ON MULTIPLY TRANSITIVE GROUPS*

BY

W. A. MANNING

The properties of primitive groups that contain transitive subgroups of lower degree were first investigated by Jordan.† In the Traité des Substitutions he proved that if a primitive group of degree \(n \) contains a circular substitution of prime degree \((p) \) it is at least \(n - p + 1 \) times transitive. The capital importance of this theorem led him to examine the general and much more difficult case, that in which the subgroup of lower degree is merely transitive. He obtained the remarkable theorem:‡

"If a primitive group \(G \) of degree \(n \) contains a group \(\Gamma \), the substitutions of which displace only \(p \) letters and permute them transitively (\(p \) being any integer), it is at least \(n - p - 2q + 3 \) times transitive, \(q \) being the greatest divisor of \(p \) such that we can arrange the letters of \(\Gamma \) in two different ways in systems of \(q \) letters which have the property that each substitution of \(\Gamma \) replaces the letters of each system by those of a single system. If none of the divisors of \(p \) have this property (which will happen notably if \(\Gamma \) is primitive, or formed of the powers of the same circular substitution) \(G \) is \(n - p + 1 \) times transitive."

Netto § and Rudio || later gave proofs for that special case in which \(\Gamma \) is primitive. The only other contribution to this theory was made by Marggraff.¶ He proved that if \(q \) is the greatest divisor of \(p \) such that the letters of \(\Gamma \) may be arranged in systems of imprimitivity in at least three different ways, and if \(p \) is divisible by some number \(r \) such that \(\Gamma \) admits \(r + 1 \) systems of imprimitivity with one letter in common and no two of which have more than one letter in common, \(G \) is at least \(n - p - 2q + 3 \) times transitive. If these two conditions are not fulfilled, \(G \) is \(n - p + 1 \) times transitive. In Marggraff's

* Presented to the Society (San Francisco), February 24, 1906. Received for publication June 19, 1906.
† C. Jordan, Traité des Substitutions, 1870, p. 664.
¶ Marggraff, Dissertation, Uber primitive Gruppen mit transitiven Untergruppen geringeren Grades, Giessen, 1889; and also, Wissenschaftliche Beilage zum Jahresberichte des Sophien-Gymnasiums zu Berlin, 1895, Programm nr. 65.

499
second paper are given some interesting relations between \(n \) and \(p \), for example, \(p \geq \frac{1}{2} n \).

The word “two” in Jordan’s theorem, and “three” in Marggraft’s may in all cases be replaced by “\(q + 1 \).”

Let it be assumed that \(G \) is a doubly (and not triply) transitive group of degree \(\sum_{x=1}^{r} q_x \) (\(q_{r+1} = 1 \)), in which are found transitive subgroups \(H^i \) (\(i = 1, 2, \ldots, r \)) of degrees \(\sum_{x=1}^{i} q_x \) respectively. It is also assumed that the degree of any transitive subgroup of \(G \) which displaces more than \(q_i \) and less than \(\sum_{x=1}^{i-1} q_x \) letters is one of the numbers \(\sum_{x=1}^{i} q_x \) (\(i = 2, 3, \ldots, r - 1 \)). This does not say that there is not a transitive subgroup of degree less than \(q_i \). Let \(a_{i, k}^j \) (\(k = 1, 2, \ldots, q_i \)) be the letters displaced by \(H^i \) but not by \(H^{i-1} \), and let \(\Gamma_i \) be the largest subgroup of \(G \) on the letters of \(H^i \); \(\Gamma_i \) includes all the preceding subgroups and is transitive.

