27] Chongying Dong and Qing Wang, The structure of parafermion vertex operator algebras: general case, Comm. Math. Phys. 299 (2010), no. 3, 783-792. MR 2718932, https://doi.org/10.1007/s00220-010-1114-8
  • [28] Chongying Dong and Qing Wang, On $ C_2$-cofiniteness of parafermion vertex operator algebras, J. Algebra 328 (2011), 420-431. MR 2745574, https://doi.org/10.1016/j.jalgebra.2010.10.015
  • [29] Chongying Dong and Qing Wang, Parafermion vertex operator algebras, Front. Math. China 6 (2011), no. 4, 567-579. MR 2819965, https://doi.org/10.1007/s11464-011-0138-5
  • [30] Chongying Dong and Qing Wang, Quantum dimensions and fusion rules for parafermion vertex operator algebras, Proc. Amer. Math. Soc. 144 (2016), no. 4, 1483-1492. MR 3451226, https://doi.org/10.1090/proc/12838
  • [31] Pavel Etingof, Dmitri Nikshych, and Viktor Ostrik, On fusion categories, Ann. of Math. (2) 162 (2005), no. 2, 581-642. MR 2183279, https://doi.org/10.4007/annals.2005.162.581
  • [32] Igor B. Frenkel, Yi-Zhi Huang, and James Lepowsky, On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc. 104 (1993), no. 494, viii+64. MR 1142494, https://doi.org/10.1090/memo/0494
  • [33] Igor Frenkel, James Lepowsky, and Arne Meurman, Vertex operator algebras and the Monster, Pure and Applied Mathematics, vol. 134, Academic Press, Inc., Boston, MA, 1988. MR 996026
  • [34] Igor B. Frenkel and Yongchang Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J. 66 (1992), no. 1, 123-168. MR 1159433, https://doi.org/10.1215/S0012-7094-92-06604-X
  • [35] Yi-Zhi Huang, A theory of tensor products for module categories for a vertex operator algebra. IV, J. Pure Appl. Algebra 100 (1995), no. 1-3, 173-216. MR 1344849, https://doi.org/10.1016/0022-4049(95)00050-7
  • [36] Yi-Zhi Huang, Vertex operator algebras and the Verlinde conjecture, Commun. Contemp. Math. 10 (2008), no. 1, 103-154. MR 2387861, https://doi.org/10.1142/S0219199708002727
  • [37] Yi-Zhi Huang, Rigidity and modularity of vertex tensor categories, Commun. Contemp. Math. 10 (2008), no. suppl. 1, 871-911. MR 2468370, https://doi.org/10.1142/S0219199708003083
  • [38] Yi-Zhi Huang, Alexander Kirillov Jr., and James Lepowsky, Braided tensor categories and extensions of vertex operator algebras, Comm. Math. Phys. 337 (2015), no. 3, 1143-1159. MR 3339173, https://doi.org/10.1007/s00220-015-2292-1
  • [39] Y.-Z. Huang and J. Lepowsky, A theory of tensor products for module categories for a vertex operator algebra. I, II, Selecta Math. (N.S.) 1 (1995), no. 4, 699-756, 757-786. MR 1383584, https://doi.org/10.1007/BF01587908
  • [40] Y.-Z. Huang and J. Lepowsky, A theory of tensor products for module categories for a vertex operator algebra. I, II, Selecta Math. (N.S.) 1 (1995), no. 4, 699-756, 757-786. MR 1383584, https://doi.org/10.1007/BF01587908
  • [41] Yi-Zhi Huang and James Lepowsky, A theory of tensor products for module categories for a vertex operator algebra. III, J. Pure Appl. Algebra 100 (1995), no. 1-3, 141-171. MR 1344848, https://doi.org/10.1016/0022-4049(95)00049-3
  • [42] James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, vol. 9, Springer-Verlag, New York-Berlin, 1978. Second printing, revised. MR 499562
  • [43] Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219
  • [44] Alexander Kirillov Jr. and Viktor Ostrik, On a $ q$-analogue of the McKay correspondence and the ADE classification of $ \mathfrak{sl}_2$ conformal field theories, Adv. Math. 171 (2002), no. 2, 183-227. MR 1936496, https://doi.org/10.1006/aima.2002.2072
  • [45] Matthew Krauel and Masahiko Miyamoto, A modular invariance property of multivariable trace functions for regular vertex operator algebras, J. Algebra 444 (2015), 124-142. MR 3406171, https://doi.org/10.1016/j.jalgebra.2015.07.013
  • [46] James Lepowsky and Haisheng Li, Introduction to vertex operator algebras and their representations, Progress in Mathematics, vol. 227, Birkhäuser Boston, Inc., Boston, MA, 2004. MR 2023933
  • [47] James Lepowsky and Mirko Primc, Structure of the standard modules for the affine Lie algebra $ A^{(1)}_1$, Contemporary Mathematics, vol. 46, American Mathematical Society, Providence, RI, 1985. MR 814303
  • [48] James Lepowsky and Robert Lee Wilson, A new family of algebras underlying the Rogers-Ramanujan identities and generalizations, Proc. Nat. Acad. Sci. U.S.A. 78 (1981), no. 12, 7254-7258. MR 638674
  • [49] James Lepowsky and Robert Lee Wilson, The structure of standard modules. I. Universal algebras and the Rogers-Ramanujan identities, Invent. Math. 77 (1984), no. 2, 199-290. MR 752821, https://doi.org/10.1007/BF01388447
  • [50] Hai-Sheng Li, Local systems of twisted vertex operators, vertex operator superalgebras and twisted modules, Moonshine, the Monster, and related topics (South Hadley, MA, 1994) Contemp. Math., vol. 193, Amer. Math. Soc., Providence, RI, 1996, pp. 203-236. MR 1372724, https://doi.org/10.1090/conm/193/02373
  • [51] Haisheng Li, The physics superselection principle in vertex operator algebra theory, J. Algebra 196 (1997), no. 2, 436-457. MR 1475118, https://doi.org/10.1006/jabr.1997.7126
  • [52] Haisheng Li, Certain extensions of vertex operator algebras of affine type, Comm. Math. Phys. 217 (2001), no. 3, 653-696. MR 1822111, https://doi.org/10.1007/s002200100386
  • [53] Xingjun Lin, Mirror extensions of rational vertex operator algebras, Trans. Amer. Math. Soc. 369 (2017), no. 6, 3821-3840. MR 3624394, https://doi.org/10.1090/tran/6749
  • [54] Masahiko Miyamoto, $ C_2$-cofiniteness of cyclic-orbifold models, Comm. Math. Phys. 335 (2015), no. 3, 1279-1286. MR 3320313, https://doi.org/10.1007/s00220-014-2252-1
  • [55] Victor Ostrik, Module categories, weak Hopf algebras and modular invariants, Transform. Groups 8 (2003), no. 2, 177-206. MR 1976459, https://doi.org/10.1007/s00031-003-0515-6
  • [56] A. B. Zamolodchikov and V. A. Fateev, Nonlocal (parafermion) currents in two-dimensional conformal quantum field theory and self-dual critical points in $ Z_N$-symmetric statistical systems, Zh. Èksper. Teoret. Fiz. 89 (1985), no. 2, 380-399 (Russian); English transl., Soviet Phys. JETP 62 (1985), no. 2, 215-225 (1986). MR 830910
  • [57] Yongchang Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996), no. 1, 237-302. MR 1317233, https://doi.org/10.1090/S0894-0347-96-00182-8

