
FINITE PROJECTÎVE GEOMETRIES*

BY

OSWALD VEBLEN  and  W.   H.   BUSSEY

By means of such a generalized conception of geometry as is inevitably

suggested by the recent and wide-spread researches in the foundations of that

science, there is given in § 1 a definition of a class of tactical configurations

which includes many well known configurations as well as many new ones. In

§ 2 there is developed a method for the construction of these configurations

which is proved to furnish all configurations that satisfy the definition. In

§§ 4-8 the configurations are shown to have a geometrical theory identical in

most of its general theorems with ordinary projective geometry and thus to

afford a treatment of finite linear group theory analogous to the ordinary theory

of collineations. In § 9 reference is made to other definitions of some of the

configurations included in the class defined in § 1.

§ 1.  Synthetic definition.

By a finite projective geometry is meant a set of elements which, for sugges-

tiveness, are called points, subject to the following five conditions :

I. The set contains a finite number ( > 2 ) of points. It contains subsets

called lines, each of which contains at least three points.

II. If A and B are distinct points, there is one and only one line that

contains A and B.

HI. If A, B, C are non-collinear points and if a line I contains a point

D of the line AB and a point E of the line BC, but does not contain A, B,

or C, then the line I contains a point F of the line CA (Fig. l).f

A plane ABC (A, B, C being non-collinear points) is defined as the set of

all points collinear with a point A and any point of the line BC. It may be

proved by III that a plane so defined has the usual projective properties. For

example, a plane is uniquely determined by any three of its points which are

non-collinear, and the line joining any two points of a plane is contained wholly

in the plane.

A ¿-space is defined by the following inductive definition. A point is a 0-

space.    If Ax, A2, ■ • -, Ak+X are points not all in the same (k — 1 )-space, the

•Presented to the Society April 22, 1905.    Received for publication November 20, 1905.

fThe figures used in this paper are not to be considered as having the properties which they

have in ordinary euclidean geometry, unless such properties follow from the explicitly stated

hypotheses.
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set of all points collinear with the point Ak+l and any point of the (k — 1)-

space (Ax, A2, ■ ■ -, Ah) is the k-space (Ax, A2, ■ ■ -, Ak+X).    Thus a line is a

Fig. l.

1-space, and a plane is a 2-space. From this definition it can be proved that

spaces (if existent) satisfy the following well known theorem.

In a k-space, an l-space and an m-space have a point in common if

I + m > k.    They have in common at least an r-space if I + m — k = r.

Remark : It is very convenient in practice to replace this theorem by a

diagram consisting of (k + 1 )-points, of which any I + 1 (I < k) represent an

¿-space. Thus in a 4-space, using the diagram • , it is evident that any two

3-spaces (each being a set of 4 points) have in common a plane (three points).

This scheme gives a finite geometry satisfying all the projective geometry axioms

except those implying that a line contains more than two points.

The existence of the various spaces is postulated by the two conditions IVk

and Vk.    (Axioms of extension and closure.)

IVfc. If I is an integer less than k, not all of the points considered are

contained in the same l-space.

Vh. If INk is satisfied, there exists in the set of points considered no

( k + 1 )-space.

The well known principle of duality follows from the axioms and definitions

as given.    Special cases of the principle are the following :

Any proposition (deducible from I — Vk) about points and lines in a plane

is valid if the words point and line be interchanged.

Any proposition (deducible from I— Vk) about points, lines, and planes in

Z-space is valid if the words point and plane be interchanged.
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Let s -(- 1 denote the number of points in a line. To obtain the number of

points in a plane consider a line I and a point L not in I. L and each point

of I determine a line in each of which there are s points in addition to the

point L. Furthermore, every point of the plane is in one of these s + 1 lines

containing L. Therefore the number of points in the plane is s2 + s + 1. By

the principle of duality the number of lines in the plane is also s2 + s + 1. In

like manner the number of points in 3-space may be found to be s3 + s2 + s + 1

and the number of points in ¿-space to be s* + sk~x -4- • • • + s + 1.

The simplest example of a finite geometry which satisfies the definition for

k = 2 is the well known triple system

0    12    3    4    5    6

12    3    4    5    6    0

3    4    5    6    0    12

which consists of 7 points arranged in 7 lines of 3 points each.    A finite plane

geometry of 13 points arranged in 13 lines of 4 points each is the following :

0 1 2 3456 7 8 9 10 11 12

1 2 3 4    5    6    7 8 9 10 11 12 0

3 4 5 6789 10 11 12 0 1 2

9 10 11 12    012 3 4 5 6 7 8

For some purposes it is convenient to have the finite geometry exhibited in a

table as follows :

0123456789 10 11 12

0

1

2

3

4

5

6

7

8

9

10

11

12

x x

XX X

XX X

•C HO     JO tc

X XX

X XX

X XX

X XX

X X

X

X

X

X

XXX X

X XX

X XX

X XX
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In this table the incidence of a line h and a point k is indicated by a mark x

in the column h and the row k. The table shows at a glance the 4 points of a

line and the 4 lines containing a point.

