ON THE GROUPS OF ORDER p^m

WHICH CONTAIN OPERATORS OF ORDER p^{m-2}*

BY

G. A. MILLER

Burnside has considered the groups of order p^m (p being any prime) which contain an invariant cyclic subgroup of order p^{m-2}.† Those in which a cyclic subgroup of order p^{m-2} is transformed into itself by an abelian group of order p^{m-1} and of type $(m - 2, 1)$ have also been studied.‡ The main object of the present paper is to determine the remaining groups of order p^m ($m > 4$ when p is odd, and $m > 5$ when $p = 2$) which contain a cyclic subgroup of order p^{m-2}. As such a subgroup must be transformed into itself by p^{m-1} operators of the group of order p^m,§ each of these groups which does not come under one of the cases already considered must include the non-abelian group H of order p^{m-1} which contains p cyclic subgroups of order p^{m-2}. The group of isomorphisms (I) of H is of order $p^{m-1}(p - 1)$ and contains invariant operators of order p^{m-3} when p is odd and of order p^{m-4} when $p = 2$.||

Let P_1 and P_2 represent two independent operators of H whose orders are p^{m-2} and p, respectively and let $P_1^{p^{m-3}} = P_3$. Suppose also that P_2 has been so chosen that $P_2^{-1}P_1P_2 = P_3P_1$. The group of cogredient isomorphisms (I_2) of H is of order p^2 and of type $(1, 1)$. When p is odd I includes an operator (t_1) of order p such that

$$t_1^{-1}P_1t_1 = P_2P_1, \quad t_1^{-1}P_2t_1 = P_2.$$

Since t_1 permutes the p cyclic subgroups of order p^{m-2} in H cyclically, while some of the operators of I_2 are commutative with each operator of only one of these subgroups, the group generated by I_2 and t_1 is the non-abelian group of

* Presented to the Society (Chicago) January 3, 1902. Received for publication December 2, 1901.

† Burnside, Theory of groups of finite order, 1897, p. 75.
|| With respect to the non-cyclic group of order p^2, when p is odd, or p^3, when p is even, all the operators of a division have the same pth power or p^2th power respectively. Cf. Bulletin of the American Mathematical Society, vol. 7 (1901), p. 350; J. W. Young, Transactions of the American Mathematical Society, vol. 3 (1902), p. 189.
order p^3 which contains no operators of order p^2. As this group contains only p of the p^{m-3} invariant operators of I it follows that I contains the non-abelian subgroup of order p^{m-1} which includes no operator of order p^{m-2} but has an invariant operator of order p^{m-3}, whenever p is odd. This subgroup of order p^{m-1} is invariant under I according to Sylow's theorem. It is not difficult to see that the same group is invariant under the group of isomorphisms of the abelian group of type $(m - 2, 1)$.

§1. Determination of the groups when p is even.

When $p = 2$, I is of order 2^{m-1} and its subgroup (I_2) which is composed of the group of cogredient isomorphisms of H is the four-group. It includes an operator t_2 of order 2 such that

$$t_2^{-1}P_1t_2 = P_1^{-1}, \quad t_2^{-1}P_2t_2 = P_3P_2.$$

This operator is commutative with each operator of I_2 since it is evidently commutative with the operator (t'_2) which transforms P_1 into itself and P_2 into P_3P_2. Hence I contains the abelian group of type $(m - 4, 1, 1)$ and all the operators of this subgroup transform P_1 into a power of itself. An additional generator of I is t_1 as defined above. It should however be observed that t_1 is commutative with only p^{m-3} operators of H when $p = 2$, while it is commutative with p^{m-2} of these operators when p is odd.

It was observed above that I contains an invariant operator of order p^{m-4} when $p = 2$. Let t_3 represent the operator of order 2 which is a power of this invariant operator. From the properties mentioned above it follows that

$$t_3^{-1}t'_2t_1 = t_3t'_2, \quad t_3^{-1}t_1t_2 = t_1.$$

Hence, when $p = 2$, I contains a subgroup of type $(m - 4, 1)$ which is composed of its invariant operators. It is completely defined by the fact that it contains such a subgroup and two non-commutative operators (t_1, t'_2) of order 2 with properties noted above.

