NOTES AND ERRATA: VOLUME 1, 3, 4, 5

VOLUME 1

F. R. Moulton: On a class of particular solutions

P. 28, ll. 6 and 5 up. The numerical specifications are correct; the notice to the contrary (Notes and errata, vol. 3, p. 499) is in error.
—F. R. M.

VOLUME 3

E. V. Huntington: A complete set of postulates

P. 267, l. 16 up. For one and only one read at least one.

E. H. Moore: A definition of abstract groups.

P. 490, ll. 5–13. The independence of the postulates of

\[(M'') = (1, 2, 3'', 3', 3'', 4''\)\]

is not established, for the reasoning of the paragraph, ll. 5–13, p. 490, is in error, viz., (l. 5) from \((3, 3_r)\) does not follow \((3'', 3'_r, 3''_r)\), and (l. 12) the example for \((3_r)\) in \((M)\) does not suffice for \((3''_r)\) in \((M'')\).

Now, in fact, in \((M'')\) the postulate \((3''_r)\) is redundant, and we have the interesting definition,

\[(\bar{M}'') : (1, 2, 3', 3''_r, 4'\).

In \(\bar{M}''\) the postulates are mutually independent, and the same thing remains true when we add to the postulates of \(\bar{M}''\) the postulate that the multiplication or composition of elements is commutative. For proof of the statements here made I refer to a note to appear in volume 6 of the Transactions.—E. H. M.

VOLUME 4

L. E. Dickson: Definitions of a field by independent postulates.

P. 19. As pointed out by Dr. E. V. Huntington, system \(\Sigma_{s'}\) forms a field, \(8'\) being satisfied by \(n = -2\). I find that the following system

549