An example of a finite plane geometry having 5 points in a line may be found

on p. 305 of vol. 5 of these Transactions.

§ 2. Analytic definition.

If xx, x2, • ■ -, xli+x are marks of a Galois field* of order s = p", there are

(sl+1 — l)/(s — l)=*s"!+sl~x+- • • +*+l elements of the form (xt,x2, ■ ■ -, xk+x),

provided that the elements (as,, x2, ••-, xk+x) and (lxx, lx2, ■■■, lxk+x) are

thought of as the same element when I is any mark 4= 0, and provided that the

element (0, 0, .. •, 0 ) is excluded from consideration. These elements consti-

tute a finite projective geometry of ¿-dimensions when arranged according to

the following scheme.    The equation

(1) m,xx + u2x2 + ■ - ■ + uk+xxM = 0

(the domain for coefficients and variables being the GF\_s~j) is said to be the

equation of a (k — 1 )-space except when ux = u2 = ■ ■■ = uk+x = 0. It is

denoted by the symbol (ux, u2, ■ ■ -, uk+x). The symbols (w,, u2, • • -, uk+x) and

(lut, lu2, ■••, luk+x), I being any mark =(= 0, denote the same (k — l)-space.

The points of the ( k — 1 )-space are those points of the finite geometry which

satisfy its equation. A ( k — 2 )-space is represented by two equations of type

(1) and a ( k—I )-space by I equations of type (1). There are s'+ s'~x + ■ ■ ■ + s+1

points in ¿-space and, in particular, s + 1 points in a line.

The finite projective ¿-dimensional geometry, obtained in this way from the

GF[s], is denoted by the symbol PG(k, s). Since there is a Galois field of

order s for every a of the form s = p", it follows that there is a PG(k, p") for

every pair of integers k and n and for every prime p. It will be proved in

§ 4 that every finite projective ¿-dimensional geometry satisfying the definition

of §1 is a PG(k,p") it ¿>2.

§ 3.  The modulus 2.

The method used in § 2 to obtain the PG(k, s) from the G F [ s ] may be

described as analytic geometry in a finite field. It may be applied to any field

of finite order s = p", but here as elsewhere the modulus 2 gives rise to an excep-

tional case. Let the symbols 1, 3, 4, 5 denote the four vertices of a complete

quadrangle (Fig. 2) in the P G ( 2, pn ).    Let the three pairs of opposite sides

* For the definition and properties of a Galois field see E. H. Moore, Mathematical Papers,

Chicago Congress of 1893, pp. 210-226 ; L. E. Dickson, Linear Groups, pp. 1-14. For Galois field

tables for p"2ï 169, n> 1 see W. H. Bussey, Bulletin of the American Mathematical

Society, vol. 12 (1905-06), pp. 22-38.
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meet as follows : 1 3 and 4 5 in a point 0, 1 4 and 3 5 in a point 2, and 1 5 and

3 4 in a point 6. Let the equations of the lines 1 5, 4 5, 3 4 be, respectively,

a = 0, ß = 0, 7 = 0 (abridged notation). As in Salmon's Conic Sections

(10th edition), p. 57, Ex. 1, the equations of the lines 0 6 and 2 6 may be found

to be, respectively, la + ny = 0 and la — ny = 0,1 and n being marks of the

Fio. 2.

GF\_pn~\. If the modulus of the field is 2, ny = — ny, and the lines 0 6 and

2 6 coincide, i. e., the diagonal points of the quadrangle are collinear. This does

not happen if p > 2. It will be observed that the figure of the complete quad-

rangle in a geometry having the modulus 2 [i. e., in a PG(k, 2")] is thus

proved to be identical with the triple system in 7 elements given in § 1.

To exclude from consideration the case of the modulus 2 it is therefore suffi-

cient to add the following condition VI to those of the synthetic definition of § 1.

VI.  The diagonal points of a complete quadrangle are not collinear.

In the following paragraphs, VI is not assumed unless it is so stated in the text.

§ 4.   General synthetic theory.

The elementary part of the synthetic theory follows from conditions I-V quite

independently of the hypothesis that the number of points is finite. If a certain

further hypothesis is added, it is possible to develope * large parts of the theory

*The deduction from hypotheses I-VII of a portion of the usual projective geometry, corre-

sponding in a general way to Part I of Reye's Geometrie der Lage was carried out in detail by O.