If \(q_r = 1 \), \(G \) is triply transitive contrary to hypothesis: hence \(q_r > 1 \). If for those values of \(i \) corresponding to which \(q_i > 1 \), the letters \(a_{i, k} \) (\(k = 1, 2, \ldots, q_i \)) do not form a system of imprimitivity in \(\Gamma_i \), some substitution \(S \) of \(\Gamma_i \) will give a group \(S^{-1} \Gamma_i S \) displacing some of the letters \(a_{i, k} \) (\(k = 1, 2, \ldots, q_i \)) and leaving fixed at least one of them. Then \(\{ \Gamma_i, S^{-1} \Gamma_i S \} \) is a transitive group of degree greater than \(\sum_{x=1}^{i-1} q_x \) and less than \(\sum_{x=1}^{i} q_x \), contrary to hypothesis. By the definition of imprimitivity all the subgroups of \(\Gamma_i \), notably \(\Gamma_i, \Gamma_i^2, \ldots, \Gamma_i^{r-1} \), admit these systems. It should also be remarked that the letters \(a_{x, k}^i \) (\(k = 1, 2, \ldots, q_x \)) fall into sets of imprimitivity \(q_i \) by \(q_i \), for \(x = 1, 2, \ldots, i - 1 \). Since \(q_r > 1 \), then \(q_i > 1 \) (\(i = 1, 2, \ldots, r - 1 \)).

Let \(a_{x, 1}^i \) represent the system \(a_{x, k}^i \) (\(k = 1, 2, \ldots, q_x \)) of \(\Gamma_i \), and let \(a_{x, k}^i \) (\(i = 1, 2, \ldots, r - 1; \ k = 1, 2, \ldots, q_i/q_x \)) be the remaining systems into which \(a_{x, 1}^i \) goes under the substitutions of \(\Gamma_i \). We define \(\Gamma_i^2 \) as the group in the systems \(a_{x, k}^i \) (\(x = 1, 2, \ldots, i; \ k = 1, 2, \ldots, q_x/q_i \)) of \(\Gamma_i^1 \). Obviously \(\Gamma_i^2 \) is at least doubly transitive.

The group \(G \), being doubly transitive, contains a substitution \(T_i = (a_{i, 1}^{i+1} a_{i, 1}^{i+2}) \cdots \). Let it be granted for the moment that \(T_i \) transforms \(\Gamma_i^{r-1}, \Gamma_i^{r-2,1}, \ldots, \Gamma_i \) each into itself and leaves fixed the letters \(a_{i, 1}^{i+1}, a_{i, 1}^{i+2}, \ldots, a_{i, 1}^{-1} \). Then \(\{ T_i^{-1} \Gamma_i, T_i \} = \Gamma_i \); for, its degree is less than \(\sum_{x=1}^{i+1} q_x \) and must consequently be \(\sum_{x=1}^{i} q_x \), that of \(\Gamma_i \). If \(T_i \) displaces \(a_{i, 1} \) there is a substitution \(S \) in \(\Gamma_i \) which replaces \(a_{i, 1} \) by the same letter as does \(T_i \). Then \(S^{-1} T_i \) leaves fixed \(a_{i, 1} \) as well as \(a_{i, 1}^{i+1}, \ldots, a_{i, 1}^{-1} \) and may be used for \(T_i \). But it is clear that \(T_i = (a_{i, 1}^{i+1} a_{i, 1}^{i+2}) \cdots \) transforms \(\Gamma_i^{r-1} \) into itself, and by multiplication by a substitution of \(\Gamma_i^{r-1} \) a like substitution may be obtained which leaves \(a_{i, 1}^{-1} \) fixed. Then by a complete induction \(G \) contains a substitution

\[
T_i = (a_{i, 1}^{i+1})(a_{i, 1}^{i+2}) \cdots (a_{i, 1}^{-1})(a_{i, 1}^{i+1} a_{i, 1}^{i+2}) \cdots
\]

for \(i = 1, 2, \ldots, q_x \), which transforms each group \(\Gamma_i^1, \Gamma_i^2, \ldots, \Gamma_i^{r-1} \) into itself.
Each system of letters $a_{i,k}^j$ ($k = 1, 2, \ldots, q_i$) is transformed into itself. The symbol $a_{i,1}^r$ will be introduced later for the system $a_{i,k}^1$ ($k = 1, 2, \ldots, q_{r-1}$), and other properties of T_i pointed out.

