Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On Engel groups, nilpotent groups, rings, braces and the Yang-Baxter equation


Author: Agata Smoktunowicz
Journal: Trans. Amer. Math. Soc.
MSC (2010): Primary 16N80, 16N40, 16P90, 16T25, 16T20, 20F45, 81R50
DOI: https://doi.org/10.1090/tran/7179
Published electronically: March 20, 2018
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that over an arbitrary field there exists a nil algebra $ R$ whose adjoint group $ R^{o}$ is not an Engel group. This answers a question by Amberg and Sysak from 1997. The case of an uncountable field also answers a recent question by Zelmanov.

In 2007, Rump introduced braces and radical chains $ A^{n+1}=A\cdot A^{n}$ and $ A^{(n+1)}=A^{(n)}\cdot A$ of a brace $ A$. We show that the adjoint group $ A^{o}$ of a finite right brace is a nilpotent group if and only if $ A^{(n)}=0$ for some $ n$. We also show that the adjoint group $ A^{o}$ of a finite left brace $ A$ is a nilpotent group if and only if $ A^{n}=0$ for some $ n$. Moreover, if $ A$ is a finite brace whose adjoint group $ A^{o}$ is nilpotent, then $ A$ is the direct sum of braces whose cardinalities are powers of prime numbers. Notice that $ A^{o}$ is sometimes called the multiplicative group of a brace $ A$. We also introduce a chain of ideals $ A^{[n]}$ of a left brace $ A$ and then use it to investigate braces which satisfy $ A^{n}=0$ and $ A^{(m)}=0$ for some $ m, n$.

We also describe connections between our results and braided groups and the non-degenerate involutive set-theoretic solutions of the Yang-Baxter equation. It is worth noticing that by a result of Gateva-Ivanova braces are in one-to-one correspondence with braided groups with involutive braiding operators.


References [Enhancements On Off] (What's this?)

