DETERMINATION OF THE ABSTRACT GROUPS OF ORDER p^2qr; p, q, r BEING DISTINCT PRIMES

OLIVER E. GLENN

Since the publication† in 1899 of Professor Miller’s “Report on recent progress in the theory of groups of finite order,” Western‡ has published his determination of the groups of order p^3q, and Le Vasseur§ has discussed the order p^2q^2. This paper is devoted to the determination of all groups of the order p^2qr. It thus completes the discussion of the problem of groups whose orders are products of four primes. ||

With the exception of the group of order $2^2 \cdot 3 \cdot 5$, simply isomorphic with the icosahedron-group, all groups of order p^2qr are solvable. The maximal self-conjugate subgroups will therefore serve as the basis of classification. The twelve possible arrangements of the factors of composition are

$$(1) \ ppqr, \ (2) \ pprq, \ (3) \ pqpr, \ (4) \ pqrp, \ (5) \ prpq, \ (6) \ prqp,$$

$$(7) \ qppr, \ (8) \ qprp, \ (9) \ qrpp, \ (10) \ rqpp, \ (11) \ rppq, \ (12) \ rpqp.$$

If for a given type of group precisely the arrangements $(i), (j), (k), \ldots$, of the factors of composition are possible, then we symbolize the group (i, j, k, \ldots). Two groups having distinct symbols cannot be simply isomorphic.

The group G always contains a maximal invariant subgroup** of order p^2q, and may contain maximal subgroups†† of order p^2r and pqr. We shall discuss

*Presented to the American Mathematical Society (New York) February 25, 1905. Received for publication July 1, 1905.
in detail in this paper only two classes of groups: those possessing invariant subgroups of both the types \(H_{p^2 q} \) and \(H_{p^2 r} \), and those possessing maximal invariant subgroups of the type \(H_{p^2 q} \) only. A detailed summary of the results obtained in the other classes is given at the end. We shall thus be concerned principally with the subgroups \(H_{p^2 q} (\sigma = q, r) \) all types of which are given in the following table, in which \(\tau \) denotes the number of distinct types, while \((p) \) signifies \((\text{modulo } p)\):

<table>
<thead>
<tr>
<th>(H_{p^2 q, i})</th>
<th>(S_3^{-1} S_3 S_3^{-1} S_1 S_3 S_3^{-1} S_2 S_3 S_3^{-1} S_1 S_2)</th>
<th>Parameters</th>
<th>(\tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i = I)</td>
<td>(S)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>(\Omega)</td>
<td>(S_1)</td>
<td>(S_2)</td>
<td>1</td>
</tr>
<tr>
<td>(III)</td>
<td>(S_1^*)</td>
<td>(S_2)</td>
<td>(S_1)</td>
</tr>
<tr>
<td>(IV)</td>
<td>(S_1^*)</td>
<td>(S_2^*)</td>
<td>(S_1)</td>
</tr>
<tr>
<td>(V)</td>
<td>(S_1^*)</td>
<td>(S_2^*)</td>
<td>(S_1)</td>
</tr>
<tr>
<td>(VI)</td>
<td>(S_2)</td>
<td>(S_1^{-1} S_2 S_1)</td>
<td>(S_1)</td>
</tr>
</tbody>
</table>

\(\sigma = q, r; S_1 = 1, S_2 = 1, S_3 = 1. \)

§ 1. Determination of \(\rho_{\alpha, \gamma} \).

By Sylow's theorem, \(N_\sigma = qr/\sigma, p, p^2, p^2 q \sigma, p^2 q r/\sigma \) or 1. If \(N_{\sigma_1} = 1 \) then \(\rho_{\alpha, \gamma} = 1 \), \(\Omega \) being any operator of prime order in \(G \). When \(N_\sigma > 1 \), the result of transforming the single conjugate set of \(N_\sigma \) subgroups

\[g_1, g_2, g_3, \ldots, g_{N_\sigma} \]

by \(\Omega \) is to permute them among themselves. Hence

\[\Omega^{-1}(g_1, g_2, \ldots, g_{N_\sigma}) \Omega = (g_1^1, g_2^1, \ldots, g_{N_\sigma}^1) = J_{\Omega, \sigma}. \]

It follows that \(J_{\Omega, \sigma} = 1 \) and

\[N_\sigma - \rho_{\alpha, \sigma} \equiv 0 \pmod{\omega}; \quad \rho_{\alpha, \sigma} \equiv 1. \]

Next let \(\omega = \sigma \). Then \(N_p = (p^2 - 1)/(p - 1) = p + 1 \), and

\[p + 1 - \rho_{\alpha, p} \equiv 0 \pmod{\sigma}. \]

Hence either \(\rho_{\alpha, p} \equiv 0 \) or else \(\rho_{\alpha, p} \equiv 2 \) (\(\omega = q, r \)). Now if the subgroup \(I_{\alpha_3} \) of \(H_{p^2 q, i} \) is cyclical the order of its group of isomorphisms is

\[I = \phi(p^2) = p(p - 1). \]

*Throughout the paper \(\iota \) denotes a non-integral mark of the GF \(p^2 \). Thus \(\iota^\sigma = 1(p) \) is an abbreviation for \(\iota^\sigma \equiv 1 \pmod{p, p}, P \) being any quadratic function irreducible modulo \(p \).

†Sylow, Mathematische Annalen, vol. 5 (1872).
If I_{pq} is of type $[1, 1]$ its group of isomorphisms is simply isomorphic with the congruence group $\{S_1, S_2 \cdots \}$ of order $I = p(p - 1)^2(p + 1)$, where S_1 is
\[
y_1 \equiv a_{11}x_1 + a_{12}x_2, \quad y_2 \equiv a_{21}x_1 + a_{22}x_2 \pmod{p},
\]
or say
\[
S_1 = (a_{11}x_1 + a_{12}x_2, a_{21}x_1 + a_{22}x_2).
\]
Since Ω corresponds to an isomorphism of G, $\{\Omega\}$ corresponds to a subgroup of the group of isomorphisms of G and ω divides I. Hence when I_{pq} is cyclical, or when $I_{pq} = [1, 1]$ and $p \equiv 1(\sigma)$, $\rho_{\omega, p} \equiv 2$. But when $p \equiv -1(\sigma)$ and p is odd, $\rho_{\omega, p} = 0$. Also since $\rho_{\omega, \sigma} \equiv 1$, $J_{\omega, \sigma}$ and $J_{\omega, \sigma}$ may be permutable. If
\[
S_1 = (b_{11}x_1 + b_{12}x_2, b_{21}x_1 + b_{22}x_2)
\]
the necessary and sufficient conditions that $S_1S_2 = S_2S_1$ are
\[
(3) \quad \delta_{12} = \begin{vmatrix}
 a_{12} & b_{12} \\
 a_{11} - a_{22} & b_{11} - b_{22}
\end{vmatrix} = 0,* \quad \delta'_{12} = \begin{vmatrix}
 a_{21} & b_{21} \\
 a_{11} - a_{22} & b_{11} - b_{22}
\end{vmatrix} = 0,
\]
\[
d_{12} = \begin{vmatrix}
 a_{12} & a_{21} \\
 b_{12} & b_{21}
\end{vmatrix} = 0.
\]

§ 2. Class (9, 10), $p > q > r$.

