THE SECOND VARIATION OF A DEFINITE INTEGRAL
WHEN ONE END-POINT IS VARIABLE*

BY

GILBERT AMES BLISS

The method applied in the following paper to the discussion of the second variation in the case in which one end-point is movable on a fixed curve, is closely analogous to that of Weierstrass † in his treatment of the problem for fixed end-points. The difference arises from the fact that in the present case terms outside of the integral sign must be taken into consideration. As a result of the discussion the analogue of Jacobi's criterion will be derived, defining apparently in a new way the critical point ‡ for the fixed curve along which the end-point varies. The relation between the critical and conjugate points is discussed in §4.

§1. The expression for the variation of the integral.

Consider a fixed curve D,

$$x = f(u), \quad y = g(u),$$

and a fixed point $B (x_1, y_1)$. Let C be a curve,

$$x = \phi(t), \quad y = \psi(t),$$

cutting D at $A (u = u_0, t = t_0)$, passing through $B (t = t_1)$, and making the integral

$$I = \int_{t_0}^{t_1} F(x, y, x', y') \, dt$$

a minimum with respect to values of the integral taken along other curves joining D and B, and lying in a certain neighborhood of C. The following assumptions are made:

* Presented to the Society under a slightly different title at the Ithaca meeting, August 19, 1901. Received for publication November 27, 1901.
† Lectures on the Calculus of Variations, 1879.
‡ The same as Kneser's "Brennpunkt." See his Variationsrechnung, p. 89.
§ Literal subscripts will be used to denote differentiation, partial when several variables are involved. The zero-subscript or $[\]_0$ means that in the function designated $t = t_0, u = u_0$. Unaccented letters refer to D; while accented letters refer to C.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
1) The functions discussed are regular at the points considered;

2) \[[x_0^2 + y_0^2]_0 = 0; \quad x^2 + y^2 = 0, \text{ for } t_0 \leq t \leq t_1; \]

3) \(F \) satisfies the usual homogeneity condition

\[
F(x, y, \kappa x', \kappa y') = \kappa F(x, y, x', y') \quad (\kappa > 0);
\]

4) \(F(x_0, y_0, x'_0, y'_0) = 0. \)

When the integral is taken along a curve,

\[
\bar{x} = \phi(t) + \xi(t), \quad \bar{y} = \psi(t) + \eta(t),
\]

the first variation can be put into the well-known form: *

\[
\delta I = \left[F_x \xi + F_y \eta \right]_{t_0}^{t_1} + \int_{t_0}^{t_1} \left[G_1 \xi + G_2 \eta \right] dt,
\]

where

\[
G_1 = F_x - \frac{d}{dt} F_{x'}, \quad G_2 = F_y - \frac{d}{dt} F_{y'}.
\]

According to Weierstrass † the second variation can be expressed in the form:

\[
\delta^2 I = \left[R \right]_{t_0}^{t_1} + \int_{t_0}^{t_1} \left[F_1 w'^2 + F_2 w^2 \right] dt,
\]

where

\[
R = L \xi^2 + 2M \xi \eta + N \eta^2, \quad w = y' \xi - x' \eta,
\]

the functions \(F_1, L, M, N, F_2 \) being defined by the following equations:

\[
F_1 = \frac{1}{y^2} F_{x'x'}, \quad F'_y = -\frac{1}{x'y}, \quad F_{xy}' = \frac{1}{x'y^2} F_{yy'},
\]

\[
L = F_{xx'} - y'y'' F_1, \quad N = F_{yy'} - x'x''' F_1,
\]

\[
M = F_{x'y'} + x''y' F_1 = F_{xy'} + x'y'' F_1,
\]

\[
F_2 = \frac{1}{y^2} \left(F_{xx'} - y'' F_1 - L' \right) = -\frac{1}{x'y} \left(F_{xy} + x'y'' F_1 - M' \right)
\]

\[
= \frac{1}{x'y^2} \left(F_{yy'} - x'' F_1 - N' \right).
\]

In the first place by considering variations of the curve which pass through the end-points \(A \) and \(B \) considered as fixed, the following two necessary conditions for a minimum are found:

*See Kneser, loc. cit., § 4. The arguments of \(F \) and its derivatives are always \(x, y, x', y' \).