We proceed to determine all the groups of order 2^m which contain H and permute its cyclic subgroups of order 2^{m-2}. Such a group must transform H according to a subgroup of order 8 in I, which includes the group of cogredient isomorphisms of H. As all the operators of orders two and four contained in I are included in its subgroup of order 32 there are just four such subgroups of order 8 and each of them is simply isomorphic with the octic group.† They are generated by I_2 and the following four operators of order two respectively:

$$t_1, \quad t_1t_2, \quad t_1t_2t_4, \quad t_1t_2t'_2t_4,$$

* These equations may be verified by observing that each member transforms P_1 and P_4 in the same way.

where t_4 is an operator of order 4 in the group generated by an operator of order 8 in I.

The group (G_1) generated by H and t_1 contains just 2^{m-1} invariant operators and is conformal with the abelian group of type $(m - 2, 1)$; i.e., it contains 2^{m-1} operators of order 2^a ($1 < a < m - 1$) and 7 of order 2. Its four cyclic subgroups of order 2^{m-2} involve, in pairs, the two cyclic subgroups of order 2^{m-3} contained in H. It follows directly from a known theorem that there is no other group which transforms H in the way in which G_1 transforms it.*

The group (G_2) generated by H and t_1t_2 contains only 2 invariant operators. Its operators not contained in H are composed of 2^{m-3} operators of order 2 and 3.2^{m-3} of order 4. Since $P_1^{-2}t_1t_2P_1^2 = P_3P_1^{-4}t_1t_2$ there can be no other group which transforms H in the same manner as t_1t_2 does. Let G_2' represent the group generated by H and $t_1t_2t_4$. Its 2^{m-3} invariant operators are generated by P_1^2 and it is conformal with G_1. As it contains an abelian subgroup of type $(m - 2, 1)$ it is not necessary to consider this group here. There is another group (G_3) which transforms H in the same way as G_2' does and contains four cyclic subgroups of order 2^{m-2}. In G_3 all of these contain the same subgroup of order 2^{m-3} while this is not the case in G_2'. Moreover, G_3 contains no operator of order 2 besides those in H and it has no abelian subgroup of type $(m - 2, 1)$.

It remains to examine the case when H is transformed in the same way as $t_1t_2t_2t_4$ transforms it. The group (G_4) generated by H and $t_1t_2t_2t_4$ contains only two invariant operators. Besides H it contains 2^{m-2} operators of each of the orders 2 and 8. In the other group (G_5) which transforms H in the same manner as G_4 does, there are 2^{m-2} operators of each of the orders 4 and 8 besides H. There cannot be more than two such groups, since H has only two invariant operators under G_4. Hence there are just five groups of order 2^m which contain operators of order 2^{m-2} and in which no cyclic subgroup of this order is either invariant or transformed into itself by an abelian group of order 2^{m-1}. It may be of interest to observe that the group of isomorphisms of H when $p = 2$ is identical with that of the abelian group of type $(m - 2, 1)$.

§ 2. Determination of the groups when p is odd.

When $p > 2$ the two sets of p conjugate subgroups in H are permuted by I according to an intransitive substitution group of order $p^2(p - 1)$, which is obtained by establishing a (p, p) isomorphism between two metacyclic groups of degree p, just as in the case of the abelian group of type $(m - 2, 1)$.\dagger

* Transactions of the American Mathematical Society, vol. 2 (1901), p. 265. The latter part of this theorem clearly assumes that p is odd. It remains true, however, when v_1 is a power of r_1 and the order of r_1 is greater than 4. The general method explained in §2 of the article cited is employed in the present article.

† l. c., p. 261.
groups under consideration must transform the operators of H according to a subgroup of I, which includes I_2, is of order p^3, and permutes the p cyclic subgroups of highest order in H. It is evident that there are just p such subgroups. They are non-abelian and $p - 1$ of them include operators of order p^2.