We now consider the groups whose symbol is (9, 10), having the maximal subgroups H_{pq}, and $H_{pqr}, (i, j = IV, V, VI)$. Since I_{pq} is invariant in G the existence of a subgroup of type IV excludes the possibility of a subgroup of type V or VI, and vice versa. There are thus five cases to consider.

[1] $i = j = IV$. Here $I_{pq} = \{P\}$ is cyclical and P may be regarded as the generator of order p^2 in both H-subgroups. Since $\rho_{q, r} \equiv 1$, we may choose $\{R\}$ permutable with Q and, since $q > r$, $QR = RQ$, so that G is defined by $P^aq = Q^r = R^r = 1$, $Q^{-1}PQ = P^a$, $R^{-1}PR = P^b$, $QR = RQ$; or for brevity $G = (\alpha : \beta : 1)$, where
\[
\alpha^q = 1, \quad \beta^r = 1(p^2), \quad p \equiv 1(qr), \quad \tau = 1.
\]

[2] $i = j = V$. Let $H_{pq}, (i = IV, V, VI)$. $H_{pqr}, (i = IV, V, VI)$, wherein $QR = RQ$. We may write
\[
R^{-1}P_1R = P_1, \quad R^{-1}P_2R = P_2^b, \quad \alpha^r = 1(p), \quad \beta = \alpha^q.
\]
\[
Q^{-1}P_1Q = P_1^{a_1}P_2^{a_2}, \quad Q^{-1}P_2Q = P_1^{a_1}P_2^{a_2},
\]
and from the permutable isomorphisms of I_{pq}
\[
J_Q = \left(\begin{array}{c}
P_1^{a_1}P_2^{a_2} \\
P_1^{a_2}P_2^{a_1} + a_{22}P_2^{a_2}
\end{array} \right), \quad J_R = \left(\begin{array}{c}
P_1^{a_1}P_2^{a_2} \\
P_1^{a_2}P_2^{a_1} + a_{22}P_2^{a_2}
\end{array} \right),
\]

* All congruences are taken modulo n unless otherwise indicated.
\[\delta_{12} = a_{12}(\alpha - \beta) \equiv 0, \quad \delta'_{12} = a_{21}(\alpha - \beta) \equiv 0. \]

Reserving for later treatment the ambiguous case \(h = 1 \), we deduce \(a_{12} = a_{21} = 0 \). Suppose next that

\[
R^{-1} P'_i R = P_{1i}^{b_{1i}} P_{2i}^{b_{2i}} \quad (i = 1, 2).
\]

Then

\[
(RQ)^{-1} P'_1 (RQ) = P_{1i}^{b_{1i}} P_{2i}^{b_{2i}} = (QR)^{-1} P'_1 (QR) = P_{1i}^{b_{1i}} P_{2i}^{b_{2i}},
\]

\[
b_{11}(a_{11} - \gamma) \equiv 0, \quad b_{21}(a_{22} - \gamma) \equiv 0, \quad \gamma' \equiv 1,
\]

\[
b_{12}(a_{11} - \delta) \equiv 0, \quad b_{22}(a_{22} - \delta) \equiv 0, \quad \delta' \equiv \gamma'k.
\]

Thus when \(h \equiv 1, k \equiv 1 \) we have one of the two equivalent results

\[
a_{11} \equiv \gamma, \quad a_{22} \equiv \delta \quad \text{or} \quad a_{11} \equiv \delta, \quad a_{22} \equiv \gamma.
\]

In case \(h \equiv 1, k \equiv 1 \), the set (5) becomes

\[
b_{11}(a_{11} - \gamma) \equiv 0, \quad b_{21}(a_{22} - \gamma) \equiv 0,
\]

\[
b_{12}(a_{11} - \gamma) \equiv 0, \quad b_{22}(a_{22} - \gamma) \equiv 0,
\]

and there are three possibilities to consider, viz.,

(i) \(a_{11} \equiv \gamma, \quad b_{11} \equiv 0, \quad b_{12} \equiv 0, \quad b_{21} \equiv 0, \quad b_{22} \equiv 0, \quad a_{22} \equiv \gamma; \)

(ii) \(a_{11} \equiv \gamma, \quad a_{22} \equiv \gamma, \quad b_{21} \equiv b_{22} \equiv 0, \quad b_{11} \equiv 0, \quad b_{12} \equiv 0; \)

(iii) \(a_{11} \equiv \gamma, \quad a_{22} \equiv \gamma. \)

Case (i) implies

\[
R^{-1} P'_1 R = P_{21}^{b_{21}}, \quad R^{-1} P'_2 R = P_{22}^{b_{22}},
\]

\[
R^{-1} P_{1i}^{b_{1i}} R = R^{-1} P_{2i}^{b_{2i}} R \quad \text{or} \quad P_{1i}^{b_{1i}} = P_{2i}^{b_{2i}},
\]

contrary to the independence of \(P'_1 \) and \(P'_2 \). Likewise, case (ii) is excluded.

Hence \(a_{11} \equiv a_{22} \equiv \gamma \).

In a similar manner, when \(h \equiv 1, k \equiv 1 \), we get \(a_{11} \equiv a_{22} \equiv \alpha \).