  • [1] Alireza Abdollahi, Engel elements in groups, Groups St Andrews 2009 in Bath. Volume 1, London Math. Soc. Lecture Note Ser., vol. 387, Cambridge Univ. Press, Cambridge, 2011, pp. 94-117. MR 2858851
  • [2] Adel Alahmadi, Hamed Alsulami, S. K. Jain, and Efim Zelmanov, Finite generation of Lie algebras associated with associative algebras, J. Algebra 426 (2015), 69-78. MR 3301901, https://doi.org/10.1016/j.jalgebra.2014.10.056
  • [3] B. Amberg, O. Dickenschied, and Ya. P. Sysak, Subgroups of the adjoint group of a radical ring, Canad. J. Math. 50 (1998), no. 1, 3-15. MR 1618706, https://doi.org/10.4153/CJM-1998-001-9
  • [4] Bernhard Amberg and Lev Kazarin, Nilpotent $ p$-algebras and factorized $ p$-groups, Groups St. Andrews 2005. Vol. 1, London Math. Soc. Lecture Note Ser., vol. 339, Cambridge Univ. Press, Cambridge, 2007, pp. 130-147. MR 2327319, https://doi.org/10.1017/CBO9780511721212.005
  • [5] Bernhard Amberg and Yaroslav Sysak, Radical rings and products of groups, Groups St. Andrews 1997 in Bath, I, London Math. Soc. Lecture Note Ser., vol. 260, Cambridge Univ. Press, Cambridge, 1999, pp. 1-19. MR 1676607
  • [6] Bernhard Amberg and Yaroslav P. Sysak, Radical rings with soluble adjoint groups, J. Algebra 247 (2002), no. 2, 692-702. MR 1877869, https://doi.org/10.1006/jabr.2001.8996
  • [7] Bernhard Amberg and Yaroslav P. Sysak, Radical rings with Engel conditions, J. Algebra 231 (2000), no. 1, 364-373. MR 1779604
  • [8] J. C. Ault and J. F. Watters, Circle groups of nilpotent rings, Amer. Math. Monthly 80 (1973), 48-52. MR 0316493, https://doi.org/10.2307/2319260
  • [9] David Bachiller, Counterexample to a conjecture about braces, J. Algebra 453 (2016), 160-176. MR 3465351, https://doi.org/10.1016/j.jalgebra.2016.01.011
  • [10] David Bachiller, Extensions, matched products, and simple braces, arXiv:1511.08477v3 [math.GR], 13 June 2016.
  • [11] David Bachiller and Ferran Cedó, A family of solutions of the Yang-Baxter equation, J. Algebra 412 (2014), 218-229. MR 3215955, https://doi.org/10.1016/j.jalgebra.2014.05.011
  • [12] David Bachiller, Ferran Cedó, and Eric Jespers, Solutions of the Yang-Baxter equation associated with a left brace, J. Algebra 463 (2016), 80-102. MR 3527540, https://doi.org/10.1016/j.jalgebra.2016.05.024
  • [13] D. Bachiller, F. Cedó, E. Jespers, J. Okniński, Iterated matched products of finite braces and simplicity; new solutions of the Yang-Baxter equation, arXiv:1610.00477v1 [math.GR], 3 October 2016.
  • [14] F. Catino, M. M. Miccoli, and Ya. P. Sysak, On the adjoint group of semiprime rings, Comm. Algebra 35 (2007), no. 1, 265-270. MR 2287569, https://doi.org/10.1080/00927870601042084
  • [15] Francesco Catino and Roberto Rizzo, Regular subgroups of the affine group and radical circle algebras, Bull. Aust. Math. Soc. 79 (2009), no. 1, 103-107. MR 2486886, https://doi.org/10.1017/S0004972708001068
  • [16] Ferran Cedó, Braces and the Yang-Baxter equation (joint work with Eric Jespers and Jan Okniński), slides from the talk in Stuttgart, June 2012.
  • [17] Ferran Cedó, Tatiana Gateva-Ivanova, and Agata Smoktunowicz, On the Yang-Baxter equation and left nilpotent left braces, J. Pure Appl. Algebra 221 (2017), no. 4, 751-756. MR 3574204, https://doi.org/10.1016/j.jpaa.2016.07.014
  • [18] Ferran Cedó, Eric Jespers, and Jan Okniński, Braces and the Yang-Baxter equation, Comm. Math. Phys. 327 (2014), no. 1, 101-116. MR 3177933, https://doi.org/10.1007/s00220-014-1935-y
  • [19] Ferran Cedó, Eric Jespers, and Jan Okniński, Retractability of set theoretic solutions of the Yang-Baxter equation, Adv. Math. 224 (2010), no. 6, 2472-2484. MR 2652212, https://doi.org/10.1016/j.aim.2010.02.001
  • [20] Ferran Cedó, Eric Jespers, and Jan Okniński, Nilpotent groups of class three and braces, Publ. Mat. 60 (2016), no. 1, 55-79. MR 3447734
  • [21] Ferran Cedó, Eric Jespers, and Ángel del Río, Involutive Yang-Baxter groups, Trans. Amer. Math. Soc. 362 (2010), no. 5, 2541-2558. MR 2584610, https://doi.org/10.1090/S0002-9947-09-04927-7