Now $T_i^{-1} \Gamma_i^{-1} T_i = \Gamma_i^{-1}$ ($i = 1, 2, \ldots, q_r$), but the system $a_{i,1}^r$ is replaced by q_r, other systems which have at least the letter $a_{i,1}^r$ in common with $a_{i,1}^r$. Let these q_r new systems of imprimitivity of Γ_i^{-1} be represented by $a_{i,1,4}^{r-1}$. If it is assumed that $a_{i,1,4}^{r-1}$ has a second letter $a_{i,2}^r$ in common with $a_{i,1}^r$, T_i has the sequence $a_{i,1}^r a_{i,2}^r$, where $a_{i,1}^r$ is some letter of the system $a_{i,1}^r$. In Γ_r there is a substitution $S = (a_{i,1}^r a_{i,1}^r) \ldots$. Now $U = S^{-1} T_i S$ leaves fixed the letter of $a_{i,1}^r$ which follows $a_{i,1}^r$ in S, replaces the letter which follows $a_{i,1}^r$ in S by the one which follows $a_{i,1}^r$, and certainly replaces a letter of $a_{i,1}^r$ by $a_{i,1}^r$. Hence one sees that the degree of $\{ U^{-1} \Gamma_i^{-1} U, \Gamma_i^{-1} \}$ is greater than $\sum_{r=1}^{q_r} q_r$ and less than $\sum_{r=1}^{q_r} q_r$, contrary to hypothesis. The q_r systems $a_{i,1,1}^{r-1}$ have one and only one letter in common with $a_{i,1}^{r-1}$.

Suppose it possible to find in G a substitution T that transforms Γ_i^{-1} into itself, and which replaces the system $a_{i,1,4}^{r-1}$ by a system α' distinct from any system resulting from the $q_r + 1$ arrangements obtained above. If α' does not include the letter $a_{i,1}^r$, some substitution S'' of Γ_i^{-1} will replace α' by a system α which does include $a_{i,1}^r$. Now $T_i TS''$ replaces the system $a_{i,1}^r$ by α and the letter $a_{i,1}^r$ by $a_{i,1}^r$ say. We take from Γ_i^{-1} a substitution S' which replaces $a_{i,1}^r$ by $a_{i,1}^r$, and in consequence leaves α fixed; the product $U = T_i TS''S'$ leaves $a_{i,1}^r$ fixed and replaces $a_{i,1}^r$ by α, so that $U = (a_{i,1}^r)(a_{i,1}^r a_{i,1}^r) \ldots$. Now $UT_i = (a_{i,1}^r)(a_{i,1}^r) \ldots = S$, a substitution of Γ_i, and therefore $U = ST_i$, $k \equiv q_r$. Hence α, the result of transforming Γ_i^{-1} first by S and then by T_i, is merely one of the systems $a_{i,1,4}^{r-1}$.

The system $a_{i,1,4}^{r-1}$ bears the same relation to Γ_i^{-1}, $T_i^{-1} \Gamma_i T_i$, and G, that $a_{i,1}^r$ does to Γ_i^{-1}, Γ_i, and G. From $a_{i,1,4}^{r-1}$, then can be obtained, by means of substitutions that leave $a_{i,1}^r$ fixed and Γ_i^{-1} invariant, q_r other systems with but one letter in common with $a_{i,1}^r$. But we have just seen that these q_r systems will coincide with systems already obtained. Hence the letters of Γ_i^{-1} may be arranged in systems of imprimitivity of q_r letters each in at least $q_r + 1$ ways with one letter common to the $q_r + 1$ systems and with no other letter common to any two of them. This theorem holds à fortiori for all transitive subgroups of Γ_i^{-1}, in particular for H^1. It was first proved by Marggraff, loc. cit.

