ON CERTAIN HYPERABELIAN FUNCTIONS WHICH ARE EXPRESSIBLE BY THETA SERIES*

BY

J. I. HUTCHINSON

The moduli of periodicity of an integral \(u \) of the first kind on the Riemann surface

\[
y'' = (x - a)^\alpha (x - b)^\beta (x - c)^\gamma (x - d)^\delta
\]

are linearly expressible in terms of two such \(A_i, B_i \) when \(\alpha + \beta + \gamma + \delta \) is a multiple of \(v \). If \(u \) be replaced by the new integral \(u' = u/B \), the moduli of periodicity of \(u' \) will be of the form \(m + n\omega \), in which \(\omega = A_i/B_i \). Accordingly the table of periods for the \(p \) integrals \(u' \) will be expressible linearly in terms of the \(p \) parameters \(\omega \). The bilinear relations among the periods will enable us to reduce the linearly independent parameters \(\omega \) to a number \(p' < p \). These remaining parameters will be connected by certain transcendental relations. Suppose, however, that after constructing the table of periods by aid of the Riemann surface, it is assumed that the \(p' \) linearly independent \(\omega \) are also absolutely independent of one another. The table of periods as thus generalized will no longer be related to the given Riemann surface. It can nevertheless serve as a table of theta moduli, since the necessary bilinear relations and inequality conditions are satisfied. The table being now written in its homogeneous form as expressed in terms of \(A_i \) and \(B_i \), let these undergo the transformation

\[
A'_i = a_iA_i + b_iB_i, \\
B'_i = c_iA_i + d_iB_i,
\]

and suppose that the result is equivalent to a linear transformation of the theta moduli the integer coefficients of which form the matrix

\[
\begin{pmatrix}
\alpha_{ik} & \beta_{ik} \\
\gamma_{ik} & \delta_{ik}
\end{pmatrix}
\]

We thus obtain a group of transformations of the theta functions to which cor-

* Presented to the Society September 7, 1905. Received for publication September 25, 1905.

† For more definite propositions concerning the relations among these \(\omega \), see a paper presented to the American Mathematical Society, September 7, 1905, by Mr. Richard Morris, a brief résumé of which is given in the Bulletin for November, 1905.
responds a group of transformations on the ω, which is linear with respect to each variable. A uniform function of the ω, which is unaltered for the given group of transformations is called, after Picard, a hyperabelian function. Hyperabelian functions which belong to a group generated in the manner above described, can evidently be expressed in terms of theta functions with zero arguments.

To make the matter more clear, let us take as a particular case the Riemann surface

$$y^n = (x - a)(x - b)(x - c)^{n-1}(x - d)^{n-1}.$$

To form a convenient picture of the surface and its cross-cuts, let a, c, b, d be placed at the vertices of a rectangle in the order just written, the sides ac and bd of which are branch-lines of the surface. Take any point P (inside the rectangle, for convenience) and denote by α_k a path starting at P in the kth sheet, winding once around a positively, and returning to P in the $(k+1)$th sheet. Let β_k be a similar path about b. Let γ_k be a path from P in the kth sheet, winding once around c, and returning in the $(k-1)$th sheet, and δ_k a similar path about d. The equation

$$a_k = \sum_{i=1}^{k} \alpha_i + \sum_{i=k}^{1} \beta_{i+1}$$

will be used to express symbolically that the path a_k is obtained by first describing the path α_1, then the path α_2, and so on in order. A canonical system of $2p$ cross-cuts a_k, b_k may then be constructed from the a_k just defined and cuts b_k defined by the relation

$$b_k = a_k + \delta_{k+1}.$$

If

$$u_k = \int \frac{(x - c)^{k-1}(x - d)^{k-1}}{y^k} \, dx \quad (k = 1, 2, \cdots, n - 1)$$

be taken as the p integrals of the first kind, the table of periods can readily be expressed in terms of the moduli of periodicity at α_1, β_1. If A_i, B_i denote the value of u_i when integrated along the paths α_i, β_i respectively, and if we write $\rho = e^{2\pi i/6}$, the result for $n = 5$ is:

$$u'_1 = -1, -\rho^4, -\rho^3, -\rho^2, -\rho^1 \quad \omega_1, (1 + \rho^4)\omega_1, (-\rho - \rho^2)\omega_1, -\rho\omega_1$$