  • [22] Pavel Etingof, Travis Schedler, and Alexandre Soloviev, Set-theoretical solutions to the quantum Yang-Baxter equation, Duke Math. J. 100 (1999), no. 2, 169-209. MR 1722951, https://doi.org/10.1215/S0012-7094-99-10007-X
  • [23] Tatiana Gateva-Ivanova, Set-theoretic solutions of the Yang-Baxter equation, Braces, and Symmetric groups, arXiv:1507.02602v2 [math.QA], 31 August 2015.
  • [24] Tatiana Gateva-Ivanova, A combinatorial approach to the set-theoretic solutions of the Yang-Baxter equation, J. Math. Phys. 45 (2004), no. 10, 3828-3858. MR 2095675, https://doi.org/10.1063/1.1788848
  • [25] Tatiana Gateva-Ivanova and Shahn Majid, Matched pairs approach to set theoretic solutions of the Yang-Baxter equation, J. Algebra 319 (2008), no. 4, 1462-1529. MR 2383056, https://doi.org/10.1016/j.jalgebra.2007.10.035
  • [26] Tatiana Gateva-Ivanova and Shahn Majid, Quantum spaces associated to multipermutation solutions of level two, Algebr. Represent. Theory 14 (2011), no. 2, 341-376. MR 2776789, https://doi.org/10.1007/s10468-009-9192-z
  • [27] Tatiana Gateva-Ivanova and Peter Cameron, Multipermutation solutions of the Yang-Baxter equation, Comm. Math. Phys. 309 (2012), no. 3, 583-621. MR 2885602, https://doi.org/10.1007/s00220-011-1394-7
  • [28] Tatiana Gateva-Ivanova and Michel Van den Bergh, Semigroups of $ I$-type, J. Algebra 206 (1998), no. 1, 97-112. MR 1637256, https://doi.org/10.1006/jabr.1997.7399
  • [29] L. Guarnieri and L. Vendramin, Skew braces and the Yang-Baxter equation, Math. Comp. 86 (2017), no. 307, 2519-2534. MR 3647970, https://doi.org/10.1090/mcom/3161
  • [30] A. W. Hales and I. B. S. Passi, The second augmentation quotient of an integral group ring, Arch. Math. (Basel) 31 (1978/79), no. 3, 259-265. MR 521479, https://doi.org/10.1007/BF01226446
  • [31] Natalia Iyudu and Stanislav Shkarin, Finite dimensional semigroup quadratic algebras with the minimal number of relations, Monatsh. Math. 168 (2012), no. 2, 239-252. MR 2984149, https://doi.org/10.1007/s00605-011-0339-8
  • [32] Eric Jespers and Jan Okniński, Monoids and groups of $ I$-type, Algebr. Represent. Theory 8 (2005), no. 5, 709-729. MR 2189580, https://doi.org/10.1007/s10468-005-0342-7
  • [33] Eric Jespers and Jan Okniński, Noetherian semigroup algebras, Algebra and Applications, vol. 7, Springer, Dordrecht, 2007. MR 2301033
  • [34] T. Y. Lam, A first course in noncommutative rings, Graduate Texts in Mathematics, vol. 131, Springer-Verlag, New York, 1991. MR 1125071
  • [35] Jiang-Hua Lu, Min Yan, and Yong-Chang Zhu, On the set-theoretical Yang-Baxter equation, Duke Math. J. 104 (2000), no. 1, 1-18. MR 1769723, https://doi.org/10.1215/S0012-7094-00-10411-5
  • [36] M. Lothaire, Algebraic combinatorics on words, Encyclopedia of Mathematics and its Applications, vol. 90, Cambridge University Press, Cambridge, 2002. A collective work by Jean Berstel, Dominique Perrin, Patrice Seebold, Julien Cassaigne, Aldo De Luca, Steffano Varricchio, Alain Lascoux, Bernard Leclerc, Jean-Yves Thibon, Veronique Bruyere, Christiane Frougny, Filippo Mignosi, Antonio Restivo, Christophe Reutenauer, Dominique Foata, Guo-Niu Han, Jacques Desarmenien, Volker Diekert, Tero Harju, Juhani Karhumaki and Wojciech Plandowski; With a preface by Berstel and Perrin. MR 1905123
  • [37] Victor M. Petrogradsky, Ivan P. Shestakov, and Efim Zelmanov, Nil graded self-similar algebras, Groups Geom. Dyn. 4 (2010), no. 4, 873-900. MR 2727670, https://doi.org/10.4171/GGD/112
  • [38] B. I. Plotkin, Notes on Engel groups and Engel elements in groups. Some generalizations, Izv. Ural. Gos. Univ. Mat. Mekh. 7(36) (2005), 153-166, 192-193 (English, with English and Russian summaries). MR 2190949
  • [39] Derek J. S. Robinson, A course in the theory of groups, 2nd ed., Graduate Texts in Mathematics, vol. 80, Springer-Verlag, New York, 1996. MR 1357169
  • [40] Derek J. S. Robinson, Finiteness Conditions and Generalized Soluble Groups. Springer-Verlag, Berlin-Heidelberg-New York, 1972. MR 0332989, MR 0332990
  • [41] Louis Halle Rowen, Graduate algebra: noncommutative view, Graduate Studies in Mathematics, vol. 91, American Mathematical Society, Providence, RI, 2008. MR 2462400
  • [42] Wolfgang Rump, Modules over braces, Algebra Discrete Math. 2 (2006), 127-137. MR 2320986
