Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Combinatorial extension of stable branching rules for classical groups


Author: Jae-Hoon Kwon
Journal: Trans. Amer. Math. Soc.
MSC (2010): Primary 17B37, 22E46, 05E10
DOI: https://doi.org/10.1090/tran/7104
Published electronically: February 1, 2018
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give new combinatorial formulas for decomposition of the tensor product of integrable highest weight modules over the classical Lie algebras of types $ B, C, D$, and the branching decomposition of an integrable highest weight module with respect to a maximal Levi subalgebra of type $ A$. This formula is based on a combinatorial model of classical crystals called spinor model. We show that our formulas extend in a bijective way various stable branching rules for classical groups to arbitrary highest weights, including the Littlewood restriction rules.


References [Enhancements On Off] (What's this?)

  • [1] Arkady Berenstein and Andrei Zelevinsky, Tensor product multiplicities and convex polytopes in partition space, J. Geom. Phys. 5 (1988), no. 3, 453-472. MR 1048510, https://doi.org/10.1016/0393-0440(88)90033-2
  • [2] Arkady Berenstein and Andrei Zelevinsky, Tensor product multiplicities, canonical bases and totally positive varieties, Invent. Math. 143 (2001), no. 1, 77-128. MR 1802793, https://doi.org/10.1007/s002220000102
  • [3] Shun-Jen Cheng and Jae-Hoon Kwon, Howe duality and Kostant homology formula for infinite-dimensional Lie superalgebras, Int. Math. Res. Not. IMRN , posted on (2008), Art. ID rnn 085, 52 pp.. MR 2439556, https://doi.org/10.1093/imrn/rnn085
  • [4] Shun-Jen Cheng, Jae-Hoon Kwon, and Weiqiang Wang, Kostant homology formulas for oscillator modules of Lie superalgebras, Adv. Math. 224 (2010), no. 4, 1548-1588. MR 2646304, https://doi.org/10.1016/j.aim.2010.01.002
  • [5] Shun-Jen Cheng, Ngau Lam, and Weiqiang Wang, Super duality and irreducible characters of ortho-symplectic Lie superalgebras, Invent. Math. 183 (2011), no. 1, 189-224. MR 2755062, https://doi.org/10.1007/s00222-010-0277-4
  • [6] Elizabeth Dan-Cohen, Ivan Penkov, and Vera Serganova, A Koszul category of representations of finitary Lie algebras, Adv. Math. 289 (2016), 250-278. MR 3439686, https://doi.org/10.1016/j.aim.2015.10.023
  • [7] Thomas J. Enright and Jeb F. Willenbring, Hilbert series, Howe duality and branching for classical groups, Ann. of Math. (2) 159 (2004), no. 1, 337-375. MR 2052357, https://doi.org/10.4007/annals.2004.159.337
  • [8] Roe Goodman and Nolan R. Wallach, Representations and invariants of the classical groups, Encyclopedia of Mathematics and its Applications, vol. 68, Cambridge University Press, Cambridge, 1998. MR 1606831
  • [9] Jin Hong and Seok-Jin Kang, Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, vol. 42, American Mathematical Society, Providence, RI, 2002. MR 1881971
  • [10] Takahiro Hayashi, $ q$-analogues of Clifford and Weyl algebras--spinor and oscillator representations of quantum enveloping algebras, Comm. Math. Phys. 127 (1990), no. 1, 129-144. MR 1036118
  • [11] Roger Howe, Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 (1989), no. 2, 539-570. MR 986027, https://doi.org/10.2307/2001418
  • [12] Roger Howe, Eng-Chye Tan, and Jeb F. Willenbring, Stable branching rules for classical symmetric pairs, Trans. Amer. Math. Soc. 357 (2005), no. 4, 1601-1626. MR 2115378, https://doi.org/10.1090/S0002-9947-04-03722-5
  • [13] William Fulton, Young tableaux, With applications to representation theory and geometry. London Mathematical Society Student Texts, vol. 35, Cambridge University Press, Cambridge, 1997. MR 1464693
  • [14] Kyeonghoon Jeong, Crystal bases for Kac-Moody superalgebras, J. Algebra 237 (2001), no. 2, 562-590. MR 1816704, https://doi.org/10.1006/jabr.2000.8590
  • [15] Victor Kac, Lie superalgebras, Advances in Math. 26 (1977), no. 1, 8-96. MR 0486011, https://doi.org/10.1016/0001-8708(77)90017-2
  • [16] Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219
  • [17] Joel Kamnitzer, The crystal structure on the set of Mirković-Vilonen polytopes, Adv. Math. 215 (2007), no. 1, 66-93. MR 2354986, https://doi.org/10.1016/j.aim.2007.03.012
  • [18] Masaki Kashiwara, On crystal bases of the $ Q$-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no. 2, 465-516. MR 1115118, https://doi.org/10.1215/S0012-7094-91-06321-0
  • [19] Masaki Kashiwara, On crystal bases, Representations of groups (Banff, AB, 1994) CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp. 155-197. MR 1357199
  • [20] Masaki Kashiwara and Toshiki Nakashima, Crystal graphs for representations of the $ q$-analogue of classical Lie algebras, J. Algebra 165 (1994), no. 2, 295-345. MR 1273277, https://doi.org/10.1006/jabr.1994.1114