Since T_i permutes the letters $a_{i,k}^r$ ($k = 1, 2, \ldots, q_{r-1}$) among themselves, the letters (q_r^2 in number) involved in the systems $a_{i,1}^r, a_{i,1}^r, a_{i,2}^r, \ldots, a_{i,k}^r$, are all found in the larger system $a_{i,1}^r$ above. Hence we have the important relation $q_{r-1} \equiv q_r^2$.

It will now be shown that Γ_r^1 is not in general triply transitive. An exception arises only when $r = 2$. Suppose Γ_r^1 triply transitive. To each of the $q_r + 1$ distinct arrangements of the letters of Γ_i^{-1} in systems of imprimitivity of
q, letters each, corresponds a doubly transitive group according to which systems are permuted.* Let $\Gamma^{-1}_1(a^{-1}_{i,1})$ be the subgroup of Γ^{-1}_1 that leaves fixed the letter $a^{-1}_{i,1}$. The remaining $q_i - 1$ letters of each system of imprimitivity to which $a^{-1}_{i,1}$ belongs may be permuted only among themselves by the substitutions of $\Gamma^{-1}_1(a^{-1}_{i,1})$. Now $\Gamma^{-1}_2(a^{-1}_{i,1})$ is transitive of degree $\frac{1}{q_i} \sum_{x=1}^{q_i-1} q_x - 1$, while the number of systems transitively connected by it cannot exceed $q_i - 1$. Hence $\sum_{x=1}^{q_i-1} q_x \leq q^2$, and (since $q_{r-1} \leq q^2_i$), $q_{r-1} = q^2$ and $r = 2$, unless Γ^{-1}_r is a regular group, in which case also $r = 2$. It will be shown later that an imprimitive group of degree q^2 in which $q + 1$ systems of q letters each with one letter in common, and such that no two of these systems have more than one letter in common, is either regular or of class $q^2 - 1$. However, the proof of the theorem we are going to establish is already complete for $r = 2$, whether Γ^r is triply transitive or not. In completing the proof we assume then that $r > 2$, so that Γ^r is doubly but not triply transitive. It is such a group as G itself and to it may be applied all preceding results for G.

Is it possible for Γ^r to have a transitive subgroup of degree greater than q_i/q_r and not equal to one of the numbers $\frac{1}{q_i} \sum_{x=1}^{q_i} q_x (i = 2, 3, \ldots, r)$? Let, if possible, $\Gamma^{i,k}_r$ be a transitive subgroup of Γ^{i+1}_r which displaces besides the letters of Γ^i the k letters $a^{i+1}_r, a^{i+2}_r, \ldots, a^{i+k}_r (1 \leq k < q_i/q_r)$. Then between Γ^i and Γ^{i+1}_i there is a corresponding subgroup $\Gamma^{i,k}_i$, which includes Γ^i and is transitive in the systems a^{i+1}_r, \ldots, so that $\Gamma^{i,k}_i$ certainly has a transitive constituent of degree $\sum_{x=1}^{i} q_x + k q_r$. Now transform Γ^i by all the substitutions of $\Gamma^{i,k}_i$. If the group generated by Γ^i and all these transforms is not transitive of degree $\sum_{x=1}^{i} q_x + k q_r$, it is because $k q_r \leq \sum_{x=1}^{i} q_x$, an absurdity since $k q_r < q_{i+1}, q_{i+1} \leq q_i$, that is, $k q_r < q_i$. This holds for $i = 1, 2, \ldots, r - 2$. Nothing is said about possible transitive subgroups of various degrees in Γ^i_r.