Next let \(h = 1, k = 1 \), so that

\[
R^{-1} P'_i R = P_{1i}^{a_{1i}}, \quad Q^{-1} P'_i Q = P_{1i}^{a_{2i}} \quad (i = 1, 2).
\]

One of the operations \(P'_1 \), \(P'_2 \) must be independent of \(P_1 \). As \(\gamma' \equiv 1 \mod p \), we may assume that \(P_1 \) and \(P'_2 \) are independent. These will generate \(I_{ps} \), so that

\[
Q^{-1} P_1 Q = P_{1i}^{a_{1i}} P_{2i}^{a_{2i}}, \quad R^{-1} P'_2 R = P_{1i}^{b_{1i}} P_{2i}^{b_{2i}}.
\]

The abelian conditions from \(J_q \) and \(J_R \) are [Eq. (3)]

\[
\delta_{12} = b_{12}(a_{11} - \delta) \equiv 0, \quad \delta'_{12} = a_{21}(b_{22} - \alpha) \equiv 0, \quad d_{12} = a_{21}b_{12} \equiv 0.
\]

Thus three possibilities arise, viz.,
For (i), let $P'_1 = P'_1 P'_2$, $P'_2 = P'_1 P'_2$, whence

\[Q^{-1} P'_1 Q = P'^{\gamma_1} P'^{\gamma_2} = P^{h_1} P^{h_2}, \]

\[R^{-1} P'_2 R = P^{h_2} P^{h_3} = P_{a_1+1} P_{a_2+1}, \]

\[(\gamma - \delta) x \equiv 0, \quad (\gamma - \delta) y \equiv 0, \]

\[w(b_{22} - \beta) \equiv 0, \quad z(\alpha - \beta) + b_{12} w \equiv 0. \]

Hence $\gamma \equiv \delta$ and $k = 1$; but as P'_1, P'_2 are independent, $w \equiv 0$, $b_{22} \equiv \beta$, $\alpha \equiv \beta$ and $h \equiv 1$, contrary to hypothesis. Since (ii) is likewise excluded, we have $a_{21} \equiv b_{12} \equiv 0$,

\[Q^{-1} P'_1 Q = P'^{\gamma_1}, \quad R^{-1} P'_2 R = P^{h_2}, \]

\[x(a_{11} - \gamma) \equiv 0, \quad y(\delta - \gamma) \equiv 0, \]

\[z(\beta - \alpha) \equiv 0, \quad w(b_{22} - \beta) \equiv 0, \]

where $x \equiv 0$, $w \equiv 0$. Hence when $\alpha \equiv \beta$, $\delta \equiv \gamma$ there results $a_{11} \equiv \gamma$, $b_{22} \equiv \alpha$. We are thus led to a single set of defining relations:

\[P'_1 = P'_2 = Q = R' = 1, \quad P'_1 P'_2 = P'_2 P'_1, \quad Q^{-1} P'_1 Q = P'_1, \]

\[Q^{-1} P'_2 Q = P'_2, \quad R^{-1} P'_1 R = P'_1, \quad R^{-1} P'_2 R = P'_2, \quad R Q = Q R, \]

\[\alpha' = 1(p), \quad \gamma' = 1(p) \quad (h = 1, 2, \ldots, r - 1; k = 1, 2, \ldots, q - 1), \]

or, briefly, say $G = (1: \gamma 0: 0\gamma^k: \alpha 0: 0\alpha^k: 1)$. Proceeding to the determination of τ we observe that there are, by hypothesis, two subgroups, $\{P'_1\}, \{P'_2\}$, both permutable with Q and R. In any isomorphism of G with itself either $\{P'_1\} \sim \{P'_2\}, \{P'_2\} \sim \{P'_1\}$ or else $\{P'_1\} \sim \{P'_1\}, \{P'_2\} \sim \{P'_2\}$. Hence there are two choices of generators of order p. Every element of G is of the form $\Omega = R^{x} Q^{\alpha} P'^{\gamma_1} P'^{\gamma_2}$. Hence $\Omega' = R^{x'} Q^{\alpha'} P'^{\gamma_1'} P'^{\gamma_2'}$, so that Ω is of order r only when $y \equiv 0 \pmod{q}$ and of order q when $x \equiv 0 \pmod{r}$. Thus the most general operator of order q is $Q'_0 = Q^{r} P'^{\gamma_1} P'^{\gamma_2}$, which transforms G in the same manner as $Q = Q^{r}$. Similarly $R'_0 = R^{r}$. Employing the new generators $R'_1, Q'_0, P'_{10} = P'_1, P'_{20} = P'_2$, we get

\[(1: \gamma 0: 0\gamma^k: \alpha 0: 0\alpha^k: 1) \sim (1: \gamma 0: 0\gamma^k: \alpha 0: 0\alpha^k: 1). \]

Hence any set of relations involving arbitrary primitive roots (α', γ') can be transformed into the original set. Next let $P'_{10} = P'_2, P'_{20} = P'_1$. Then

\[(1: \gamma 0: 0\gamma^k: \alpha 0: 0\alpha^k: 1) \sim (1: \gamma 0: 0\gamma^k: \alpha 0: 0\alpha^k: 1). \]
if

\[ky \equiv 1 \pmod{q}, \quad hx \equiv 1 \pmod{r}. \]

The group characterized by \([h, k]\) is thus isomorphic with \([x, y]\) when (6) is satisfied. Further \(\tau\) equals the number of distinct solutions of (6), e.g., when \(r = 2\), \(\tau = \frac{1}{2}(q + 1)\), and when \(r\) is odd, \(\tau = \frac{1}{2}(qr + q + r + 1)\).

\[[3] \quad i = VI, j = V. \quad \text{When} \quad h = 1 \quad \text{we have} \quad Q^{-1}P_jQ = P_{2j}^\nu (j = 1, 2). \]

Assuming that

\[R^{-1}P_1 R = P_1 P_1^\nu, \quad R^{-1}P_2 R = P_1 P_2^\nu, \]

we derive

\[a_{11} x - z \equiv 0, \quad x - (\nu + \iota - a_{11})z \equiv 0, \]

\[a_{22} y - w \equiv 0, \quad y - (\nu + \iota - a_{22})w \equiv 0. \]

The elimination of \(x, y, z, w\) gives

\[a_{jj}^2 - (\nu + \iota) a_{jj} + 1 \equiv 0 \quad (j = 1, 2), \]

whence \(a_{jj} = \nu\) or \(\iota\). Hence \(a_{11}, a_{22}\) are galoisian imaginaries* and \(G\), for \(i = VI, j = V\), does not exist.

Before considering the ambiguous case \(h = 1\) a few general results must be established.

Let \(S\) and \(T\) be any set of generators of \(I_{x^*}\), so that \(G = \{S, T, Q, R\}\).