Veblen in a course of lectures delivered at the University of Chicago during the winter qnarter,

1905. Mimeographed reports (referred to below as Notes) of these lectures as worked out by

Mr. N. J. Lennes and other members of the class are on file in the mathematical library of the

University of Chicago.
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of collineations, conic sections, quadric surfaces, and algebraic curves and surfaces

in general, without deciding whether the number of points is finite or not. This

further hypothesis may be stated in the form :

VII. Let A, B, C be three collinear points, and let A', B', C be three

other collinear points not on the same line. If the pairs of lines A 3' and

A'B, BC and BC, CA' and C'A intersect, the three points of intersection,

are collinear.*

This hypothesis VII is a consequence of the hypothesis that the number of

points is finite whenever the geometry considered is of three or more dimensions.

The proof of this statement is in outline as follows: From hypotheses I-IV

follows the Desargues theorem about perspective triangles : If two triangles

ABC and A'B'C are in the same plane and if the lines AA', BB', CC

are concwrrent, the lines AB and A'B', BC and-B'C, CA and C'A' inter-

sect in points which are collinear. This is proved on page 29 of the Notes

referred to above, and by means of this theorem there is developed on pp. 73-

84 a geometric algebra for the points of a line.f It is proved that this algebra

satisfies all the conditions for a field except the commutative law of multiplica-

tion. In particular the algebra is such that for every element a there is a unique

element a such that a a = 1 = aa . For such an algebra it has been shown

by J. H. Maclagan-Wedderburn \ that the commutative law holds whenever

*The configuration involved here is known as the configuration of Pappus (Fig. 3). It may

be described as a simple hexagon AB'CA'BC inscribed in two lines. Hypothesis VII is to the

effect that the three pairs of opposite sides intersect, if at all, in three collinear points A", B", C".

Hilbert speaks of VII as Pascal's theorem. It is, of course, a degenerate case of the well-known

theorem.of Pascal on a hexagon inscribed in a conic.

■fOther developments of a geometric algebra practically equivalent to this one are given by

G. Hessenberg, Acta Mathematioa, vol. 29 (1905), pp. 1-24, and by K. Tu. Vahlen,

Abstrakte Geometrie, p. 110.

X A theorem on finite algebras, Transactions of theAniïrican Mathematical Society,

vol. 6 (1905), p. 349.
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the number of points is finite. On the other hand, it has been shown by

Hilbert* (and it is shown by another "method in the Notes referred to) that the

commutative law of multiplication is equivalent to hypothesis VII. Therefore,

if the number of points is finite, condition VII is satisfied.

By means of the algebra of points there may be built in the finite geometry

defined by hypotheses I-VI a homogeneous analytic geometry of k dimensions

in every case in which ¿>2 (see pp. 82-84 of the Notes), and, since the

algebra of points is abstractly identical with a Galois field, the analytic geometry

so obtained is identical with that described in § 2. This proves that for a given

k > 2, p and n there is one and only one finite projective geometry as defined

in § 1 and that it is the P G ( k, p" ).    (Cf. end of § 2.)

The essential difference in the case k = 2, i. e., in the case of plane geometry,

is due to the fact that there exist finite non-desarguesian plane geometries, t

The Desargues theorem about perspective triangles in a plane implies that the

plane may be thought of as immersed in a 3-space. From this it follows that

for a given p" there is one and only one finite plane desarguesian geometry, viz.,

thePG(2,pn).

§ 5.  The Möbius net.

On the line xx = 0, any point except (010) may be represented by a single

coordinate, the value of x2 when x3 = 1.    The point (010) may be represented

Fig. 4.

by the coordinate oo. Let a and ß be the coordinates of two points of the

line. The harmonic conjugate of a with respect to ß and oo may be constructed

by the usual quadrangle construction as follows. Let S and T be any two

points on a line through the point oo.    Let the lines  Sß and Ta meet in

* D. Hilbert, Grundlagen der Geometrie, chap. 6.

fCf. Non-desarguesian and non-pascalian geometries, by J. H. Maclagan-Wedderburn and

O. Veblkn. This paper was read at the April (1905) meeting of the Chicago section but has

not yet been published.
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a point Iï. Let the lines Tß and R oo meet in a point Q. The line SQ

meets the line xx = 0 in the required point y (Fig. 4). If the line SToo

is chosen as the line x3 = 0 and if S and T be chosen as the points (AlO)

and (100) respectively, the equation of the line SQ may be proved to be

xx — Xx2 + \(2ß — a)x3 = 0. The point of intersection of the line SQ and

the line xt = 0 is therefore y = 2ß — a.

The well-known Möbius net * is determined by any three points of a line. If

the three points be chosen as the points Ax, A2, oo of the line xx = 0 (Fig. 5),

the fourth point A3 is determined as the harmonic conjugate of Ax with respect

to A2 and oo ; ^44 is the harmonic conjugate of A% with respect to A3 and oo ;

Fig. 5.

Ak is the harmonic conjugate of Ak_2 with respect to Ak_x and oo. The word

net is used to denote the set of points Ax, A2, A3 ■■ ■ oo and not to denote the

whole figure.