† Weierstrass's Lectures, 1879.
I. C must be an extremal* satisfying $G_1 = 0$ and $G_2 = 0$;

II. F_1 must be $\equiv 0$ along the arc AB of the curve C.†

In the second place consider variations which do not pass through A. Inasmuch as only a necessary condition is desired, ξ and η can be chosen in a special manner. Let ξ_0, η_0, ξ, η be defined by the equations:

$$
\xi_0 = f(u_0 + \sigma) - f(u_0) = [x_u]_0 \sigma + [x_{uu}]_0 \frac{\sigma^2}{2} + \cdots,
$$

$$
\eta_0 = g(u_0 + \sigma) - g(u_0) = [y_u]_0 \sigma + [y_{uu}]_0 \frac{\sigma^2}{2} + \cdots,
$$

$$
\xi = \phi_1 \xi_0 + \phi_2 \eta_0,
$$

$$
\eta = \psi_1 \xi_0 + \psi_2 \eta_0,
$$

where ϕ_1, ϕ_2, ψ_1, ψ_2 are functions of t satisfying the relations:

$$
\phi_1(t_0) = \psi_2(t_0) = 1, \quad \phi_2(t_0) = \psi_1(t_0) = 0,
$$

$$
\phi_1(t_1) = \phi_2(t_1) = \psi_1(t_1) = \psi_2(t_1) = 0.
$$

A curve (2) constructed with ξ and η as in (7) will be said to belong to the class \bar{C}. It is evident that each particular curve \bar{C} cuts D when $t = t_0$, and passes through B when $t = t_1$.

For these special variations ΔI can be expressed as a power series in σ, say

$$
\Delta I = S_1 \sigma + S_2 \frac{\sigma^2}{2} + \cdots.
$$

S_1 and S_2 can be calculated from δI and $\delta^2 I$. From (3) and (6), since C passes through B,

$$
\delta I = - [F_x x_u + F_y y_u]_0 \sigma - [F_x x_{uu} + F_y y_{uu}]_0 \frac{\sigma^2}{2} + \cdots,
$$

and therefore from (4) and (9),

$$
S_1 = - [F_x x_u + F_y y_u]_0,
$$

$$
S_2 = - [F_x x_{uu} + F_y y_{uu} + L x_u^2 + 2 M x_y y_u + N y_u^2]_0 + \int_{t_0}^{t_1} \left[F_1 \bar{w}'^2 + F_2 \bar{w}^2 \right] dt,
$$

where \bar{w} and \bar{w}' are the coefficients of σ in \bar{w} and its derivative.

From (8) it follows that a third necessary condition for the existence of a minimum is

$$
\Delta I = S_1 = 0.
$$

* E. g., see Kneser, loc. cit., § 8.
† Weierstrass's Lectures, 1879.
This is the well-known condition for transversality.* It follows also from (8) that if a minimum exists, S_2 must be ≥ 0 for all curves of class C. The further discussion of S_2 is the principal object of this paper.

§2. A condition which prevents S_2 from becoming negative.

Suppose now that C satisfies the conditions I and III, and (instead of II) the condition that F'_1 is > 0 along the arc AB. Transform (4) by adding with Legendre,

$$0 = - [vw^2]_{t_0}^{t_1} + \int_{t_0}^{t_1} \frac{d(vw^2)}{dt} \, dt.$$

The integrand becomes a homogeneous quadratic expression in w and w'. If for $t_0 \leq t \leq t_1$, a regular function v exists satisfying the discriminant relation

$$(v) \quad v^2 - F'_1(F'_2 + v') = 0,$$

then $\delta^2 I$ becomes

$$(10) \quad \delta^2 I = [R - vw^2]_{t_0}^{t_1} + \int_{t_0}^{t_1} F'_1 \left[w' + \frac{vw'}{F'_1} \right]^2 \, dt.$$

The integral of (v) is expressible in terms of the integral of a linear equation. For when $v = - \frac{F'_1 U'}{U}$,

$$(U) \quad v^2 - F'_1(F'_2 + v') = \frac{F'_1}{U} (F''_1 U'' + F'_1 U' - F''_2 U) = 0.$$

Then

$$S_2 = - \left[F'_2 x_{uu} + F'_2 y_{uu} + Lx^2 + 2Mx y + N y^2 + F'_1 \frac{\bar{w}^2}{U} \frac{U'}{U} \right]_{t_0}^{t_1} + \int_{t_0}^{t_1} F'_1 \left[\frac{U \bar{w}'}{U} - \frac{U' \bar{w}}{U} \right]^2 \, dt.$$

Assume the general integral of the differential equations $G'_1 = 0$ and $G'_2 = 0$, which are of the second order, to be

$$x = \phi(t, \alpha, \beta), \quad y = \psi(t, \alpha, \beta),$$

where α and β are arbitrary constants. Suppose that these equations represent C when $\alpha = \beta = 0$. Then two particular integrals of (U) are†

$$\delta_1 = \begin{vmatrix} \phi_t & \phi_\alpha \\ \psi_t & \psi_\alpha \end{vmatrix}, \quad \delta_2 = \begin{vmatrix} \phi_t & \phi_\beta \\ \psi_t & \psi_\beta \end{vmatrix}.$$