We may write

\[P_1' = S^*T^\nu, \quad P_2' = S^*T^\iota, \]

\[Q^{-1}SQ = S^{a_{11}}T^{a_{21}}, \quad Q^{-1}TQ = S^{a_{12}}T^{a_{22}}. \]

Hence

\[Q^{-1}P_1'Q = P_2' = S^*T^\iota = S^{a_{11}x + a_{12}y}T^{a_{21}x + a_{22}y}, \]

\[Q^{-1}P_2'Q = P_1'^{-1}P_2'^{\nu + \iota} = S^{-x + (\nu + \iota)x}T^{-y + (\nu + \iota)y} = S^{a_{11}x + a_{12}y}T^{a_{21}x + a_{22}y}, \]

whence results the eliminant

\[
\begin{array}{cccc}
 x & y & z & w \\
 a_{11} & a_{12} & -1 & 0 \\
 a_{21} & a_{22} & 0 & -1 \\
 1 & 0 & a_{11} - t & a_{12} \\
 0 & 1 & a_{21} & a_{22} - t \\
\end{array}
\equiv 0 \pmod{p},
\]

where \(t = \nu + \iota\). Its expansion gives

\[
D_{12}^2 - t(a_{11} + a_{22} - t)D_{12} + a_{22}^2 - a_{11}^2 + t(a_{11} - a_{22}) + 2a_{12}a_{21} + 1 \equiv 0.
\]

Now assume \(S = P_1\). Then, since \(p \equiv -1 \pmod{q}\), \(\rho_{Q, P} = 0\) and we may take \(Q^{-1}P_1Q \equiv U\) as \(T\). Then

*Serret, Cours d'Algèbre Supérieur, cinq. ed. (1885), tome 2, sec. 3, chap. 3. See also Dickson, Linear Groups, pp. 14–19.
1906

OF ORDER p^2qr; p, q, r BEING DISTINCT PRIMES

$J_q = \left(\frac{P_{r^2} U_{r^2}}{P_{r^2} U_{r^2} + a^2 r^2} \right)$, $J_q' = 1$,

$D_{12} = \begin{vmatrix} 0 & a_{12} \\ 1 & a_{22} \end{vmatrix} = (-a_{12})^q \equiv 1 \pmod{p}$.

Now $-a_{12}$ cannot be a primitive root of this congruence; for, if so $p \equiv 1 \pmod{q}$, whereas $p \equiv -1 \pmod{q}$ and $q > r$. It follows that $a_{12} \equiv 1 \pmod{p}$ and

$D \equiv (a_{22} - t)^2 \equiv 0$, $a_{22} \equiv t \equiv v^p + t$.

This gives $I_p = \{ P_1 U \}$ and

$Q^{-1} P_1 Q = U$, $Q^{-1} U P = P^{-1}_1 U v^p + t$, $R^{-1} P_1 R = P'_1$, $R^{-1} U R = P'_1 U^n$,

(7)

$\delta_{12} = \begin{vmatrix} -1 & \xi \\ -v^p - t & \alpha - \eta \end{vmatrix} \equiv 0$, $\delta_{12}' = \begin{vmatrix} 1 & 0 \\ -v^p - t & \alpha - \eta \end{vmatrix} \equiv 0$,

and thus, when $h = 1$, $\gamma \equiv \alpha$, $\xi \equiv 0 \pmod{p}$.

Inversely let $P_2 = P'_1 U^v$. Then

$R^{-1} P_2 R = P'_1 U^{v^p + t}$, $P = P'_1 U^{v^p + t}$

and hence $h = 1$. Thus when $h = 1$ there exists a group

$G = \{ P_1, U, Q, R \} = (1:0:1:-1v^p + t:a0:0\alpha:1)$,

where $\alpha' \equiv 1 \pmod{p}$, $P \equiv 1 \pmod{r}$, $\tau = 1$. Also $p \equiv -1 \pmod{q}$ and, in the

$GF[p^2]$, $\xi \equiv 1 \pmod{p}$.

[4] $i = V$, $j = VI$. Since r is necessarily an odd prime, the argument of

[3] again gives for G a single type, $G = (1:1:0:0:01:-1v^p + t:1)$, with

$\gamma' \equiv 1 \pmod{p}$, $P \equiv 1 \pmod{q}$, $\tau = 1$. Likewise $p \equiv -1 \pmod{r}$; and $v \equiv 1 \pmod{p}$

in the $GF[p^2]$.

D we are led to the same equations (7), viz.,

$Q^{-1} P_1 Q = U$, $Q^{-1} U P = P^{-1}_1 U v^p + t$, $v' \equiv 1 \pmod{p}$.

Let us assume that

$R^{-1} P_1 R = P'_2 = P'_1 U^\gamma$, $R^{-1} U R = P'_1 U^\gamma$.

Then

$\delta_{12} = \begin{vmatrix} -1 & x \\ -v^p - t & x - \omega \end{vmatrix} \equiv 0$, $\delta_{12}' = \begin{vmatrix} 1 & \gamma \\ -v^p - t & x - \omega \end{vmatrix} \equiv 0$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Thus
\[d_{12} = \begin{vmatrix} -1 & 1 \\ 1 & 1 \end{vmatrix} \equiv 0, \quad D_{12} = \begin{vmatrix} x & z \\ y & w \end{vmatrix} \equiv 0. \]

Thus
\[z \equiv -y, \quad w \equiv x + (\iota_1^p + \iota_1)y, \quad D_{12} \equiv x^2 + (\iota_1^p + \iota_1)xy + y^2. \]

Since
\[R^{-1}P_2R = P_1^{-1}P_2^{\iota_1^p + \iota_2}, \quad \iota_2' \equiv 1 (p), \]
so that
\[R^{-1}U^\nu R = P_1^{-1}U^-^{\iota_1^p + \iota_2}U^\nu + (\iota_1^p + \iota_2)U^\nu + (\iota_1^p + \iota_2)U^\nu. \]

Since \(P_1 \) and \(P_2 \) are independent, \(y \equiv 0 \); hence
\begin{align*}
(8) & \quad 2x + (\iota_1^p + \iota_1)y - (\iota_2^p + \iota_2) \equiv 0, \\
(9) & \quad y^2 - x^2 + (\iota_2^p + \iota_2)x - 1 \equiv 0.
\end{align*}

From the latter we at once derive
\[D_{12} = x^2 + (\iota_1^p + \iota_1)xy + y^2 \equiv 1, \]
\begin{align*}
(10) & \quad (\iota_2 - \iota_1^p \iota_2^p)^2x^2 - (1 - \iota_1^p)(\iota_2 - \iota_2^p)x + (1 - \iota_1^p \iota_2^p)(\iota_2 - \iota_1^p) \equiv 0, \\
(11) & \quad (\iota_1 - \iota_1^p)^2y^2 - (\iota_2 - \iota_2^p) \equiv 0.
\end{align*}

There always exist integral solutions of (10) and (11), \(x = \epsilon_j, y = \sigma_j (j = 1, 2) \). Thus
\[R^{-1}P_1R = P_1^{(\iota_1^p + \iota_2^p)}U^{-\sigma_1}, \quad R^{-1}UR = P_1^{\sigma_1}U^{\epsilon_1}. \]

Theorem. The two general types of \(G \) characterized by the two distinct sets of solutions of (10) and (11), viz. \([\epsilon_1, \sigma_1]\) and \([\epsilon_2, \sigma_2]\) are simply isomorphic.

