C. N. Haskins: On the invariants

P. 73, (2). For \(\frac{\partial \xi_n}{\partial x_k} \) read \(\frac{\partial \xi_r}{\partial x_k} \).

P. 75, (10). \(a_{ik} \xi_r \) \(\rightarrow \) \(a_{ik} \xi_r \).

P. 77, (1). \(a_{kr} \xi_r \) \(\rightarrow \) \(a_{kr} \xi_r \).

P. 77, (2). \(a_{kr} u_1 \ldots u_{\mu+1} \) \(\rightarrow \) \(a_{kr} u_1 \ldots u_{\mu+1} \).

P. 80. In equation (1) the left member is \((\lambda, \mu, \nu) \).

P. 82, V. For \(\xi_n \) read \(\xi_n \).

P. 83, (9). \(\xi_n \) \(\rightarrow \) 0 \(\xi_n \).

P. 86. The numerator of the fraction in the last line is

\[\begin{vmatrix} a_{12} & 2Z & 3Z_1 & 2Z_2 \\ a_{22} & 0 & z_2 & 0 \\ a_{11} & 0 & 0 & z_1 \\ a_{21} & 2Z & 2Z_1 & 3Z_2 \end{vmatrix} \]

P. 87. For \(\frac{\lambda - \lambda_i - \lambda_j + 1}{\lambda_i + \lambda_j - \lambda_j + 1} \) read \(\frac{\lambda - \lambda_i}{\lambda_j} \).

E. B. Van Vleck: A determination of the number

P. 130, l. 16. This line should be \(E \left(\frac{X + 2}{2} \right) + E \left(\frac{Y + 2}{2} \right) - 2. \)

P. 130, l. 17. For \((22) \) read \((21) \).

P. 130, l. 10 up. \(\lambda - \lambda_i - \lambda_j + 1 \) \(\rightarrow \) \(\lambda_i + \lambda_j > \lambda_j + 1 \).

E. H. Moore: On the projective axioms of geometry.

Pp. 142–158. In Hilbert's system I, II the axiom I4 is not redundant. The error in my proof of the dependence of I4 lies in the omission of a citation of I4 in proof of the second statement of II. 21–24, p. 143. That statement, call it I4*, is in effect: If two planes have their respective sets of incident points identical, they are themselves identical. The axiom I4 does depend upon I1–3, 5, 7, II 1–3, 5 and I4*.—E. H. M.

P. 143, l. 22. Insert the references (I2 ; I4). — The connection is in a 1-1 way.

P. 146, l. 6 up. Omit indeed.

P. 147, l. 4. For thus read hence.

P. 155, l. 13. " segment " line.

P. 156, l. 15. " (k – 1)–space. " k-space.