* Kneser, loc. cit., § 10.
† E. g., see Weierstrass's Lectures.
where \(\phi_t = \phi_t(t, 0, 0) \), etc. Suppose \(\partial_1 \) and \(\partial_2 \) to be linearly independent. Then the general integral of \((U) \) is

\[
U = c_1 \partial_1 + c_2 \partial_2.
\]

Since \(\partial_1 \) and \(\partial_2 \) are linearly independent they satisfy the equation*

\[
\partial_1 \partial_2' - \partial_2 \partial_1' = \frac{c}{F_1} \quad (c \neq 0).
\]

A particular integral (12) can now be selected so that in \(S_2 \) the term outside of the integral vanishes. Put

\[
P = \left[\frac{F_{xu}x_{uu} + F_{yu}y_{uu}}{x_u^2 + y_u^2} \right]_0 + L_0 \cos^2 \delta + 2M_0 \sin \delta \cos \delta + N_0 \sin^2 \delta,
\]

and

\[
Q = \left[F_1 \left(\frac{y'x_u - x'y_u}{x_u^2 + y_u^2} \right) \right]_0 = \left[F_1 \right]_0 \left(x_0^2 + y_0^2 \right) \sin^2(\gamma - \delta),
\]

where \(\gamma \) and \(\delta \) are the angles at \(A \) which \(C \) and \(D \) make with the \(x \)-axis. Then, from (11),

\[
S_2 = - \left[P + Q \frac{U_0'}{U_0} \right] \left[x_u^2 + y_u^2 \right]_0 + \int_{t_0}^t F_1 \left[\frac{U'\dot{w} - U\dot{w}}{U} \right]^2 dt.
\]

Kneser has shown† that if \(F \neq 0 \) at \(A \), and \(D \) cuts \(C \) transversally, then \(D \) cannot be tangent to \(C \). Therefore \(Q \) is \(\neq 0 \). Since, furthermore, the equation (13) holds when \(t = t_0 \), \(c_1 \) and \(c_2 \) can be so determined that

\[
P + Q \frac{U_0'}{U_0} = 0.
\]

Two such values are

\[
c_1 = P \partial_2(t_0) + Q \partial_2'(t_0), \quad c_2 = P \partial_1(t_0) + Q \partial_1'(t_0).
\]

If \(H(t, t_0) \) denotes the particular integral of \((U) \) formed with these constants, then

\[
H(t, t_0) = P \Theta + Q \frac{\partial \Theta}{\partial t_0},
\]

where

\[
\Theta(t, t_0) = \begin{vmatrix} \partial_1(t) & \partial_2(t) \\ \partial_1(t_0) & \partial_2(t_0) \end{vmatrix}.
\]

The integral \(H \) is useful in forming a function \(v \) to satisfy condition \((v) \), at least when \(B \) is near \(A \). For from (13) and (16), when \(t = t_0 \),

\[
H_0 = Q \frac{c}{[F_1]_0} \neq 0.
\]

* See Craig, Linear Differential Equations, vol. 1, p. 54.
† loc. cit., § 30.
These results lead to the following theorem:

If \(H(t, t_0) \neq 0 \) for \(t_0 \leq t \leq t_1 \), then for curves of class \(C \), \(S_2 \) can be expressed in the form

\[
S_2 = \int_{t_0}^{t_1} F_1 \left[\frac{Uw' - U'w}{U} \right]^2 dt,
\]

which cannot become negative.

§ 3. The necessary condition.

By following still more closely the method of Weierstrass it can now be shown that the condition \(H(t, t_0) \neq 0 \) \((t_0 \leq t < t_1) \) is necessary for the existence of a minimum. Suppose that this condition does not hold but that \(H \) has a zero \(t'_0 \) between \(t_0 \) and \(t_1 \). Then, as will be proved, variations of class \(C \) can be found which make \(S_2 \) and \(\Delta I \) negative.

