Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On quasi-infinitely divisible distributions
HTML articles powered by AMS MathViewer

by Alexander Lindner, Lei Pan and Ken-iti Sato PDF
Trans. Amer. Math. Soc. 370 (2018), 8483-8520 Request permission

Abstract:

A quasi-infinitely divisible distribution on $\mathbb {R}$ is a probability distribution whose characteristic function allows a Lévy–Khintchine type representation with a “signed Lévy measure”, rather than a Lévy measure. Quasi-infinitely divisible distributions appear naturally in the factorization of infinitely divisible distributions. Namely, a distribution $\mu$ is quasi-infinitely divisible if and only if there are two infinitely divisible distributions $\mu _1$ and $\mu _2$ such that $\mu _1 \ast \mu = \mu _2$. The present paper studies certain properties of quasi-infinitely divisible distributions in terms of their characteristic triplet, such as properties of supports, finiteness of moments, continuity properties, and weak convergence, with various examples constructed. In particular, it is shown that the set of quasi-infinitely divisible distributions is dense in the set of all probability distributions with respect to weak convergence. Further, it is proved that a distribution concentrated on the integers is quasi-infinitely divisible if and only if its characteristic function does not have zeroes, with the use of the Wiener–Lévy theorem on absolutely convergent Fourier series. A number of fine properties of such distributions are proved based on this fact. A similar characterization is not true for nonlattice probability distributions on the line.
References
  • S. J. Bhatt and H. V. Dedania, Beurling algebra analogues of the classical theorems of Wiener and Lévy on absolutely convergent Fourier series, Proc. Indian Acad. Sci. Math. Sci. 113 (2003), no. 2, 179–182. MR 1983751, DOI 10.1007/BF02829767
  • V. I. Bogachev, Measure theory. Vol. I, II, Springer-Verlag, Berlin, 2007. MR 2267655, DOI 10.1007/978-3-540-34514-5
  • Alberto Calderón, Frank Spitzer, and Harold Widom, Inversion of Toeplitz matrices, Illinois J. Math. 3 (1959), 490–498. MR 121652
  • Hassan Chhaiba, Nizar Demni, and Zouhair Mouayn, Analysis of generalized negative binomial distributions attached to hyperbolic Landau levels, J. Math. Phys. 57 (2016), no. 7, 072103, 14. MR 3522606, DOI 10.1063/1.4958724
  • John B. Conway, Functions of one complex variable, 2nd ed., Graduate Texts in Mathematics, vol. 11, Springer-Verlag, New York-Berlin, 1978. MR 503901
  • John B. Conway, Functions of one complex variable. II, Graduate Texts in Mathematics, vol. 159, Springer-Verlag, New York, 1995. MR 1344449, DOI 10.1007/978-1-4612-0817-4
  • R. Cuppens, Quelques nouveaux résultats en arithmétique des lois de probabilité, Les probabilités sur les structures algébriques (Actes Colloq. Internat. CNRS, No. 186, Clermont-Ferrand, 1969) Éditions Centre Nat. Recherche Sci., Paris, 1970, pp. 97–112 (French, with English summary). Avec commentaire par K. R. Parthasarathy. MR 0410847
  • Roger Cuppens, Decomposition of multivariate probabilities, Probability and Mathematical Statistics, Vol. 29, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0517412
  • Nizar Demni and Zouhair Mouayn, Analysis of generalized Poisson distributions associated with higher Landau levels, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 18 (2015), no. 4, 1550028, 13. MR 3447229, DOI 10.1142/S0219025715500289
  • A. Di Bucchianico, Banach algebras, logarithms, and polynomials of convolution type, J. Math. Anal. Appl. 156 (1991), no. 1, 253–273. MR 1102610, DOI 10.1016/0022-247X(91)90395-G
  • Jürgen Elstrodt, Maß- und Integrationstheorie, 4th ed., Springer-Lehrbuch. [Springer Textbook], Springer-Verlag, Berlin, 2005 (German). Grundwissen Mathematik. [Basic Knowledge in Mathematics]. MR 2257838
