NOTE ON THE UNILATERAL SURFACE OF MOEBIUS

BY

HEINRICH MASCHKE

In order to construct an algebraic surface containing as a part the unilateral paper-strip of Moebius, let a straight line L move in space along a circle C, perpendicular to the tangents of C and in such a way that, when the point of intersection Q of L with C has described the full circle, the initial position of L makes with its final position an angle of 180°. The condition that L meets C at right angles is equivalent to the condition that L meets a straight line A passing through the center M of the circle and perpendicular to its plane; let P be the movable point of intersection of L and A. If now we add the further condition that the range P on A be projective to the range Q on C (e. g., by taking the angle QPM always half the angle of the arc described by Q on C) then L describes, according to a general theorem, a ruled surface of the third order.

Conversely: take any ruled surface R of the third order, particular cases excepted, pass a plane section through one of the generators L which will meet R besides L in a conic section K, and describe a curve T on R the points of which have along the generators a sufficiently small constant distance from K; then T will cut out of R a unilateral Moebius surface.

University of Chicago,
November 15, 1899.

* Presented to the Society (Chicago) December 29, 1899. Received for publication November 15, 1899.