  • [43] Wolfgang Rump, The brace of a classical group, Note Mat. 34 (2014), no. 1, 115-144. MR 3291816
  • [44] Wolfgang Rump, Braces, radical rings, and the quantum Yang-Baxter equation, J. Algebra 307 (2007), no. 1, 153-170. MR 2278047, https://doi.org/10.1016/j.jalgebra.2006.03.040
  • [45] Wolfgang Rump, A decomposition theorem for square-free unitary solutions of the quantum Yang-Baxter equation, Adv. Math. 193 (2005), no. 1, 40-55. MR 2132760
  • [46] Aner Shalev, On associative algebras satisfying the Engel condition, Israel J. Math. 67 (1989), no. 3, 287-290. MR 1029903, https://doi.org/10.1007/BF02764947
  • [47] Layla Sorkatti and Gunnar Traustason, Nilpotent symplectic alternating algebras I, J. Algebra 423 (2015), 615-635. MR 3283734, https://doi.org/10.1016/j.jalgebra.2014.10.031
  • [48] I. P. Shestakov and E. Zelmanov, Some examples of nil Lie algebras, J. Eur. Math. Soc. (JEMS) 10 (2008), no. 2, 391-398. MR 2390328, https://doi.org/10.4171/JEMS/114
  • [49] Agata Smoktunowicz, How far can we go with Amitsur's theorem in differential polynomial rings?, Israel J. Math. 219 (2017), no. 2, 555-608. MR 3649600, https://doi.org/10.1007/s11856-017-1491-1
  • [50] Agata Smoktunowicz, The Jacobson radical of rings with nilpotent homogeneous elements, Bull. Lond. Math. Soc. 40 (2008), no. 6, 917-928. MR 2471940, https://doi.org/10.1112/blms/bdn086
  • [51] Ya. P. Sysak, The adjoint group of radical rings and related questions, Ischia group theory 2010, World Sci. Publ., Hackensack, NJ, 2012, pp. 344-365. MR 3185324, https://doi.org/10.1142/9789814350051_0027
  • [52] Yaroslav P. Sysak, Products of groups and local nearrings, Note Mat. 28 (2008), no. suppl. 2, 181-216 (2009). MR 2799412
  • [53] Antonio Tortora, Maria Tota, and Gunnar Traustason, Symplectic alternating nil-algebras, J. Algebra 357 (2012), 183-202. MR 2905248, https://doi.org/10.1016/j.jalgebra.2012.02.012
  • [54] Gunnar Traustason, Engel groups, Groups St Andrews 2009 in Bath. Volume 2, London Math. Soc. Lecture Note Ser., vol. 388, Cambridge Univ. Press, Cambridge, 2011, pp. 520-550. MR 2866724
  • [55] L. Vendramin, Extensions of set-theoretic solutions of the Yang-Baxter equation and a conjecture of Gateva-Ivanova, J. Pure Appl. Algebra 220 (2016), no. 5, 2064-2076. MR 3437282, https://doi.org/10.1016/j.jpaa.2015.10.018
  • [56] I. Wisliceny, Konstruktion nilpotenter assoziativer Algebren mit wenig Relationen, Math. Nachr. 147 (1990), 75-82 (German). MR 1127311, https://doi.org/10.1002/mana.19901470109
  • [57] E. I. Zelmanov, Some problems in the theory of groups and Lie algebras, Mat. Sb. 180 (1989), no. 2, 159-167 (Russian); English transl., Math. USSR-Sb. 66 (1990), no. 1, 159-168. MR 993451
  • [58] E. I. Zelmanov, Solution of the restricted Burnside problem for groups of odd exponent, Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), no. 1, 42-59, 221 (Russian); English transl., Math. USSR-Izv. 36 (1991), no. 1, 41-60. MR 1044047
  • [59] E. I. Zelmanov, Solution of the restricted Burnside problem for $ 2$-groups, Mat. Sb. 182 (1991), no. 4, 568-592 (Russian); English transl., Math. USSR-Sb. 72 (1992), no. 2, 543-565. MR 1119009

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 16N80, 16N40, 16P90, 16T25, 16T20, 20F45, 81R50

Retrieve articles in all journals with MSC (2010): 16N80, 16N40, 16P90, 16T25, 16T20, 20F45, 81R50


Additional Information

Agata Smoktunowicz
Affiliation: School of Mathematics, The University of Edinburgh, James Clerk Maxwell Building, The King’s Buildings, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
Email: A.Smoktunowicz@ed.ac.uk

DOI: https://doi.org/10.1090/tran/7179
Keywords: Engel group, nilpotent group, adjoint group of a ring, braces, nil rings, nil algebras, the Yang-Baxter equation
Received by editor(s): November 27, 2015
Received by editor(s) in revised form: November 21, 2016, and December 16, 2016
Published electronically: March 20, 2018
Additional Notes: This research was supported with ERC advanced grant 320974.
Article copyright: © Copyright 2018 American Mathematical Society

American Mathematical Society