Let the coordinate of the point Ax be a and that of A2 be a + 1. Since the

harmonic conjugate of a point a with respect to the points ß and oo is the point

2/3 — a, the points of the net are a, a + 1, a + 2, • ■ •, oc. Since the modulus

of the field is p, the series a, a + 1, a + 2, ■ • ■ consists of the p marks

a,a+l,a + 2,---,a + p — 1. The (jp + 1 )-st mark is again a, i. e., the

series repeats itself periodically.    Fig. 5 is drawn for the ca3e p = 5.    The

* KLEIN, Nicht-Euclidishe Geometrie, vol. 1, p. 338 ff. Möbius, Gesammelte Werke, vol. 1,

p. 237 ff.
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point Ae is to be thought of as coincident with the point Ax. This proves that

a finite projective geometry cannot be represented by a figure in ordinary geom-

etry in which a line of the finite geometry consists of a finite set of points on a

line of ordinary geometry.

As in ordinary projective geometry it can be proved that any set of three

collinear points may be projected into any other set of three collinear points.

Therefore any two Möbius nets are projective and the number of points in any

net in any line is p + 1. A net is determined by any three of its points. The

p* + 1 points of a line may be arranged in p"~x nets of p + 1 points each, all

of the nets having a point in common.

A collineation is defined as a point transformation by which lines are trans-

formed into lines. A collineation transforms four harmonic points into four

harmonic points because it transforms a complete quadrangle into a complete

quadrangle. Therefore, if a collineation leaves three points of a net fixed, it

leaves the whole net fixed point by point. In the PG(k,p) there are but

p + 1 points in a line, i. e., the points of a line constitute a single net. There-

fore a collineation which leaves three points of a line fixed leaves the whole line

fixed point by point. Therefore any collineation, other than the identity, has at

most two fixed points in a line ; in a plane it has at most three non-collinear

fixed points ; and in a ¿-space it has at most k + 1 fixed points if no ¿ of them

are in the same (¿— l)-space. In the PG(k, p2) a collineation may have

more than three fixed points in a line, because when three points of the line are

fixed only one net of the line is necessarily fixed point by point. The number

of fixed points in this case is discussed below. The situation here is analogous

to that in ordinary complex projective geometry. The nets correspond in their

definition and properties to von Staudt's * chains, i. e., to circles if the chains

be represented in the complex plane. Any three points of a line in the

PG(k, p2) determine a net or, as it is now to be called, a chain. Let a be a

chain, and let P be a point of the line but not of the chain a. Let A be a

point of the chain a. If X be any other point of a, the three points P, X, A

determine one and only one chain. Since X may be chosen as any one of the

p + 1 points of a other than the point A . there are at least p chains containing

P and A. The total number of points in these p chains is equal to

p(p — 1) + 2 = j)2 — p + 2. The number of points of the line which are not

contained in any of these chains is therefore (p2 + 1) — (p2 + p + 2) = p —1.

Let ß be the chain determined by P, A , and any one of these p — 1 points.

Since ß cannot contain any other point of any of the p chains through P and A ,

it must contain all of the above mentioned p — 1 points. The chains a and ß,

therefore, have one and only one point in common and are said to be tangent

to each other.     We have thus proved that through a given point P of the line

* V. Staudt, Beiträge zur Geometrie der Lage, p. 137.
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there is one and only one chain tangent to a given chain a. The system of all

chains having in common a given point of the line affords, if the given point be

excluded, a system of sets of p points each such that no two sets have more than

one point in common and such that any two points of the line determine one of

the sets. Moreover, containing a given point of the line, there is one and only

one set ß which has no point in common with a given set a. Thus there is

defined a set of points and subsets of it entirely analogous in their intersectional

properties to the lines of the ordinary euclidean plane. It is also analogous

to the system of circles through a fixed point of the ordinary complex plane.

The system of all chains of a line is of course analogous to the system of all

circles and straight lines in a plane.*

If a collineation leaves fixed, point by point, a chain a and a point P not in

a, it must be the identity because through every other point of the line there

passes at least one chain which contains P and two points of a, i. e., every other

point of the line is contained in at least one chain of which three points are

fixed. Therefore a collineation in the PG(k,p2) may have more than two fixed

points on a line but not so many as four unless they are contained in the same

chain.

In the PG(k, p"), the chains of a line constitute a configuration analogous

to the set of all circles in w-dimensional space. Any four points of the line, if

they are not all contained in the same chain, determine a 2-chain, a configura-

tion analogous to a sphere. Any five points, if they are not all contained in the

same 2-chain, determine a 3-chain, a configuration analogous to a hypersphere ; f

and any (i+ 1) points (I = n), if they are not contained in the same (I — 2)-

chain, determine an (Z—l)-chain, a configuration analogous to an (I — 1)-

sphere. A collineation can have as fixed points at most n + 1 points not all

contained in the same (n — l)-chain. If n + 2 points, no n + 1 of which are

in the same ( n — 1 )-chain, are fixed, the collineation is the identity.