We may now form the doubly transitive group in the systems of Γ^{-1}_2. The system $a^{i-1}_{i,k} (k = 1, 2, \ldots, q_{r-1}/q_r)$ will be represented by $a^{i-1}_{i,k}$. The large system $a^{i}_{i,k} (k = 1, 2, \ldots, q_i/q_r)$ breaks up into the smaller systems $a^{i}_{i,k} (k = 1, 2, \ldots, q_i/q_{r-1})$. This group on the letters $a^{i}_{i,k} (i = 1, 2, \ldots, r - 1)$ will be indicated by Γ^{-1}_3, and the subgroup of it which corresponds to Γ^r_3 is Γ^i_3. In the same way we proceed to form the successive groups Γ^j_3 in the sys-

*Cf. C. Jordan, Journal de Mathématiques, ser. 2, vol. 16 (1871), third paragraph of article 7 on page 388. From the fact that “I” is doubly transitive with respect to the systems of q letters s, s_1, \ldots which it contains, it does not follow that if its letters can be grouped in different ways in systems of imprimitivity, each of the new systems will be contained completely within one of the systems s, s_1, \ldots. For example it is not true in the regular non-cyclic group of order 6. In it systems of two letters each are permuted according to a doubly transitive group, while there are three distinct ways of arranging the letters of the group in systems of imprimitivity of two letters each. But the argument is valid if use is made of the fact that “I” contains substitutions leaving fixed at least two letters. To see how the subgroup “H” of “I” should be brought in to complete the proof, see Margraf, l. c., theorem X (1889), p. 20, and (1895), p. 16.
tems $a_{j,k}^i$ ($k = 1, 2, \ldots, q_i/q_{r-j+2}$; $i, j = 1, 2, \ldots, r$, provided $i+j \leq r+2$; and $q_{r+1} = 1$). The groups Γ_j^i for which $i+j = r+2$ are all doubly and not triply transitive except perhaps Γ_2^2. From Γ_{i+1}^{i+1} we have

$$q_{i+1} = \left(\frac{q_i}{q_{i+1}} \right)^2, \quad \text{or} \quad q_{i-1} = \frac{q_i^2}{q_{i+1}} \quad (i = 2, 3, \ldots, r),$$