Integrate by parts the first term in the integrand of (4). Then

\[
\delta^2 I = \left[R + F_1ww' \right]_{t_0}^{t_1} - \int_{t_0}^{t_1} w \left[F'_1w'' + F_1'w' - F_1w \right] dt.
\]

Consider the equation,

\[
(U_e) \quad F_1 U'' + F_1' U' - (F_2 - \epsilon) U = 0,
\]

where \(\epsilon \) is a constant. From the theory of linear differential equations, an integral \(H_e \) of the equation \((U_e)\) exists, depending upon \(\epsilon \) for its value and having the following properties:

1) It is regular for \(t_0 \leq t \leq t_1 \);
2) \([H_e]_0 = H_w \), \([H_e']_0 = H'_w \);
3) If \(\eta > 0 \) is selected arbitrarily, \(\delta > 0 \) can be found such that \(|H_e - H| < \eta \) for \(t_0 \leq t \leq t_1 \), if \(|\epsilon| < \delta \).

\(H \) and \(H' \) can not both be zero at \(t'_0 \). For otherwise, since the functions involved are regular and \(F'_1 \neq 0 \), the expansion of the left member of \((U)\) could not be identically zero. From 3) therefore, \(\delta \) can be chosen so small that when \(|\epsilon| < \delta \), \(H_e \) also vanishes between \(t_0 \) and \(t_1 \), say at \(t_{\epsilon_0} \).

Curves can now be chosen of class \(C \), such that \(w \) satisfies the equation \((U_e)\). For example, let \(\xi \) and \(\eta \) be defined for \(t_0 \leq t \leq t_{\epsilon_0} \) by the equations

\[
(17) \quad w = y'\xi - x'\eta = (y'\xi_0 - x'\eta_0) \frac{H^*_w}{H'_w} H_w,
\]

\[
(18) \quad \delta^2 I = \left[R - F_1ww' \right]_{t_0}^{t_1} + \epsilon \int_{t_0}^{t_1} w^2 dt.
\]
From (9) and (18) by calculation as before, and since \(H \) satisfies (15), it follows that

\[
S_2 = \epsilon \int_{t_0}^{t_0+\delta} \overline{w}^2 \, dt.
\]

The function \(\overline{w} \) can not be identically zero unless \(H_\epsilon \) is so; and by 3) \(H_\epsilon \) can not vanish identically if \(\delta \) is taken small enough, since \(H \) does not. Hence for certain functions \(\xi, \eta \) as in (7), \(S_2 \neq 0 \) and can be made positive or negative by taking values of \(\epsilon \) opposite in sign. From \$1 \$ therefore the arc \(AB \) can not make \(I \) a minimum.

If now the point \(A' \) defined on \(G \) by \(t_0' \) is said to be the critical point for the curve \(D \), a fourth necessary condition can be stated as follows:

IV. If the extremal \(C \), which passes through the fixed point \(B \) and cuts the fixed curve \(D \) transversally, is to make the integral

\[
I = \int_{t_0}^{t_1} F(x, y, x', y') \, dt
\]
a minimum, then \(B \) must not lie beyond the critical point defined by \(D \) on \(C \); or analytically,

\[
H(t, t_0) \neq 0 \quad \text{for} \quad t_0 \leq t < t_1.
\]

§ 4. Relation between the conjugate and critical points.

The point conjugate to \(A \) is defined * by the zero \(t_0'' \) of \(\Theta(t, t_0) \), which is nearest to \(t_0 \). The functions \(\Theta \) and \(H \) are both integrals of \(U \) of the form (12), and are linearly independent since \(\Theta_0 = 0 \) and \(H_0 \neq 0 \). By a theorem concerning linear differential equations of the second order \(\dagger \) their zeros must separate each other, and \(H = 0 \) has therefore one root between \(t_0 \) and \(t_0'' \).

The expression for \(H \) involves the curvature of \(D \) at \(A \) linearly. The curvature is

\[
(19) \quad \frac{1}{r} = \frac{x_uy_{uu} - x_{uu}y_u}{[x_u^2 + y_u^2]^{3/2}}.
\]

By differentiating (1) for \(\kappa \) it is found that

\[
x' F_x + y' F_y = F.
\]

From this equation and III the values of F_x and F_y at A can be determined, and by substitution in (16) H becomes

$$H(t, t_0) = \left(\frac{P_1}{r} + P_2\right)\Theta + Q\frac{\partial \Theta}{\partial t_0},$$

where

$$P_1 = \frac{F_0}{\sqrt{x_0^2 + y_0^2 \sin (\gamma - \delta)}},$$

$$P_2 = L_0 \cos^2 \delta + 2M_0 \sin \delta \cos \delta + N_0 \sin^2 \delta.$$

Suppose C and A fixed, and D changeable but always transversal to C at A. Then if the expression (20) for H is put equal to zero and solved for r, the resulting function of t will express the value which the radius of curvature of D at A must have in order that t may determine the critical point for D. By the use of (18), (14) and (21) the function and its derivative are found to be

$$r = \frac{-P_1 \Theta}{P_2 \Theta + Q\frac{\partial \Theta}{\partial t_0}},$$

$$\frac{dr}{dt} = -\frac{c^2 \sqrt{x_0^2 + y_0^2}}{\left[\frac{P_2 \Theta + Q\frac{\partial \Theta}{\partial t_0}}{P_1}\right]^2} F_0 \sin (\gamma - \delta).$$