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 17B69

Retrieve articles in all journals with MSC (2010): 17B69


Additional Information

Chunrui Ai
Affiliation: School of Mathematics, Sichuan University, Chengdu 610064, People’s Republic of China–and–School of Mathematics and Statistics, Zhengzhou University, Henan 450001, People’s Republic of China
Email: aichunrui0908@126.com

Chongying Dong
Affiliation: Department of Mathematics, University of California, Santa Cruz, California 95064
Email: dong@ucsc.edu

Xiangyu Jiao
Affiliation: Department of Mathematics, East China Normal University, Shanghai 200241, People’s Republic of China
Email: xyjiao@math.ecnu.edu.cn

Li Ren
Affiliation: School of Mathematics, Sichuan University, Chengdu 610064, People’s Republic of China
Email: renl@scu.edu.cn

DOI: https://doi.org/10.1090/tran/7302
Received by editor(s): November 1, 2016
Received by editor(s) in revised form: March 30, 2017
Published electronically: November 14, 2017
Additional Notes: The first author was supported by National Science Foundation for Postdoctoral Science of China (No. 2017M612409)
The second author was supported by NSF grant DMS-1404741 and China NSF grant 11371261
The third author was partially supported by China NSF grants 11401213 and Natural Science Foundation of Shanghai 13DZ2260400
The fourth author was supported by China NSF grants 11301356 and 11671277
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society