  • William Feller, An Introduction to Probability Theory and Its Applications. Vol. I, John Wiley & Sons, Inc., New York, N.Y., 1950. MR 0038583
  • B. V. Gnedenko and A. N. Kolmogorov, Limit distributions for sums of independent random variables, Revised edition, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1968. Translated from the Russian, annotated, and revised by K. L. Chung; With appendices by J. L. Doob and P. L. Hsu. MR 0233400
  • K. Gröchenig, Wiener’s lemma: Theme and variations. An introduction to spectral invariance and its applications. In: B. Forster and P. Massopust (eds.), Four Short Courses on Harmonic Analysis: Wavelets, Frames, Time-frequency Methods, and Applications to Signal and Image Analysis, Birkhäuser, Basel, 2010.
  • Werner Hürlimann, On maximum likelihood estimation for count data models, Insurance Math. Econom. 9 (1990), no. 1, 39–49. MR 1059183, DOI 10.1016/0167-6687(90)90014-5
  • Douglas Kelker, Infinite divisibility and variance mixtures of the normal distribution, Ann. Math. Statist. 42 (1971), 802–808. MR 286201, DOI 10.1214/aoms/1177693436
  • Alexander Lindner and Ken-iti Sato, Properties of stationary distributions of a sequence of generalized Ornstein-Uhlenbeck processes, Math. Nachr. 284 (2011), no. 17-18, 2225–2248. MR 2859761, DOI 10.1002/mana.200910223
  • Yu. V. Linnik, Decomposition of probability distributions, Dover Publications, Inc., New York; Oliver and Boyd Ltd., Edinburgh-London, 1964. Edited by S. J. Taylor. MR 0189085
  • Ju. V. Linnik and Ĭ. V. Ostrovs′kiĭ, Decomposition of random variables and vectors, Translations of Mathematical Monographs, Vol. 48, American Mathematical Society, Providence, R.I., 1977. Translated from the Russian. MR 0428382
  • Eugene Lukacs, Characteristic functions, Griffin’s Statistical Monographs & Courses, No. 5, Hafner Publishing Co., New York, 1960. MR 0124075
  • Eugene Lukacs, Developments in characteristic function theory, Macmillan Co., New York, 1983. MR 810001
  • Prem S. Puri and Charles M. Goldie, Poisson mixtures and quasi-infinite divisibility of distributions, J. Appl. Probab. 16 (1979), no. 1, 138–153. MR 520944, DOI 10.2307/3213382
  • Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157
  • Ken-iti Sato, Lévy processes and infinitely divisible distributions, Cambridge Studies in Advanced Mathematics, vol. 68, Cambridge University Press, Cambridge, 2013. Translated from the 1990 Japanese original; Revised edition of the 1999 English translation. MR 3185174
  • Fred W. Steutel and Klaas van Harn, Infinite divisibility of probability distributions on the real line, Monographs and Textbooks in Pure and Applied Mathematics, vol. 259, Marcel Dekker, Inc., New York, 2004. MR 2011862
  • Huiming Zhang, Yunxiao Liu, and Bo Li, Notes on discrete compound Poisson model with applications to risk theory, Insurance Math. Econom. 59 (2014), 325–336. MR 3283233, DOI 10.1016/j.insmatheco.2014.09.012
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 60E07
  • Retrieve articles in all journals with MSC (2010): 60E07
Additional Information
  • Alexander Lindner
  • Affiliation: Ulm University, Institute of Mathematical Finance, Helmholtzstraße 18, 89081 Ulm, Germany
  • MR Author ID: 648186
  • Email: alexander.lindner@uni-ulm.de
  • Lei Pan
  • Affiliation: Ulm University, Institute of Mathematical Finance, Helmholtzstraße 18, 89081 Ulm, Germany
  • Email: herrpan@foxmail.com
  • Ken-iti Sato
  • Affiliation: Hachiman-yama 1101-5-103, Tenpaku-ku, Nagoya, 468-0074 Japan
  • MR Author ID: 193984
  • Email: ken-iti.sato@nifty.ne.jp
  • Received by editor(s): January 8, 2017
  • Received by editor(s) in revised form: March 29, 2017
  • Published electronically: June 20, 2018
  • © Copyright 2018 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 370 (2018), 8483-8520
  • MSC (2010): Primary 60E07
  • DOI: https://doi.org/10.1090/tran/7249
  • MathSciNet review: 3864385