$$u'_2 = -1, -\rho^3, -\rho, -\rho^4 \quad \omega_2, (1 + \rho^3)\omega_2, (-\rho^2 - \rho^4)\omega_2, -\rho^2\omega_2$$

$$u'_3 = -1, -\rho^2, -\rho^4, -\rho \quad \omega_3, (1 + \rho^2)\omega_3, (-\rho - \rho^3)\omega_3, -\rho^3\omega_3$$

$$u'_4 = -1, -\rho, -\rho^2, -\rho^3 \quad \omega_4, (1 + \rho)\omega_4, (-\rho^3 - \rho^4)\omega_4, -\rho^4\omega_4$$

Instead of applying the processes indicated above to this table, we will deduce a simpler case by means of a transformation. Introduce as new integrals $w_1 = \frac{1}{2}(u'_1 - u'_3)$, $w_2 = \frac{1}{2}(u'_2 - u'_3)$, $w_3 = \frac{1}{2}(u'_1 + u'_4)$, $w_4 = \frac{1}{2}(u'_2 + u'_4)$ and make the transformation.
The above table then reduces to two hyperelliptic tables which, after multiplying the rows by B_1 and B_2 to make homogeneous and using the bilinear relations, are:

\[
\begin{align*}
(I) & \quad W_1 B_1 (\rho^3 - \rho^2) B_2, \quad (1 + \rho^4) A_1, \quad \rho^3 A_1 \\
& \quad W_2 B_2 (\rho^3 - \rho^4) B_1, \quad (1 + \rho^2) A_2, \quad \rho^4 A_2
\end{align*}
\]

\[
\begin{align*}
(II) & \quad W_1 B_1 (\rho^3 + \rho^4) B_1, \quad (1 - \rho^4) A_1, \quad (1 + \rho^3 - \rho^4) A_1 \\
& \quad W_2 B_2 (\rho^3 + \rho^2) B_2, \quad (1 - \rho^3) A_2, \quad (1 + \rho^3 - \rho^4) A_2
\end{align*}
\]

In table (I) change A_i, B_i to A'_i, B'_i and substitute for these the expressions (1). Again, denote the elements in (I) by the usual notation $A_{ik} | B_{ik}$, and let these be subjected to the transformation

\[
A'_{ik} = \sum_{l=1}^{2} \left(\alpha_{kl} A_{il} + \beta_{kl} B_{il} \right),
\]

\[
B'_{ik} = \sum_{l=1}^{2} \left(\gamma_{kl} A_{il} + \delta_{kl} B_{il} \right)
\]

of determinant 1, in which α_{ik}, β_{ik}, \ldots are integers satisfying certain well known bilinear relations. Assume the two transformed tables thus obtained to be identical. On comparing like terms certain conditions are obtained from which the following results may be deduced.

For brevity write $\alpha_{ii} = \alpha_i$, $\beta_{ii} = \beta_i$, $\gamma_{ii} = \gamma_i$, $\delta_{ii} = \delta_i$. Then the theta transformation can be expressed in the form

\[
\begin{bmatrix}
\alpha_1 & \alpha_2 \\
\alpha_4 & \alpha_1 + \alpha_2 \\
\gamma_1 & \gamma_2 \\
\gamma_2 & \gamma_1 + \gamma_2
\end{bmatrix}
\begin{bmatrix}
\beta_1 \\
\beta_2 \\
\beta_1 + \beta_2 \\
\delta_1 + \delta_2
\end{bmatrix}
\]

the coefficients being subject to the conditions
\[\alpha_1 \delta_1 + \alpha_2 \delta_2 - \beta_1 \gamma_1 - \beta_2 \gamma_2 = 1, \]
\[\alpha_1 \delta_2 + \alpha_2 (\delta_1 + \delta_2) - \gamma_1 \beta_2 - \gamma_2 (\beta_1 + \beta_2) = 0. \]