§ 6.   Collineation groups in the PG(k, p").

The collineation group of the PG(k, p") is defined as the group of all col-

lineations in the PG(k, p"). In § 5, it has been proved for the PG(k, p) that

a collineation of a line may have at most two fixed points. As in ordinary pro-

jective geometry, it can be proved for the P G (k, p) that there is a collineation

determined by any three points of the line, i. e., there is one and only one collinea-

tion that transforms a given set of three points into another given set of three

points. In like manner it can be proved that there is one and only one collinea-

tion of a plane determined by any four points no three of which are in the same

line, and that one and only one collineation of an /space is determined by any

1 + 2 points no I + 1 of which are in the same (I — 1 )-space.

*Cf. another definition of such a configuration in § 9.

f A circle is a 1-sphere, a sphere is a 2 sphere, etc.
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Let A, B, Che three points of a line. By a collineation, A may be trans-

formed into any point A ' of the line '( A ' may be chosen in p + 1 ways) ; B

may then be transformed into any point B' other than A' (/?' may be chosen

in p ways) ; and C may be transformed into any point C other than A' and

B' (C may chosen in p — 1 ways). The collineation is then completely deter-

mined, and the order of the collineation group of the line is seen to be

(p + l)p(p-\)=p(p2-l).

Let A and B be two points of a plane. Let a2 denote the number of points

in the plane and let crx denote the number of points on a line. By a collinea-

tion, A may be transformed into any point A' of the plane (A' need not be

different from A and may therefore be chosen in a2 ways) ; B may be then

transformed into any point B' other than A' (B' may be chosen in a., — 1

ways); any other point C of the fine AB may then be transformed into a point

C" of the line A'B'(C may be chosen in p — 1 ways because ax = p + 1 );

any point D not on the line AB may then be transformed into any point I)'

not on the line A'B'(D' may be chosen in a2 — crx ways), and finally any point

E, other than A and D of the line AD, may be transformed into any point K ',

other than A' and D', of the line A'D'(E' may be chosen in p — 1 ways). The

collineation is then completely determined, and the order of the collineation group

of the plane is the product of the factors which represent the number of choices

at the successive stages of the determination of the collineation, i. e., the order

is ""aK - ! )(P - 1 ) • («i - 'i )(P - 1 ) •
In like manner it may be seen that the order of the collineation group of

¿-space is

N= *»(•,-IX* -1) ■ K-OCp - i)-('»-'J(p -1) • • •K-Oii' -1).

where trk = p* + p*-1 + ■ ■ ■ + p + 1 = (p'i+x — l)/(p — l), the number of

points in ¿-space ( <r0 = 1 ).    The expression for A^ may be written

N~(P-1T*M(«>-"j)-

Substitute the values for crk and ct., as indicated above, and the expression becomes

(P"I-1)IÏ(P"*,-P') ,       .
=--;iLr-,-iS <,»■-/>.

But this is exactly the order* of the group LF(k + 1, p) of all linear frac-

tional transformations on k variables having coefficients in the GF[p~\, and

having determinant not zero.

* L. E. Dickson, Linear Groups, p. 87.
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Therefore, by observing that every transformation of the group is a collinea-

tion, it is proved that the group IF(k + 1,p) is the collineation group of the

PG(k,p).
The collineation group of the PG(k, p"), n > 1, is not linear. * It will be

sufficient to show this in detail for the case of the plane. The equation of a

line in the PC?^,//') is

(0) alxl + a2x2 + a3x3=0.

The result of raising this equation to the power p* is

(¿) <<+<<+<<=<>.

This equation contains only three terms because every other term in the expan-

sion has a coefficient which is a multiple of p and is therefore congruent to zero

modulo p. Conversely, the result of raising equation (¿) to the power p"~k is

equation (0) because p'" = p if p is any mark of the GF[_pn~\. Therefore

equations (0) and (¿) represent the same line or, in other words, any line may

be represented by any one of the n equations (¿), (¿=0,1, •• -, n — 1), n—1

of which are not linear.    Moreover, any equation of the form

(1) «,< + a2 x'f + t2J<=0

represents a line since it becomes linear upon being raised to the power pn'k-.

The transformation

(Ah ■i

x\     axxf+ bxxp,k + cx&*

xt = a.,xpk + b'x'f + c.'ai"

x[,     a2xpt + b2xf + c2zf

is a collineation because it transforms any equation of type (1) into another of

type (1). It is therefore evident that the group of all collineations in the

P G ( k, p" ), ny- 1, is not the linear fractional group. The group of all col-

lineations is not further considered in this paper.

§ 7.  Linear groups.