  • [21] Ronald King, Modification rules and products of irreducible representations of the unitary, orthogonal, and symplectic groups, J. Mathematical Phys. 12 (1971), 1588-1598. MR 0287816, https://doi.org/10.1063/1.1665778
  • [22] Kazuhiko Koike, On the decomposition of tensor products of the representations of the classical groups: by means of the universal characters, Adv. Math. 74 (1989), no. 1, 57-86. MR 991410, https://doi.org/10.1016/0001-8708(89)90004-2
  • [23] Kazuhiko Koike and Itaru Terada, Young-diagrammatic methods for the representation theory of the classical groups of type $ B_n,\;C_n,\;D_n$, J. Algebra 107 (1987), no. 2, 466-511. MR 885807, https://doi.org/10.1016/0021-8693(87)90099-8
  • [24] Kazuhiko Koike and Itaru Terada, Young diagrammatic methods for the restriction of representations of complex classical Lie groups to reductive subgroups of maximal rank, Adv. Math. 79 (1990), no. 1, 104-135. MR 1031827, https://doi.org/10.1016/0001-8708(90)90059-V
  • [25] Jae-Hoon Kwon, Littlewood identity and crystal bases, Adv. Math. 230 (2012), no. 2, 699-745. MR 2914963, https://doi.org/10.1016/j.aim.2012.02.010
  • [26] Jae-Hoon Kwon, Super duality and crystal bases for quantum ortho-symplectic superalgebras, Int. Math. Res. Not. IMRN 23 (2015), 12620-12677. MR 3431632, https://doi.org/10.1093/imrn/rnv076
  • [27] Jae-Hoon Kwon, Super duality and crystal bases for quantum ortho-symplectic superalgebras II, J. Algebraic Combin. 43 (2016), no. 3, 553-588. MR 3482440, https://doi.org/10.1007/s10801-015-0646-6
  • [28] Cédric Lecouvey, Quantization of branching coefficients for classical Lie groups, J. Algebra 308 (2007), no. 1, 383-413. MR 2290928, https://doi.org/10.1016/j.jalgebra.2006.08.028
  • [29] Cédric Lecouvey, Crystal bases and combinatorics of infinite rank quantum groups, Trans. Amer. Math. Soc. 361 (2009), no. 1, 297-329. MR 2439408, https://doi.org/10.1090/S0002-9947-08-04480-2
  • [30] Cédric Lecouvey, Masato Okado, and Mark Shimozono, Affine crystals, one-dimensional sums and parabolic Lusztig $ q$-analogues, Math. Z. 271 (2012), no. 3-4, 819-865. MR 2945586, https://doi.org/10.1007/s00209-011-0892-9
  • [31] Peter Littelmann, Paths and root operators in representation theory, Ann. of Math. (2) 142 (1995), no. 3, 499-525. MR 1356780, https://doi.org/10.2307/2118553
  • [32] Dudley E. Littlewood, On invariant theory under restricted groups, Philos. Trans. Roy. Soc. London. Ser. A. 239 (1944), 387-417. MR 0012299, https://doi.org/10.1098/rsta.1944.0003
  • [33] Dudley E. Littlewood, Theory of Group Characters, Clarendon Press, Oxford, 1945.
  • [34] Ian G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., with contributions by A. Zelevinsky, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. MR 1354144
  • [35] Toshiki Nakashima, Crystal base and a generalization of the Littlewood-Richardson rule for the classical Lie algebras, Comm. Math. Phys. 154 (1993), no. 2, 215-243. MR 1224078
  • [36] Martin J. Newell, Modification rules for the orthogonal and symplectic groups, Proc. Roy. Irish Acad. Sect. A. 54 (1951), 153-163. MR 0043093
  • [37] Ivan Penkov and Konstantin Styrkas, Tensor representations of classical locally finite Lie algebras, Developments and trends in infinite-dimensional Lie theory, Progr. Math., vol. 288, Birkhäuser Boston, Inc., Boston, MA, 2011, pp. 127-150. MR 2743762, https://doi.org/10.1007/978-0-8176-4741-4_4
  • [38] Steven V. Sam and Andrew Snowden, Stability patterns in representation theory, Forum Math. Sigma 3 (2015), e11, 108. MR 3376738, https://doi.org/10.1017/fms.2015.10
  • [39] Sheila Sundaram, Tableaux in the representation theory of the classical Lie groups, Invariant theory and tableaux (Minneapolis, MN, 1988) IMA Vol. Math. Appl., vol. 19, Springer, New York, 1990, pp. 191-225. MR 1035496
  • [40] Weiqiang Wang, Duality in infinite-dimensional Fock representations, Commun. Contemp. Math. 1 (1999), no. 2, 155-199. MR 1696098, https://doi.org/10.1142/S0219199799000080
  • [41] Hans Wenzl, Quotients of representation rings, Represent. Theory 15 (2011), 385-406. MR 2801174, https://doi.org/10.1090/S1088-4165-2011-00401-5

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 17B37, 22E46, 05E10

Retrieve articles in all journals with MSC (2010): 17B37, 22E46, 05E10


Additional Information

Jae-Hoon Kwon
Affiliation: Department of Mathematical Sciences, Seoul National University, Seoul 08826, Republic of Korea
Email: jaehoonkw@snu.ac.kr

DOI: https://doi.org/10.1090/tran/7104
Keywords: Branching rules, classical groups, quantum groups, crystal graphs
Received by editor(s): December 12, 2015
Received by editor(s) in revised form: October 1, 2016, and October 16, 2016
Published electronically: February 1, 2018
Additional Notes: This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1501-01.
Article copyright: © Copyright 2018 American Mathematical Society

American Mathematical Society