In proof, \(\sigma_2 \equiv -\sigma_1 \), and congruence (8) gives
\[2\epsilon_2 - (\iota_1^p + \iota_1)\epsilon_1 - (\iota_2^p + \iota_2) \equiv 0, \quad \epsilon_2 \equiv \epsilon_1 + (\iota_1^p + \iota_1)\epsilon_1. \]

Hence the two types of \(G \) are characterized by
\[R^{-1}P_1R = P_1^{(\iota_1^p + \iota_2^p)\sigma_1}U^{-\sigma_1}, \quad R^{-1}UR = P_1^{\sigma_1}U^{\epsilon_1}, \]
and
\[R^{-1}P_1R = P_1^{\epsilon_1}U^{\sigma_1}, \quad R^{-1}UR = P_1^{-\sigma_1}U^{\epsilon_1}(\iota_1^p + \iota_2^p)\sigma_1. \]

Let us select a new operation of order \(q \) from \(\{ Q \} \), e.g. \(Q' = Q^{-1} \). Then
\[Q'R = RQ', \quad Q'^{-1}UQ' = P_1, \]
\[Q'^{-1}P_1Q' = U^n P_1^{\iota_2^p + \iota_1^p}, \quad r_j = \frac{\iota_1^p - \iota_2^p}{\iota_1^p - \iota_2^p}. \]

The result of selecting \(Q' \) and \((\epsilon_2, \sigma_2) \) is thus to interchange \(P_1 \) and \(U \) and to reproduce the relations given by \(Q \) and \((\epsilon_1, \sigma_1) \). Hence \([\epsilon_2, \sigma_2] \sim [\epsilon_1, \sigma_1]\).

The quantities \(\iota_1 \) and \(\iota_2 \) are marks of the \(GF[p^2] \) and in that field appertain...
OF ORDER p^2qr; p, q, r BEING DISTINCT PRIMES

respectively to the exponents q and r. Let ρ be any primitive root in the $GF[p^2]$. It is easy to show that $\tau = 1$ and hence we may select

$$\tau_1 = \rho^{(p^2-1)/q}, \quad \tau_2 = \rho^{(p^2-1)/r},$$

thus

$$G = (1: 01; -1, \tau_1^q + \tau_1; \epsilon + (\tau_1^q + \tau_1)\sigma, -\sigma: \sigma\epsilon: 1),$$

where

$$\tau_1 = \rho^{(p^2-1)/q}, \quad \tau_2 = \rho^{(p^2-1)/r}, \quad \rho^{p^2-1} = 1; \quad p \equiv -1 \pmod{qr}, \quad \tau = 1,$$

$$(\tau_1 - \tau_1^q)^2\sigma^2 - (\tau_2 - \tau_2^q)^2 = 0, \quad 2\epsilon + (\tau_1^q + \tau_1)\sigma - (\tau_2^q + \tau_2) = 0.$$

§ 3. The generating function $[k]$. Consider the relation $R^{-1}P_1R^* = P_2^{\mu_1}U^{\nu}$. From it

$$u_{z+1} - (2x + t_1y)u_z + (x^2 + t_1xy + y^2)u_{z-1} = 0,$$

$$u_{z+1} - t_2u_z + u_{z-1} = 0 \quad (t_j = t^j + y; j = 1, 2).$$

These recurring formulae give

$$u_k = [k]_2x - [k - 1]_2, \quad v_k = [k]_2y,$$

where

$$[k]_j = \frac{t^j_2 - t^j_1}{t^j_2 - t^j_1}.$$

Following are some of the properties of the generating function $[k]_j$.

$$(12) \quad \frac{[k + 1]_j}{[k]_j} = 1 + \frac{1}{t_j + \tau_j + \cdots k \text{ terms}},$$

$$(13) \quad [k]_j^2 - [k + 1]_j[k - 1]_j - 1 \equiv 0,$$

$$(14) \quad [0]_j \equiv 0, \quad [1]_j \equiv 1, \quad [-k]_j \equiv -[k]_j,$$

$$(15) \quad [k + 1]_j \equiv [2]_j[k]_j - [k - 1]_j,$$

$$(16) \quad ([k + 1]_j - [k - 1]_j - [2]_j)t^k_j \equiv (t^k_j - 1)(t^{k-1}_j - 1).$$

§ 4. Class (10), $p > q > r$.

We shall consider next groups possessing a single maximal self-conjugate subgroup H_{pq}^r of non-abelian type ($i = \text{III}, \text{IV}, \text{V}, \text{VI}$). It is readily shown that class (10, 12), with $i = \text{III}$, must contain an invariant subgroup H_{pq}^r. Class (10) remains to be considered.

$$(1) \quad i = \text{IV}. \text{ Here } H_{pq}^{r, \text{IV}} = \{ P, Q \} \text{ and since } \{ P \} \text{ is self-conjugate in } G, R^{-1}PR = P^\beta. \text{ Since } \rho_{R, s} \equiv 1 \pmod{R, Q, \text{VR}. Hence}

(QR)^{-1}P(QR) = P^\alpha = (QR)^{-1}P(RQR) = P^\beta = 1(p^2), \quad \alpha^2 \equiv 1(p^2), \quad \alpha\beta(\alpha^{-1} - 1) \equiv 0 \pmod{p^2}, \quad \gamma \equiv 1 \pmod{q}.$$

* Dickson, Linear Groups, p. 13.
Hence \(\{P_1, P_2, R\} \) is self-conjugate in \(\{P_1, P_2, Q, R\} = G \), contrary to hypothesis.

\[(2) \quad i = V. \quad \text{Let } H_{p^r, v} = \{P_1', P_2', Q\}. \quad \text{Assuming that} \]
\[R^{-1}P_1' R = P_1^* P_2', \quad R^{-1}P_2 R = P_1'^* P_2^*, \]
we deduce
\[a_{11} \alpha (\alpha^{-1} - 1) \equiv 0, \quad a_{21} (\beta r - \alpha) \equiv 0, \]
\[a_{22} \beta (\beta^{-1} - 1) \equiv 0, \quad a_{12} (\alpha r - \beta) \equiv 0, \]
where \(\alpha^r \equiv 1(p) \), \(\beta \equiv \alpha^h \). Hence \(\gamma \equiv 1 \mod q \). Hence
\[a_{11} \equiv 0, \quad a_{22} \equiv 0, \quad \alpha^h \equiv \alpha, \quad \alpha r \equiv \alpha^h \mod p, \]
\[\gamma \equiv h \mod q, \quad \alpha^r \equiv \alpha \mod p, \quad \gamma^2 \equiv 1 \mod q. \]

But \(\gamma \) appertains to the exponent \(r \) modulo \(q \), and therefore \(r = 2 \) and \(\gamma = 1 \mod q \). Thus
\[R^{-1}P_1' R = P_2^*, \quad R^{-1}P_2 R = P_1'^*, \quad a_{12} a_{21} \equiv 1 \mod p. \]