The coefficients in the corresponding transformation on the \(\omega_i \)

\[\omega_i' = \frac{a_i \omega_i + b_i}{c_i \omega_i + d_i}, \quad (i = 1, 2) \]

take the form

\[
\begin{align*}
\alpha_1 &= \delta_1 - \lambda \delta_2, & \alpha_2 &= \delta_1 - \lambda' \delta_2, \\
\beta_1 &= (\rho - 1)(\gamma_1 - \lambda \gamma_2), & \beta_2 &= (\rho^2 - 1)(\gamma_1 - \lambda' \gamma_2), \\
c_1 &= \frac{1}{\rho - 1} (\beta_1 - \lambda \beta_2), & c_2 &= \frac{1}{\rho^2 - 1} (\beta_1 - \lambda' \beta_2), \\
d_1 &= \alpha_1 - \lambda \alpha_2, & d_2 &= \alpha_1 - \lambda' \alpha_2,
\end{align*}
\]

in which \(\lambda = \rho + \rho^4 \) and \(\lambda' = \rho^2 + \rho^3 \). Also \(a_i d_i - b_i c_i = 1 \) on account of (2).

This transformation may be reduced to one with real coefficients by means of the substitution \(\omega_1 = i \rho^3 \alpha_1, \omega_2 = i \rho \alpha_2 \).

Reducing table (I) to the normal form in the usual way and applying the formulæ of Krazer and Prym for the transformation of the theta functions we find

\[\Delta_A = (c_1 \omega_1 + d_1)(c_2 \omega_2 + d_2)(\pi i)^2, \]

and hence obtain a relation of the form

\[\partial \left[\omega', \omega_1, \omega_2 \right] = C \sqrt{(c_1 \omega_1 + d_1)(c_2 \omega_2 + d_2)} \partial \left[\omega_1, \omega_2 \right], \]

in which \(C \) is a function of the coefficients of transformation only, and \(\partial \left[\omega_1, \omega_2 \right] \) denotes the theta function with zero arguments and moduli

\[
\begin{align*}
\alpha_{11} &= \frac{1}{6} \pi i \left[(\rho^4 - \rho)(1 + \rho^4) \omega_1 + (\rho^3 - \rho^5)(1 + \rho^3) \omega_2 \right], \\
\alpha_{12} &= \frac{1}{6} \pi i \left[(\rho - \rho^3) \omega_1 + (\rho^2 - \rho) \omega_2 \right], \\
\alpha_{22} &= \frac{1}{6} \pi i \left[(\rho^4 - 1) \omega_1 + (\rho^3 - 1) \omega_2 \right].
\end{align*}
\]

By means of formula (4) we may construct from quotients of theta series, functions of \(\omega_1, \omega_2 \) which are unaltered by the given group of transformations.

In a similar manner from table (II) we derive the theta transformations

\[
\begin{array}{cccc}
\alpha_1 & \alpha_2 & \beta_1 & -\beta_2 \\
-\alpha_2 & \alpha_1 - 3\alpha_2 & -\beta_2 & -\beta_1 + 3\beta_2 \\
\gamma_1 & \gamma_2 & \delta_1 & -\delta_2 \\
\gamma_2 & -\gamma_1 + 3\gamma_2 & \delta_2 & \delta_1 - 3\delta_2
\end{array}
\]
the coefficients of which satisfy the conditions
\[
\alpha_1 \delta_1 - \alpha_2 \delta_2 - \beta_1 \gamma_1 + \beta_2 \gamma_2 = 1,
\]
\[
\alpha_1 \delta_2 + \alpha_2 (\delta_1 - 3 \delta_2) - \beta_2 \gamma_1 + \gamma_2 (\beta_1 + 3 \beta_2) = 0.
\]

The coefficients in the transformation (3) are
\[
\alpha_1 = \delta_1 - \mu \delta_2, \quad \alpha_2 = \delta_1 - \mu' \delta_2,
\]
\[
b_1 = \frac{1}{\rho - \rho^3} (\gamma_1 - \mu \gamma_2), \quad b_2 = \frac{1}{\rho^2 - \rho} (\gamma_1 - \mu' \gamma_2),
\]
\[
c_1 = (\rho - \rho^3) (\beta_1 - \mu \beta_2), \quad c_2 = (\rho^2 - \rho) (\beta_1 - \mu' \beta_2),
\]
\[
d_1 = \alpha_1 - \mu \alpha_2, \quad d_2 = \alpha_1 - \mu' \alpha_2,
\]
in which \(\mu = \rho + \rho^4 + 2\) and \(\mu' = \rho^2 + \rho^3 + 2\).

Cornell University,
Ithaca, N. Y.