so that

$$q_i \equiv q_{i+1} \sqrt{q_{i+1}}, \quad \text{or} \quad q_i \equiv q_i^{r-i+1}, \quad \text{or} \quad q_i \equiv q_i^{r-i+1}.$$
with \(a_{i+1}^{-1} \) in common may be chosen in \(q_i \sum_{x=1}^{r-1} 1/q_x \) distinct ways, \(q_i \sum_{x=1}^{r-1} 1/q_x \) of which have the system \(a_{i+1}^{-1} \) in common. Now transform \(\Gamma_i^{-1} \) by \(T_i \) \((i = 1, 2, \ldots, q)\). Since \(T_i \) does not replace the systems \(a_{3, i} \) of \(\Gamma_i^{-1} \) by other systems essentially distinct, the \(q_i \sum_{x=1}^{r-1} 1/q_x \) systems with \(a_{i+1}^{-1} \) in common undergo no change. But since \(T_i \) leaves fixed \(a_{i+1}^{-1} \) and may replace letters of \(a_{i+1}^{-1} \) only by letters of \(a_{3, i}^{-1} \), and since \(a_{i+1}^{-1} \) is the only letter of \(a_{i+1}^{-1} \) in common \(q_i/q_x \) systems, no two of the block of \((q_i/q_x)(1 + q_x) \) systems obtained by this transformation are the same. Since \(T_i \) leaves fixed the system \(a_{i+1}^{-1}, i \) (the system of \(q_i \) letters from which we start), each system of the total number, \(q_i \sum_{x=1}^{r-1} 1/q_x + q_i(1 + q_x)/q_x = q_i \sum_{x=1}^{r-1} 1/q_x \), has just \(q+i+1 \) letters in common with \(a_{i+1}^{-1}, i \). Obviously all the letters of all these systems are included in \(a_{i+1}^{-1}, i \). The next point to establish is that no substitution of \(G \) under which \(\Gamma_i^{-1} \) is invariant can replace any of the \(q_i \sum_{x=1}^{r-1} 1/q_x \) systems with \(a_{i+1}^{-1} \) in common (the system \(\alpha \) say) by a system (\(\alpha'' \)) not found among the \(\sum_{x=1}^{r-1} 1/q_x \cdot \sum_{x=1}^{r-1} 1/q_x \) systems of \(\Gamma_i^{-1} \) coming from the above systems which have \(a_{i+1}^{-1} \) in common, after transformation by all the substitutions of \(\Gamma_i^{-1} \). By hypothesis all substitutions of \(\Gamma_i \) under which \(\Gamma_i^{-1} \) is invariant give rise to no new systems. Let \(T \) be a substitution of \(G \) which replaces the system \(\alpha \) by \(\alpha' \), and let \(T^{-1} \Gamma_i^{-1} T = \Gamma_i^{-1} \). Let \(T_i \) be that substitution (defined as before) which replaces one of the systems of \(q_i \) letters which include \(a_{i+1}^{-1} \), by \(a' \). Since \(T_i, T \) cannot be a substitution of \(\Gamma_i \), it must replace \(a_{i+1}^{-1} \) by some letter \(a_{i+1, k} \). The group \{ \(T_i, T_i, \ldots, T_i, \) \} leaves \(\Gamma_i^{-1} \) invariant, \(a_{i+1}^{-1} \) and \(a_{i+1}^{-1} \) fixed, and has a constituent which is transitive in the letters \(a_{i, k} \) \((k = 1, 2, \ldots, q_i; x = i, i + 1, \ldots, r)\), so that from it we may take a substitution \(S'' \) which replaces the letter \(a_{i, k} \) that follows \(a_{i+1}^{-1} \) in \(T_i, T \) by a letter \(a_{i, k}' \). Now \(T_i, T \) \(a_{i+1}^{-1} \) by \(a_{i+1}^{-1} \); let \(\alpha' \) be the system into which \(S'' \) changes \(\alpha'' \). Since \(S'' \) is a substitution of \(\Gamma_i \), \(\alpha' \) satisfies the condition imposed on \(\alpha'' \). Let \(S'' \) be a substitution of \(\Gamma_i^{-1} \) that replaces the system \(\alpha' \) by another \(\alpha \) which includes the letter \(a_{i+1}^{-1} \). Finally let \(S' \) be a substitution of \(\Gamma_i^{-1} \) the inverse of which replaces \(a_{i+1}^{-1} \) by the same letter as does \(T_i, T \) \(a_{i+1}^{-1} \); \(S' \) leaves fixed the system \(\alpha \). Then \(U = T_i, T, S', S' \) leaves \(\Gamma_i^{-1} \) invariant, \(a_{i+1}^{-1} \) fixed, replaces \(a_{i+1}^{-1} \) by \(a_{i+1}^{-1} \), and changes one of the systems which have \(a_{i+1}^{-1} \) in common directly into \(\alpha \). Now \(UT_i = (a_{i+1}^{-1})(a_{i+1}^{-1}) \ldots = S, \) a substitution of \(\Gamma_i \), which leaves the element \(a_{i+1}^{-1} \) fixed since \(a_{i+1}^{-1} \), one of the letters of \(a_{i+1}^{-1} \), is fixed. From \(U = ST_i \), it is clear that \(\alpha \) must be one of the set of systems obtained from those of \(\Gamma_i^{-1} \) by means of \(T_i \).

To prove that any two of the \(q_i \sum_{x=1}^{r-1} 1/q_x \) systems with one letter in common have \(q_{i+1} \) and only \(q_{i+1} \) in common, we have only to note that the series of transitive subgroups \(\Gamma_i \) \((x = i, i + 1, \ldots, r)\) may be so chosen that any one of the systems involving the letter \(a_{i+1}^{-1} \) may be made to take the place of \(a_{i+1, i+2}^{-1} \). In fact \{ \(T_i, T_i, \ldots, T_i \) \} contains a substitution \(T \) which replaces any one
of the $q_i \sum_{i=1}^{r+1} 1/q_x$ systems which include a_{i-1}^{r-1} by any other and permutes them only among themselves. Such a series of subgroups is Γ^1_1, Γ^2_2, \ldots, Γ^{r-1}_r, $T^{-1}_1 \Gamma^r_1 T$, \ldots, $T^{-1}_r \Gamma^r_1 T$, G, and in it an arbitrary system plays the part of a_{r+1}^{r-2}.

