NOTES AND ERRATA: VOLUMES 1, 2, 3 Volume 1

F. R. MOULTON: On a class of particular solutions

P. 28, formula (26).		For	$\frac{x-\frac{1}{\sqrt{3}}}{\left\{\left(x-\frac{1}{\sqrt{3}}\right)\right\}^{\frac{3}{2}}}$	read	$\frac{x-\frac{1}{\sqrt{3}}}{\left\{\left(x-\frac{1}{\sqrt{3}}\right)^2\right\}^{\frac{3}{2}}}.$
"	l. 6 up.	"	1.22	"	1.18 .
"	l. "	"	24	"	46 .
66	l. 5 up.	"	93	"	77 .

VOLUME 2

L. E. DICKSON: Canonical forms of quaternary

P. 107, l. 1.	For	ξ΄ 1	read	ξ'1.
P. 109, l. 7 up.	"	chose	"	choose.
P. 110, l. 4.	"	$L_{_{11}}T_{_{1-1}}, L_{_{2\mu}}$	"	$L_{11} T_{1-1} L_{2\mu}$.
P. 113, l. 22.	"	determines δ_{12}	"	determines β_{12} .
P. 121, l. 2 of § 15.	"	=	"	+.
P. 125, middle.	The	number (33) refers only	to th	e first of the two equa-

tions.

G. A. MILLER: Determination of all the groups of order $p^m \cdots$.

P. 263, l. 5.	For t^7 read t_7 .
" l. 10.	" $p > 3$ " $n = 2, 3, \dots, p - 2.$
" l. 11.	Read $(t_7^{-1}t_6t_7)^{-1}P_2^n(t_7^{-1}t_6t_7) = P_3P_2^n = P_3^{n^2}P_2^n = t_6^{-n}P_2^nt_6^n$.
P. 271, l. 4.	For $0, p^4 - 1$ read $p^2 - 1, p^2(p^2 - 1)$.
Pp. 262, 263.	From the second and third corrections it follows that the
	p(p-1) subgroups of order p , mentioned in the second
	line from the bottom of p. 262, form two equal conjugate
	sets, and that the non-invariant subgroups of order p^2 and
	type $(1, 1)$ contained in I are conjugate under I in sets
	of $(p-1)/2$ instead of forming a single conjugate set, as
	is stated in line 18 on p. 263. There are, therefore, eight
	groups of order $p^m(p>2)$ which are non-abelian and
	include the abelian group of type $(m - 2, 1)$; i. e., $p = 3$