NOTES AND ERRATA: VOLUMES 1, 2, 3

Volume 1

F. R. Moulton : On a class of particular solutions

Volume 2
L. E. Dickson: Canonical forms of quaternary....
P. 107, 1. 1.
P. 109, 1. 7 up.

For
"

$$
\text { P. } 110,1.4 .
$$

"

$$
\begin{array}{cc}
\text { For } & \xi^{\prime} \\
\text { " } & \text { chose } \\
" ، & L_{11} T_{1-1}, L_{2 \mu} \\
" ، & \text { determines } \delta_{12}
\end{array}
$$

P. 113, 1. 22.
P. 121, l. 2 of $\S 15$.

The number (33) refers only to the first of the two equations.
G. A. Miller: Determination of all the groups of order $p^{m} \cdots$.
P. 263, l. 5.
" 1.10.
" 1. 11.
P. 271, 1. 4. Pp. 262, 263.

For $\quad t^{7}$ read t_{7}.
" $\quad p>3 \quad$ " $\quad n=2,3, \cdots, p-2$.
Read $\left(t_{7}^{-1} t_{6} t_{7}\right)^{-1} P_{2}^{n}\left(t_{7}^{-1} t_{6} t_{7}\right)=P_{3} P_{2}^{n}=P_{3}^{n^{2}} P_{2}^{n}=t_{6}^{-n} P_{2}^{n} t_{6}^{n}$.
For $\quad 0, p^{4}-1$ read $p^{2}-1, p^{2}\left(p^{2}-1\right)$.
From the second and third corrections it follows that the $p(p-1)$ subgroups of order p, mentioned in the second line from the bottom of p. 262 , form two equal conjugate sets, and that the non-invariant subgroups of order p^{2} and type $(1,1)$ contained in I are conjugate under I in sets of ($p-1$)/2 instead of forming a single conjugate set, as is stated in line 18 on p. 263. There are, therefore, eight groups of order $p^{m}(p>2)$ which are non-abelian and include the abelian group of type ($m-2,1$); i. e., $p=3$