To define synthetically, in the PG(k, p"), the group LF(k +1,/>"),t *»>1«

it is necessary to make use of the fact that condition VII, which is a valid

proposition in the PG ( ¿, p" ), is equivalent to the following form of the fun-

*This is analogous to the fact that the collineation group is not linear in ordinary complex

projective geometry.

fThis symbol is used in this paper to denote the group of linear fractional transformations

having determinant 4= 0 although Dickson, in his Linear Groups, uses it for the group of linear

fractional transformations of determinant unity.
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damental theorem of projective geometry.* If four collinear points A, B,

C, D are transformed by a finite number of projections and sections into four

points Ax, Bx, C,, Dx, then, if by any finite number of projections and sec-

tions A, B, C, I) are transformed into Ax, Bx, C,, D[, D[ cannot be differ-

ent from I)t. This proposition should be carefully distinguished from the

stronger form of the fundamental theorem which holds in the PG(k, p) and

in ordinary real projective geometry, namely, Any transformation of points

into points and lines into lines which transforms any set of four harmonic

points into four harmonic points leaves a line I invariant point by point if

three points of I are fixed. The weak form is the one which holds in ordinary

complex projective geometry-

A projective collineation is defined as a collineation such that, if four col-

linear points are transformed into four collinear points, the transformation can

be effected by a finite number of projections and sections. The group of all

such transformations is called the projective group of the PG(k, p"). The

order of this group may be counted by the method used in § 6 for the collinea-

tion group of the PG(k, p). The result is the same except that in the present

case p" replaces p. The order is [l/(s — 1)] n¡=0(«'t+1 — *'), where s = p".

This is exactly the order of the group LF(k + 1, p")\ of all linear fractional

transformations on k variables having coefficients in the GF[pn~\ and having

determinant not zero.

To prove that the group LF(k + 1, p") is the projective group of the

PG(k,p") it is now sufficient to prove that every such linear fractional trans-

formation is projective. Let A, B, C, I) be four collinear points and let

A, B', C, D' be four collinear points on another line through A. It is to be

proved that the linear fractional transformation which transforms A, B, C, D

into A, B', C, D' is a projective transformation, i. e., that the lines BB' and

CC meet on the line DD'. To prove this, the points A, D, D' (Fig. 6) are

taken as the points (001), (010), (100), i. e., the triangle ADD' is taken as

the fundamental triangle of the coordinate system. B and C are taken as

(016) and (01c), any two points of the line xx = 0. B' and C" are taken as

(106') and (10c') of the line x2= 0. The most general transformation of the

group LF(Z, p") which transforms the line AD into the line AD' leaving the

point A fixed and transforming B into B' and D into D' is easily determined

to be

x\       lxt + bx2 x'? mxx

x3 ~ nxx + b'x3 ' x'3 ~ nxx + b'x3 '

l, m, n being arbitrary marks of the field.    This transformation converts  the

*F. Schur, Mathematische Annalen, vol. 51 (1898), p. 401.    Also cf. Notes, p. 71.

t L. E. Dickson, Linear Groups, p. 87.
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point (Ole) into the point (1,0, b'c/b), i. e., c' is determined to be c' = b'c/b.

The equations of the lines BB' and CC are now found to be, respectively,

b'xx + bx2 — x3 = 0 and 6'ca;, + bcx2 — bx3 = 0.    The point of intersection of

Fig. 6.

these two lines is the point E whose coordinates are (6 — 6', 0). A1 is a point

of the line x3 = 0, i. e.¿ of the line DD'. Since the points AB CD are pro-

jective with the points A, B', C, D' from the center of projection E, the

linear fractional transformation of A, B, C, D into A, B', C. D' is a pro-

jective transformation.

Having proved that the linear fractional transformation of four collinear

points A, B, C, D into the four collinear points A, B', C", D' (B' CD'

being any three points on any second line through A ) is a projective trans-

formation, we now observe that the linear fractional transformation of four

collinear points A, B, C, D into four collinear points may be regarded as the

product of two projective linear fractional transformations of the kind just

considered (Fig. 7). The points A, B, C, D are first transformed into

A, B', C, Dx, four points of the line ADX, and these points are then trans-

formed into Ax, Bx, C,, Dl of the given line through DX.

It has now been proved that the group LF(k. + 1, p") is the projective

group of the PG(k,p"). This projective group is the sub-group (^10) of the

group (Ak) given in the last part of § 6.    In the PG(k, p), i. e., when
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n = 1, the group (Ak) consists only of the transformations A , and the projec-

tive group is the same as the collineation group.