Then \(P_1 = P_1'^*, \ P_2, \ Q, \ R \), generate a group of order \(2p^t q \), viz.,
\[G = \langle 1 : 0 : 0 : 0 : a^r - 1 : 0 : 1 : 0 : - 1 \rangle. \] Also \(p = 1(q), \ r = 1. \)

\[(3) \ i = VI. \quad \text{It has been shown [§ 1], that } p \equiv \pm 1 \mod r. \]

(a) First let \(p = 1(r) \). Then \(P_1, P_2 \) may be selected which are permutable with \(R \). If
\[Q^{-1}P_1 Q = P_2, \quad Q^{-1}P_2 Q = P_1'^{-1} P_2^{p+1}, \]
then
\[R^{-1}P_1 R = P_1^* , \quad R^{-1}Q R = Q'_r, \quad \gamma \equiv 1 \mod q. \]

Since \(I_r \), is invariant in \(G \) we may assume that
\[P_3 = P_1 P_2^* , \quad R^{-1}P_2 R = P_1^* P_2^*, \]
Hence
\[(QR)^{-1}P_1 (QR) = P_1 P_2^* = (RQ'^{-1} R_1 (RQ') = P_1^{-1} P_2^* [\gamma], \]
\[(QR)^{-1}P_2 (QR) = P_1^{-1} P_2^* [\gamma] = (RQ'^{-1} P_2 (RQ') = P_1^{-1} P_2^* [\gamma], \]
\[x = - [\gamma] \beta , \quad y = [\gamma] \beta , \]
\[[\gamma]^2 = [\gamma - 1]^2 + [2] [\gamma - 1] + 1, \]
\[[\gamma] \{ [\gamma + 1] - [\gamma - 1] - [2] \} \equiv 0. \]

Now \([\gamma] \equiv 0 \mod q \). Since \([- k] = - [k] \) and
\[[\gamma + 1] - [\gamma - 1] - [2] \equiv (\gamma + 1 - 1)(\gamma - 1 - 1) \equiv 0 \mod q, \]
there results \(\gamma \equiv 1 \mod q, \gamma' \equiv (1)^r \equiv 1 \mod q \), whence \(r = 2 \). If
\[R^{-1}P_3 R = P_3^* , \] then \(\alpha \equiv \pm 2 \mod p \).
First let the upper sign hold. If \(\beta = 1 \), then \(w = 0 \) which is impossible, since \(P_1, P_2 \) are independent. Hence \(\beta = -1, x = -[2], y = +[1] \equiv +1 \).
Likewise if we use the lower sign, \(\beta = +1, x = +[2], y = -[1] \equiv -1 \).
We thus obtain the two sets of defining relations:

\[
(1:01: -1^\tau P + \iota: \equiv 10: 1^\tau + \iota^2, \pm 1: -1).
\]

To determine \(\tau \), let \(Q_0 = Q^\tau, R_0 = R, P_{10} = P_1, P_{20} = P_1^{-[s-1]}P_2^s \); there results

\[
\{ P_{10}, P_{20}, Q_0, R_0 \} = (1:01: -1^\tau + \iota^2: \equiv 10: \pm [x-1] \equiv [2][x], \pm [x]: -1).
\]

But

\[
\pm [x-1] \equiv [2][x] \equiv [x+1] \equiv (\tau^\tau + \iota^2) \equiv [x-1],
\]

[Eq. (15)]. Hence

\[
\{ P_{10}, P_{20}, Q_0, R_0 \} = (1:01: -1^\tau + \iota^2: \equiv 10: (\tau^\tau + \iota^2), \pm 1: -1) \sim G.
\]

Thus the same defining relations are reproduced with \(\iota \) replaced by \(\iota^s \), and so \(\tau = 1 \).

It will now be proved that these two types are simply isomorphic. Select new operators as follows:

\[
q_1 = Q, \ r_1 = R, \ p_1 = P_1 \times P_1, \ p_2 = P_1^{-[s-1]}P_2^s = q_1^{-1} p_1 q_1.
\]

Then using the first set of defining relations we will have

\[
q_1^{-1} p_2 q_1 = p_1^{-1} P_2^{s+\iota}, \ r_1^{-1} p_1 r_1 = P_1, \ r_1^{-1} p_2 r_1 = P_1^{s+\iota} P_1^{-1}, \ r_1^{-1} q_1 r_1 = q_1^{-1}
\]

if

\[
2a + [2]b \equiv 0 \ (\text{mod} \ p).
\]

Hence when a new operator \(p_1 = P_1 P_2^b \) is selected, where \(a \) and \(b \) are solutions of \(2a + (s+\iota)b \equiv 0 \ (\text{mod} \ p) \), the first type is transformed into the second.
They are therefore isomorphic.

(b) When \(p = -1(r), r \ odd, \rho_{R,p} = 0 \). As before, we deduce

\[
Q^{-1} P_1 Q = P_2, \quad Q^{-1} P_2 Q = P_1^{-1} P_2^{s+\iota}, \quad \iota_1 \equiv 1(p),
\]

\[
R^{-1} P_1 R = P_3, \quad R^{-1} P_2 R = P_1^{-1} P_2^{s+\iota}, \quad \iota_2 \equiv 1(p),
\]

Let \(P_3 = P_1^{-1} P_2^s \) and \(R^{-1} P_2 R = P_4 = P_1^s P_2^s \). Then

\[
(17) \quad R^{-1} P_2 R = P_1^{-[\gamma+1]}(s+\iota)^s P_2^{[s]} = P_1^{-[\gamma-1]} [s]^{*} \cdot [s]^{[\gamma]} P_1^{[\gamma]} [s]^{*} \cdot [s]^{[\gamma+1]} [s]^{*}.
\]

In addition to the latter, but not independent of them, we have the congruences derived from
(18) \[(QR)^{-1}P_\gamma(QR) = (RQ_r)^{-1}P_\gamma(RQ_r)\].

The equations (17) and (18) give us the dialytic eliminant
\[
\Delta_{12} = \{i_2 + i_2\} \{[\gamma]_1^2 - (i_2 + i_2)[\gamma]_1 + 1\} \{(i_1^r + 1)(i_1^{-1} - 1)\}^2 = 0.
\]
Now \([\gamma]_1\) is an integer, and since \(r \neq 2\), and \(\gamma \neq -1\), it follows that \(\gamma \equiv 1\pmod{q}\), contrary to hypothesis. Hence when \(p \equiv -1\pmod{r}\) and \(r\) is odd, no corresponding group \(G\) exists.

