
For \(\epsilon \) read \(\equiv \epsilon \).

P. 504, ll. 3, 7, 11 up. " \(\leq \) " \(\leq \).

E. J. Wilczynski: Invariants of systems of linear differential equations.

For semivariants read seminvariants.

P. 11, l. 17. \(y_k = \) \(\bar{y}_k = \).

P. 22, l. 3. Make the expression into an equation by the addition of \(\equiv 0 \).

J. C. Fields: On the reduction of the general Abelian integral.

For \(r + s + 2 = \sigma \) read \(r + s - 2 = \sigma \).

P. 80, l. 2 up. \(n + 3 \) \(n - 3 \).

P. 85, l. 2. \(\sum_{\lambda=1}^{d+p} \) \(- \sum_{\lambda=1}^{d+p} \).

H. F. Stecker: On the determination of surfaces

Replace \(d\mu \) in the expression for \(F_2 \) by \(dv \).

P. 159, l. 7. For \(m + \beta - 1 \) read \(m - \beta - 1 \).

P. 163, l. 17 up. \(V_1 \) \(V_2 \).

E. B. Van Vleck: On the convergence of continued fractions

Pp. 223, 224. The last line of p. 224 is to be set at the top of p. 223.

P. 226, l. 9 up. \(- a_n M^2_{n-1} \) read \(a_n M^2_{n-1} \).

P. 233, l. 16. \(|a_n|/|\beta_n| \) \(a_n/|\beta_n| \).

W. F. Osgood: On a fundamental property of a minimum

For its longest side read the greatest of the differences \(\tau_{i+1} - \tau_i \).