The PG(k,p") may now be regarded as a defining invariant for the group

LF(k + l,pn), (under projective transformations of course, although when

n = 1 this is the same as saying under collineations). If there be left off from

the PG(k, s), s = p", the points of a single PG(k — 1, s), there will remain

Fig. 7.

a configuration analogous to ordinary euclidean ¿-space. It is denoted by the-

symbol EG(k, s). The PG(k, s) may be thought of as arranged in

(«*+*—1)/(*— 1) geometries of the type PG(k—l,s). The leaving off of

the single PG(k—l, s) takes from each remaining PG(k — 1, s) a single

PG(k — 2, s). This leaves as the EG(k, s) a configuration consisting of ,s''

points arranged in

/+'- 1 _*(»*-1)

"7-1  ~1=   .s-i

sets of g*-' points each, each set being an EG(k — 1 , s). Let xk+x = 0 be the

equation of the PG(k—l, s) which was left off. The subgroup of the

IF(k+ 1, .s), consisting of those transformations which leave invariant the

PG(k — 1, s) whose equation is av., = 0, is the linear group, L(k,s), in k

variables. It may be thought of as the group for which the EG(k, s ) is a defin.

ing invariant (under projective transformations, of course). The subgroup of tho

linear group L(k, s), consisting of those transformations which leave invariant

the origin of coordinates, is the general linear homogeneous group GLH(k, s)

in k variables. The configuration which is a defining invariant for this group

is the configuration obtained by leaving off from the EG(k, s) a single point

and every EG(k — 1, s) containing it.

Trun». Am. Math. Soc. 17
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§ 8.  Second degree loci.

A point conic is defined as the locus of the point of intersection of corre-

sponding lines of two projective pencils of lines. A line conic is defined as

consisting of the lines that join corresponding points of two projective ranges of

points. If a tangent to a point conic be defined as a line that has one and only

one point in common with the point conic, it can be proved (cf. Notes, p. 110),

that the tangents to a point conic constitute a line conic. This being so, it is

convenient to use the word conic to denote the self-dual figure that consists of a

point conic and its tangents. The number of points of a point conic is equal to

s + 1, the number of lines in a pencil ; the number of lines of a line conic

is « + 1, the number of points in a range. Therefore a conic consists of s + 1

points and »+1 lines.

A point which is the intersection of two tangents is said to be an outside

point. A point which is neither a point of the conic nor an outside point is

said to be an inside point. The total number of outside points is ^(s2 + s),

the number of combinations of s + 1 tangents taken two at a time. By sub-

traction from .s2 + 8+1, the number of points in the plane, the total number

of inside points is found to be |(s2 — s). By the principle of duality, the

number of secants (a secant being a line that meets the conic in two points) is

h(s* + s) and the number of lines that do not meet the conic is |(.s2 — s). On

any secant there are s — 1 points which are not points of the conic. Half of

these are inside points and half are outside points, because two tangents meet in

each outside point. This corresponds to the fact that in a Galois field there

are as many squares as not squares since, as is proved below, a conic may be

represented by an equation of the second degree.

Let P = 0 and Q = 0 be the equations of two lines in abridged notation.

P and Q are linear homogeneous functions of the three variables xx, x2, x3.

The equation \P + uQ = 0, A and u being any marks of the GF\_8~\, is the

equation of a line through the point of intersection of the lines P = 0 and

Q = 0. Therefore the equation \P + p Q = 0, the domain for A and u being

the GF[s], represents the pencil of lines through the point of intersection of

P = 0 and Q = 0. There is one and only one line of the pencil for every

value of the fraction X/p. There are s values of this fraction in the GF[s].

When u = 0 the fraction X/u is denoted by the symbol oo, and the correspond-

ing line of the pencil is the line P = 0.

Consider two pencils of lines XP + uQ = 0 and \P' + uQ' = 0. A one to

one correspondence between the two pencils may be established by taking as

corresponding elements the two lines which correspond to the same value of the

parameter X/u. That this correspondence is projective may be proved by

observing that the linear fractional transformation [a transformation of the pro-

jective group of the  PG(2, s)]   which transforms the lines P = 0, Q = 0
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and P + Q = 0 into the lines P' = 0, Q' = 0 and P' + Q' = 0, respec-

tively, also transforms the line XP+ pQ=0 into the line XP' + pQ' = 0.

The locus of the point of intersection of corresponding lines is obtained by

eliminating A and p from the equations of the two pencils. The result is

PQ' + P' Q = 0 which is a homogeneous equation of the second degree in

xx, x2, x3 since P, Q, P', and Q' are linear homogeneous functions. Similarly,

using line coordinates, it may be proved that the line equation of a conic is a

homogeneous equation of second degree in three variables.

As in ordinary analytic or synthetic geometry, pole and polar may be defined

with reference to a conic, and the conic may be thought of as consisting of

those points which are such that each is contained in its corresponding line in a

polar system. (For a definition of polar system without reference to a conic,

cf. Notes, p. 147.)