The results of this section may be summarized in the following

Theorem. A group \(G_{pqr}\) \((p > q > r)\) always contains a maximal self-conjugate subgroup \(H\) of order \(p^2q\). If \(H\) is the only maximal invariant subgroup of \(G\) and if \(r\) is odd, then \(N_q = 1\) and \(H\) is necessarily abelian. If \(r\) is even \((r = 2)\) and \(p \equiv 1\pmod{q}\) there exists one type whose subgroup \(H_{p^2q}\) is non-abelian, and if \(r\) is even and \(p \equiv -1\pmod{q}\) there exists a second type possessing a non-abelian \(H_{p^2q}\). These two types of \(G\) contain respectively \(q\) and \(pq\) operators (and subgroups) of order 2, and in each type \(N_q = p^2\). Moreover, with exception of the two types just described, every group of order \(p^2qr\) \((p > q > r)\), in which \(N_r \equiv 0\pmod{q}\), possesses an abelian maximal self-conjugate subgroup \(H_{p^2q}\).

A general summary of all the existent types of \(G\) follows. Except for \(i\) and \(p\), every parameter occurring in the tables is an integer; while \(i\) and \(p\) are marks of the \(GF[p^2]\). See footnote on the second page of the paper.
Table 1. \(p > q > r \).

<table>
<thead>
<tr>
<th>Class</th>
<th>(Q^{-1}P_1Q)</th>
<th>(Q^{-1}P_2Q)</th>
<th>(R^{-1}P_1R)</th>
<th>(R^{-1}P_2R)</th>
<th>Parameters.</th>
<th>Arith. Rel.</th>
<th>(\tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[12 \cdot 12]</td>
<td>(P_1)</td>
<td>(P_1)</td>
<td>(P_1)</td>
<td>(P_1)</td>
<td>(\alpha^s \equiv 1(p))</td>
<td>(\beta^s \equiv 1(p))</td>
<td>(\gamma^s \equiv 1(p))</td>
</tr>
<tr>
<td>[12 \cdot 12]</td>
<td>(P_2)</td>
<td>(P_2)</td>
<td>(P_2)</td>
<td>(P_2)</td>
<td>(p \equiv 1(q))</td>
<td>(p \equiv 1(q))</td>
<td>(p \equiv 1(q))</td>
</tr>
<tr>
<td>[3467891012]</td>
<td>(P_1)</td>
<td>(P_1)</td>
<td>(P_1)</td>
<td>(P_1)</td>
<td>(\alpha^s \equiv 1(p))</td>
<td>(p \equiv 1(q))</td>
<td>(1)</td>
</tr>
<tr>
<td>[34678910112]</td>
<td>(P_2)</td>
<td>(P_2)</td>
<td>(P_2)</td>
<td>(P_2)</td>
<td>(\alpha^s \equiv 1(p))</td>
<td>(p \equiv 1(q))</td>
<td>(1)</td>
</tr>
<tr>
<td>[46891012]</td>
<td>(P_1)</td>
<td>(P_1)</td>
<td>(P_1)</td>
<td>(P_1)</td>
<td>(\alpha^s \equiv 1(p))</td>
<td>(p \equiv 1(q))</td>
<td>(\frac{1}{2}(q + 1))</td>
</tr>
<tr>
<td>[78910]</td>
<td>(P_2)</td>
<td>(P_2)</td>
<td>(P_2)</td>
<td>(P_2)</td>
<td>(\alpha^s \equiv 1(p))</td>
<td>(p \equiv 1(q))</td>
<td>(1)</td>
</tr>
<tr>
<td>[891012]</td>
<td>(P_1)</td>
<td>(P_1)</td>
<td>(P_1)</td>
<td>(P_1)</td>
<td>(\alpha^s \equiv 1(p))</td>
<td>(p \equiv 1(q))</td>
<td>(1)</td>
</tr>
<tr>
<td>[9101112]</td>
<td>(P_2)</td>
<td>(P_2)</td>
<td>(P_2)</td>
<td>(P_2)</td>
<td>(\alpha^s \equiv 1(p))</td>
<td>(p \equiv 1(q))</td>
<td>(\frac{1}{2}(r + 1))</td>
</tr>
<tr>
<td>[8910]</td>
<td>(P_1)</td>
<td>(P_1)</td>
<td>(P_1)</td>
<td>(P_1)</td>
<td>(\alpha^s \equiv 1(p))</td>
<td>(p \equiv 1(q))</td>
<td>(q - 1)</td>
</tr>
<tr>
<td>[91012]</td>
<td>(P_2)</td>
<td>(P_2)</td>
<td>(P_2)</td>
<td>(P_2)</td>
<td>(\alpha^s \equiv 1(p))</td>
<td>(p \equiv 1(q))</td>
<td>(r - 1)</td>
</tr>
<tr>
<td>[910]</td>
<td>(P_1)</td>
<td>(P_1)</td>
<td>(P_1)</td>
<td>(P_1)</td>
<td>(\gamma^s \equiv \alpha^s \equiv 1(p))</td>
<td>(p \equiv 1(q))</td>
<td>(\frac{1}{2}(q + 1)) or (\frac{1}{2}(r + 1)(q + 1))</td>
</tr>
<tr>
<td>(\rho = \text{prim. root in})</td>
<td>(GF[p^s])</td>
<td>(\ell_1, \ell_2 = \rho^{s-1}q, r)</td>
<td>(2s + [2], \sigma - [2] = \ell_1^s \equiv 0) ((\ell_1 - \ell_2)^2 \sigma^2 - (\ell_1 - \ell_2) \ell_2 \equiv 0)</td>
<td>(p \equiv -1(qr))</td>
<td>(1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Case (b). \(R^{-1}QR = Q^\gamma; \gamma' = 1(q) \).

<table>
<thead>
<tr>
<th>Class.</th>
<th>(Q^{-1}P_2Q)</th>
<th>(Q^{-1}P_3Q)</th>
<th>(R^{-1}P_2R)</th>
<th>Parameters</th>
<th>Arith. rel.</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[2561041121]</td>
<td>(P_1)</td>
<td>(P_3)</td>
<td>(P_1)</td>
<td>(P_3)</td>
<td>(h = 1)</td>
<td>(q = 1(r))</td>
</tr>
<tr>
<td>"</td>
<td>(P_1)</td>
<td>(P_3)</td>
<td>(P_1)</td>
<td>(P_3)</td>
<td>(h = 1)</td>
<td>(q = 1(r))</td>
</tr>
<tr>
<td>[256101112]</td>
<td>(P_1)</td>
<td>(P_3)</td>
<td>(P_1)</td>
<td>(P_3)</td>
<td>(h = 1, 2 \ldots r - 1)</td>
<td>(p = q = 1(r))</td>
</tr>
<tr>
<td>[101112]</td>
<td>(P_1)</td>
<td>(P_2)</td>
<td>(P_1)</td>
<td>(P_2)</td>
<td>(h = 1, 2 \ldots r - 1)</td>
<td>(p = q = 1(r))</td>
</tr>
<tr>
<td>"</td>
<td>(P_1)</td>
<td>(P_2)</td>
<td>(P_1)</td>
<td>(P_2)</td>
<td>(h = 1, 2 \ldots r - 1)</td>
<td>(p = q = 1(r))</td>
</tr>
<tr>
<td>[10]</td>
<td>(P_2)</td>
<td>(P_2)</td>
<td>(P_2)</td>
<td>(P_1)</td>
<td>(h = 1, r = 1)</td>
<td>(q = 1(p))</td>
</tr>
<tr>
<td>"</td>
<td>(P_2)</td>
<td>(P_2)</td>
<td>(P_2)</td>
<td>(P_1)</td>
<td>(h = 1, r = 1)</td>
<td>(q = 1(p))</td>
</tr>
</tbody>
</table>

Table 2. \(q > p > r \).