The denominator of r vanishes once between t_0 and t_0'' for the same reason that H does. From 4) of § 1 the derivative dr/dt is ± 0 and has the sign of

$$\frac{F_0}{F_1} \sin (\gamma - \delta).$$

The radius of curvature (19) is positive when its direction is related to that of the curve D for increasing u as the $+y$-axis is to the $+x$-axis; otherwise it is negative.

From these results the following theorems can be stated if it is supposed that $F_0 > 0$:

1) The critical point for a curve D which cuts the extremal C transversally at A, always lies between A and its conjugate A''.

2) The position of the critical point is determined by the curvature of D at A.

3) If the radius of curvature of D at A is supposed to vary continuously from 0 to ∞ on the same side of D as the arc AB, and from ∞ to 0 on the

*See Kneser, loc. cit., p. 111.
opposite side, then the critical point moves continuously from A to A'' when there is a minimum, and from A'' to A when there is a maximum.

§ 5. Relation between the preceding results and those of Kneser.

Sufficient conditions.

Kneser has derived a necessary condition which corresponds to IV. He shows that it is possible to find a set of extremals,*

\[(22) \quad x = \xi(t, a), \quad y = \eta(t, a),\]

each cutting D transversally when $t = t_0$, and giving C for $a = 0$. The curve D is then represented in the vicinity of C by the equations

\[x = \xi(t_0, a), \quad y = \eta(t_0, a),\]

where a is the parameter. The condition III of transversality requires that

\[\left[F_x' \xi_a + F_y' \eta_a \right]_0 = 0\]

for every a near zero, since each curve of the system (22) is transversal to D. This equation can be differentiated for a and the derivatives of F expressed in terms of F_1, L, M, N, from equations (5). From (14) and (20), P and Q depend only upon the curvature and direction of D, and are independent therefore of the parameter representation. It follows that for $a = 0$,

\[
\frac{\partial}{\partial a} \left[F_x' \xi_a + F_y' \eta_a \right]_0 = \left[P + Q \frac{\Delta'(0,0)}{\Delta(0,0)} \right] \left[\xi_a + \eta_a \xi_a \right]_0 = 0,
\]

where

\[\Delta(t, a) = \begin{vmatrix} \xi_t & \xi_a \\ \eta_t & \eta_a \end{vmatrix}.\]

$\Delta(t, 0)$ must therefore satisfy (15). It can be proved, as for ∂_1 and ∂_2, that $\Delta(t, 0)$ is also an integral of (U). Since both H and $\Delta(t, 0)$ are integrals of (U) satisfying (15) they must be linearly dependent. That is,

\[H(t, t_0) = C\Delta(t, 0), \quad C \neq 0.\]

The condition IV can therefore be restated in Kneser's form:

IV'. If C as in IV is to make I a minimum, then a necessary condition is

\[\Delta(t, 0) \neq 0 \text{ for } t_0 \leq t < t_1.\]

Kneser proves this condition † by discussing the case in which B coincides

* Kneser, loc. cit., §30.
† loc. cit., §25.
with the critical point A'. He shows that unless the envelope has a singular point of a particular kind at A', there is no minimum, and so none when B lies beyond A'. The result is a stronger condition than IV', namely,

\[(23) \quad \Delta(t, 0) \neq 0, \quad \text{for} \quad t_0 \leq t \leq t_1.\]

But his proof does not hold if the envelope has the exceptional form mentioned.

The method given in § 3 applies when B lies beyond A', and then includes Kneser's exceptional case. It cannot be used when B and A' coincide. For then it is not certain that the integral H_ε can be made to vanish between t_0 and t_1, and since w must vanish for $t = t_1$, the functions ξ, η cannot be constructed as in (17).

If the conditions II and IV are amended to read:

II'. $F_1 > 0$ for points (x, y) on AB, and for any $(x', y') \neq (0, 0)$,

IV'. $H(t, t_0) \neq 0$ for $t_0 \leq t \leq t_1$,

then $\Delta(t, 0)$ satisfies (23). According to Kneser a field can be constructed about AB, and the four conditions I, II', III', IV' are sufficient conditions for the arc AB to make the integral a minimum.

The University of Minnesota,
July, 1901.