does not form an exception. The existence of \(G_8 \) when
\(p > 3 \) may be proved in exactly the same manner as when
\(p = 3 \). Each of the five groups \(G_1, G_3, G_5, G_7, G_9 \) is

conformal with the abelian group of type \((m - 3, 1, 1)\),
\(G_2 \) and \(G_4 \) are conformal with the abelian group of type
\((m - 3, 2)\) while \(G_6 \) is conformal with the one of type
\((m - 1, 1)\). Four of these groups \((G_1, G_2, G_5, G_6)\) con-
tain invariant cyclic subgroups of order \(p^{m-2} \) while these
subgroups are conjugate, in sets of \(p \), in the remaining
four groups.

W. F. Osgood: *On a fundamental theorem* . . .

P. 278, l. 5. After point insert and no two curves corres-
ponding to two distinct values of \(a \) will intersect each other.

E. J. Wilczynski: *Geometry of a simultaneous system* . . .

P. 359, l. 10 up. For form \(y = \lambda \eta, z = \mu \xi \) read form (2).

L. E. Dickson: *Theory of linear groups in an arbitrary field.*

P. 370, l. 5. For \(T_{s,-1} \cdots T_{3,-1} \) read \(T_{2,-1} \cdots T_{s,-1} \).

P. 372, l. 4 up. In \(A'_{13}: Y_{12}' = - Y_{23}' \) \(\Sigma \xi' \) \(\Sigma s' \).

P. 377, l. 15. For \(\Sigma s' \) \(\Sigma s' \).

P. 384, l. 9. \(+ Y_{13} \xi_3 \) \(+ Y_{12} \xi_3 \).

P. 388, l. 15. " subscript \(- \lambda \nu \) \(- \lambda \nu \).

P. 388, l. 8 up. \(p^{6n} \Omega_1 \) \((p^{6n} - 1) \Omega_1 \).

P. 390, l. 7 up. \(\xi_1 \) \(\eta_1 \).

Pp. 383–391. For the simplicity of the group \(H' \) in the excluded case
of modulus 2, see the report in the BULLETIN, November,
1902, of the Ninth Summer Meeting of the Society at
Evanston.

O. Stolz: *Zur Erklärung der Bogenlänge* . . .

P. 31, l. 17. For \(\sum_r f_r d_r \) read \(\sum_r f_r \delta_r \).

P. 35, l. 13. \(\kappa \) \(\Delta \).

L. E. Dickson: *The groups of Steiner in problems of contact.*

P. 44, l. 22. For \((00 x_2 y_2 x_3 y_3 \cdots) \) read \((00 x_2 y_2 x_3 y_3 \cdots) \).