To prove that these $p - 1$ subgroups are conjugate under I it seems desirable to employ some additional equations, which we proceed to develop. Let t represent an invariant operator of order p^{m-3} in I and let $t^{-1} = t$. It may be assumed without loss of generality that $t^{-1}P_1t_4 = P_1^{1+p^{-4}}$ and $t^{-1}P_2t_4 = P_2$. There are $p(p - 1)$ conjugates of t_1t_4 under I. They are

$$t^{-1}_a t_1 t_4 t^{-1}_b \quad (a = 1, 2, \ldots, p - 1; \beta = 1, 2, \ldots, p)$$

It follows that

$$(A) \quad (t^{-1}_a t_1 t_4 t^{-1}_b)^{-1}P_1^{a}(t^{-1}_a t_1 t_4 t^{-1}_b) = P_2^{P_1^{a+np^{-4}+\beta p^{-3}}}.$$

On the other hand

$$(B) \quad (t_1 t_4)^{-n}P_1^{a}(t_1 t_4)^n = P_2^{P_1^{(1+p^{-4})n+np^{-3}a(a-1)/2}}$$

The right hand members of (A) and (B) are the same only if

$$n = 1 + \beta p, \quad a = 1.$$

Hence not more than p of the $p(p - 1)$ conjugates of t_1t_4 are powers of t_1t_4, i.e., the operators $t_{a\beta}$ transform $\{t_1t_4\}$ into at least $p - 1$ conjugate groups. It remains to observe that only one of these groups can be in any one I_3 of the $p - 1$ subgroups of order p^3 under consideration.

The last fact follows readily from the isomorphism between I and the given intransitive substitution group of order $p^3(p - 1)$. In this isomorphism I_3 corresponds to the subgroup of order p^2 and $\{t_1t_4\}$ corresponds to an invariant subgroup of order p. The I_3 which includes t_1t_4 can therefore involve only p of the conjugates of t_1t_4 under I. In other words, the conjugates of t_1t_4 are found in $p - 1$ conjugates of I_3.

Since these $p - 1$ subgroups of order p^3 are conjugate under I it is necessary to consider only two cases, viz.: the one in which H is transformed according to one of these $p - 1$ subgroups and the other in which H is transformed by the groups in question according to the subgroup of order p^3 in I, which includes no operator of order p^2. In the former case there are only p^{m-4} invariant operators while each of the groups which belongs to the latter contains p^{m-3} such operators. We proceed to prove that there is only one group (G_1) which comes under the former case, while there are two (G_2, G_2') which come under the
latter. It is not difficult to see that the last one of these groups contains a sub-
group of type \((m - 2, 1)\).

Let \(t_6\) be an operator of order \(p^2\) which transforms \(H\) in the same way as \(t_1 t_4\)
does and suppose that it has been so chosen that \(t_6^2 = P_2\). The group generated
by \(H\) and \(t_6\) contains no operator of order \(p\) besides those of \(H\). That this is
the only group in question which transforms \(H\) in the same way as \(G_1\) does may
be proved in exactly the same manner as the theorem to which reference is made
in the last footnote. It may be observed that \(G_1\) is conformal with the abelian
group of type \((m - 2, 2)\).

The group \((G'_2)\) generated by \(t_i\) and \(H\) is conformal with the abelian group
of type \((m - 2, 1, 1)\). In fact, it includes the abelian group of type
\((m - 3, 1, 1)\) since \(t_i\) is commutative both with \(P_1^2\) and with \(P_2\). The other
group \(G'_2\), which transforms \(H\) in the same manner as \(G_2\) does, may be ob-
tained by the method mentioned in the last footnote. Since it includes the
abelian group of type \((m - 2, 1)\) it will not be considered here. Hence, there
are two and only two groups of order \(p^m\) \((p > 2 \text{ and } m > 5)\) which include
operators of order \(p^{m-2}\) without containing either an invariant cyclic subgroup
of this order or an abelian subgroup of type \((m - 2, 1)\). These two groups
are conformal respectively with the abelian groups of type \((m - 2, 2)\) and of
type \((m - 2, 1, 1)\). When \(m = 5\) the group \(G_1\) evidently contains an invariant
cyclic subgroup of order \(p^{m-2}\); hence there is only one group of order \(p^5\) \((p > 2)\)
which contains operators of order \(p^3\) without containing either an invariant cyclic
subgroup of this order or the abelian group of type \((3, 1)\).