A configuration analogous to the non-euclidean plane geometry of Lobatchew-

Sky may be obtained by considering only the inside points of a conic. The

number of points in such a configuration Í3 |(s2 — s). These points will be

arranged in s2 lines, the tangents being the only lines of the plane which are

excluded. Every secant line of the plane contains l(a — 1) inside points, and

every line of the plane which does not meet the conic contains ^(s + 1) inside

points. Of course a line joining an inside point and an outside point does not

necessarily meet the conic. The configuration may be thought of as consisting

of A ( s2 — s ) points arranged in s2 lines which are of two classes. In the first

class there are j(*2 + *) lines containing ^ (s — 1) points each. In the second

class there are ^ (s2 — s) lines containing ^(s + 1) points each.

Configurations analogous to ¿-dimensional non-euclidean geometries may be

obtained in a similar manner from second degree loci in k dimensions.

In the geometry of three-space a quadric may be defined by means of two

correlative bundles (a bundle of lines correlated with a bundle of planes). The

quadric consists of the points in which a line of one bundle meets its correspond-

ing plane in the other. This, the general definition of a quadric in projective

geometry, includes the special cases of ruled quadric and quadric cone. A

ruled quadric may be defined as the points of a set of lines each of which meets

three given skew lines ; or it may be thought of as the points of the lines of

intersection of two projective axial pencils whose axes have no common point.

A quadric cone is defined in like manner by means of projective axial pencils

whose axes do have a common point. From either definition it appears that one

ruling of a ruled quadric consists of s + 1 lines of s + 1 points each, i. e., the

surface consists of ( s + 1 )2 points. A quadric cone consists of s + 1 lines

having a point in common, the total number of points being s2 + s + 1. This

is the number of points in a plane, or of lines in a bundle, or of planes in a

bundle.    The number of points of the general quadric is s2 + 1.    As in ordin-
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ary projective geometry, it may be seen that any plane section of a quadric is

a conic.

§ 9. Derived tactical configurations.

The finite projective geometries may be used to build a practically endless

sequence of tactical configurations.* For example, in a three dimensional

geometry, systems of lines may be obtained analogous to the ordinary linear

congruence. Any three lines of the system determine a set of p" + 1 lines,

namely, the lines of the same ruling in the quadric determined by the three.

We thus have a generalization from the case p to the case p" of the configura-

tion of all the chains in a line (cf. § 5).

The configurations just named seem, not to be in the literature, but all the

other configurations discussed above have been known previously for the cases

where p" is a simple prime. The references, so far as we have been able to find

them, are given below. We have found no previous mention of a case p" where

n>l.

The PG(2, 2) is the same configuration as the triple system A; in seven

elements mentioned in § 1 and § 3.

The PG(k— 1,2) is the same configuration as the linear triple system

A2,_, in 2'' — 1 elements, defined and studied by MoORE.f

The EG(k, 3) is a triple system A3» in 3* elements. The number of triples

isJS»(8*-l).
The PG(k, 2>) i8 the same as the linear fractional configuration

LFCf[(p'' — 1 )/ (p — 1 )] obtained by Moore | as a defining tactical invari-

ant for the linear fractional group LF(k + 1, p). Paragraph 7 of this paper

may be regarded as a generalization by a different method of the IF(k + 1 ,p)

to the LF(k + 1, ;/'), n > 1.

The P G (k, p) has been defined synthetically by Fano § and analytically by

Hessenburg.II Neither Fano nor Hessenberg seems to have studied its

group properties or its geometrical theory. Moore studied only the group

properties. He obtained the configuration from the GF[ pk ] instead of from

the GF[p~\ as in this paper.

*For the general definition of tactical configuration and a rich collection of examples, cf.

E. H. Moore, Tactical memoranda, American Journal of Mathematics, vol. 18(1896),

p. 264.
t Concerning the general equations of lite seventh and eighth degrees, Mathematische Anna-

leo, vol. 51 (1898), pp. 417-444.

X Concerning Jordan's linear groups, Bulletin of the American Mathematical So-

ciety, ser. 2, vol. 2 (1895-96), pp. 33-43.

\ Sui postidati fondamentali delta geometría projettiva, Giornale di Matematiche, vol. 30

(1892). p. 106.
|| Über die projective Geometrie, Sitzungsberichte der Berliner mathematischen

Gesellschaft, 1902-03, pp. 36-40.
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The EG(k, p) is the linear configuration LCf[p':] obtained by Moore*

as a defining tactical invariant for the linear group L(k, p). The linear homo-

geneous configuration LIICf(p'~ — 1 ), obtained by Moore* as a defining

tactical invariant for the general linear homogeneous group GLH( k, p), is the

same configuration, for the case s = p, as the one obtained as a defining invari-

ant for the general case of the same group at the end of § 7 of this paper.

The EG(3, 2) is Moore's quadruple system Ds.t The planes of the

EG (3,2) are the quadruples.

*Bulletin of the American Mathematical Society, loc. cit.

t Mathematische Annalen, loc. cit., \ 5. In this paper, Moore points out that the

PG{ 3, 2) [his A15] leads to a solution of Kirkman's fifteen schoolgirl problem.