\(I_p \) non-cyclical; \(P_i^p = Q^p = R^p = 1 \) (\(i = 1, 2 \)), \(P_i P_2 = P_2 P_1, RP_2 = P_2 R \),

\(I_p \) cyclical; \(P_i^p = Q^p = R^p = 1, RP_1 = P_1 R \).

<table>
<thead>
<tr>
<th>Class.</th>
<th>(P^{-1}QP_1)</th>
<th>(P^{-1}QP_2)</th>
<th>(R^{-1}QR)</th>
<th>Parameters</th>
<th>Arith. Rel.</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1234561112]</td>
<td>(Q^a)</td>
<td>(Q^b)</td>
<td>(Q)</td>
<td>(P_1)</td>
<td>(\alpha^a = 1(q))</td>
<td>(q = 1(p))</td>
</tr>
<tr>
<td>[12511]</td>
<td>(Q^a)</td>
<td>(Q^b)</td>
<td>(Q)</td>
<td>(P_2)</td>
<td>(\alpha^a = 1(q))</td>
<td>(q = 1(p^\gamma))</td>
</tr>
<tr>
<td>[1112]</td>
<td>(Q^a)</td>
<td>(Q^b)</td>
<td>(Q^b)</td>
<td>(P_1)</td>
<td>(\alpha^a = \gamma^a = 1(q))</td>
<td>(q = 1(p))</td>
</tr>
<tr>
<td>[11]</td>
<td>(Q^a)</td>
<td>(Q^b)</td>
<td>(Q^b)</td>
<td>(P_1)</td>
<td>(\alpha^a = \gamma^a = 1(q))</td>
<td>(q = 1(p^\gamma))</td>
</tr>
<tr>
<td>[1251112]</td>
<td>(Q)</td>
<td>(Q^a)</td>
<td>(Q)</td>
<td>(P_1)</td>
<td>(\alpha^a = 1(q))</td>
<td>(q = 1(p))</td>
</tr>
<tr>
<td>[251112]</td>
<td>(Q)</td>
<td>(Q^a)</td>
<td>(Q)</td>
<td>(P_1)</td>
<td>(\alpha^a = 1(q))</td>
<td>(q = 1(p^\gamma))</td>
</tr>
<tr>
<td>[4561112]</td>
<td>(Q)</td>
<td>(Q^a)</td>
<td>(Q)</td>
<td>(P_1)</td>
<td>(\alpha^a = 1(q))</td>
<td>(q = 1(p^\gamma))</td>
</tr>
<tr>
<td>[56112]</td>
<td>(Q)</td>
<td>(Q^a)</td>
<td>(Q^a)</td>
<td>(P_1)</td>
<td>(\alpha^a = \gamma^a = 1(q))</td>
<td>(q = 1(p^\gamma))</td>
</tr>
</tbody>
</table>

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Table 3. $q > r > p$.

Case (a).

I_p, non-cyclical; $P_1^a = Q = R^e = 1(i = 1, 2)$, $P_1P_2 = P_2P_1$, $RQ = QR$,

I_p, cyclical; $P_1^a = Q^a = R^e = 1$, $QR = RQ$.

<table>
<thead>
<tr>
<th>Class</th>
<th>$P_1^{-1}QP_1$</th>
<th>$P_2^{-1}QP_2$</th>
<th>$P_1^{-1}RP_1$</th>
<th>$P_2^{-1}RP_2$</th>
<th>Parameters</th>
<th>Arith. Rel.</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>[12345678]</td>
<td>Q</td>
<td>.</td>
<td>R^a</td>
<td>.</td>
<td>$\alpha^a = 1(r)$</td>
<td>$r = 1(p)$</td>
<td>1</td>
</tr>
<tr>
<td>[1237]</td>
<td>Q</td>
<td>.</td>
<td>R^a</td>
<td>.</td>
<td>$\alpha^a = 1(r)$</td>
<td>$r = 1(p^3)$</td>
<td>1</td>
</tr>
<tr>
<td>[123456]</td>
<td>Q^a</td>
<td>.</td>
<td>R^a</td>
<td>.</td>
<td>$\alpha^a = 1(q)$</td>
<td>$q = r = 1(p)$</td>
<td>$p - 1$</td>
</tr>
<tr>
<td>[125]</td>
<td>Q^a</td>
<td>.</td>
<td>R^a</td>
<td>.</td>
<td>$\beta^a = 1(r)$</td>
<td>$q = 1(p^3)$</td>
<td>$p - 1$</td>
</tr>
<tr>
<td>[234]</td>
<td>Q^a</td>
<td>.</td>
<td>R^a</td>
<td>.</td>
<td>$\beta^a = 1(q)$</td>
<td>$r = 1(p^3)$</td>
<td>$p - 1$</td>
</tr>
<tr>
<td>[12]</td>
<td>Q^a</td>
<td>.</td>
<td>R^a</td>
<td>.</td>
<td>$\beta^a = 1(q)$</td>
<td>$q = r = 1(p^3)$</td>
<td>$p^3 - 1$</td>
</tr>
<tr>
<td>[12345678]</td>
<td>Q Q</td>
<td>R R^a</td>
<td>$\alpha^a = 1(r)$</td>
<td>$r = 1(p)$</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[123]</td>
<td>Q Q^a</td>
<td>R R^a</td>
<td>$\beta^a = 1(r)$</td>
<td>$q = r = 1(p)$</td>
<td>$p - 1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1235]</td>
<td>Q Q^a</td>
<td>R R^a</td>
<td>$\beta^a = 1(q)$</td>
<td>$q = r = 1(p)$</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Case (b). The simple group G_{15}, $p = 2$, $q = 5$, $r = 3$.

$Q^a = 1$, $P^a = 1$, $(QP)^3 = 1$, $[R = QP]$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use