It remains to be shown that the q_i systems which have a_{i-1}^{r-1} but not a_{i-1}^{r-1} in common contain no letter of the system a_{i-1}^{r-1} except a_{i-1}^{r-1}. These q_i systems are those by which the q_i/q_x systems in the letters of Γ^{r-1}_1, which do not have a_{i-1}^{r-1} in common, are replaced by $T_i (i=1, 2, \ldots, q_r)$. By hypothesis these q_i/q_x systems contain no letter of the system a_{i-1}^{r-1}, except a_{i-1}^{r-1}, and T_i permutes the letters $a_{r-1}^{r-1}, \ldots, a_{i-1}^{r-1}$, among themselves, giving in place of the system a_{i-1}^{r-1}, systems which have no letter in common with it except a_{i-1}^{r-1}. Hence none of these $(q_i/q_x)q_x = q_i$ systems have, besides a_{i-1}^{r-1} any letter in common with a_{r-1}^{r-2}.

This theorem has been proved for the systems of q_r letters in Γ^r_1, and in consequence holds for the systems of q_{r-1} letters in Γ^{r-2}_r, and so on. In regard to H^1 we may now say that systems of imprimitivity of q_r letters may be chosen in q_i^{r+1}/q_x distinct ways, for $i = 2, 3, \ldots, r-1, r$.

If G is contained in a larger primitive group G' of degree n, G' is $n - \sum_{i=1}^{r} q_x$ times transitive. Now

$$\sum_{i=1}^{r} q_x \equiv q_1 \left(1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{2^{r-1}}\right) \leq 2q_1 \left(1 - \frac{1}{2^r}\right) \equiv 2q_1 \left(1 - \frac{1}{q_1}\right).$$

Hence the theorem:

A primitive group of degree n which contains a transitive subgroup of degree q_1 is at least $n - 2q_1 + 3$ times transitive.

We may give another incomplete but useful statement of our theorem:

If a primitive group G of degree n contains a transitive subgroup H of degree q_1, G is at least $n - q_1 - (q_2 - 1)/(q_r - 1) + 1$ times transitive, q_2 being the greatest divisor of q_1 such that H has at least $q_2 + 1$ distinct arrangements of its letters in systems of imprimitivity of q_2 each, and q_r being the least divisor of q_1 such that H has at least $q_r + 1$ systems of q_r letters each with one letter in common, and not more than the one letter common to any two of them.

If both these conditions are not satisfied by the given group H, G is at least $n - q_1 + 1$ times transitive.

From $q_{i-1} \equiv q_i^2/q_{i+1}$, it follows that $q_r^{r-1+1} \equiv q_i \equiv q_2^{(r-1)(r-1)}$. Then

$$q_2 + q_4 + \cdots + q_r \leq q_2^{r-2} + q_2^{r-3} + \cdots + q_2^{r-1} \leq \frac{q_2 - 1}{q_2^{(r-1)} - 1} - 1 \leq \frac{q_2 - 1}{q_r - 1} - 1.$$

Hence G, which is $n - \sum_{x=1}^{r+1} q_x$ times transitive, is at least
\[n - q_1 - q_2 - \frac{q_2 - 1}{q_2 - 1} + 2 = n - q_1 - q_r \frac{q_2 - 1}{q_2 - 1} + 1 \]

times transitive.

This limit is attained by the holomorph of the Abelian group of degree 2\(a\) and type \((1, 1, \ldots)\), which is triply transitive and has a transitive subgroup of degree 2\(a-1\), for which \(q_2 = 2^{a-2}\) and \(q_r = 2\).

Other useful conditions which \(\Gamma_{i-1}^i\) must satisfy may be obtained by considering the meaning of the multiple imprimitivity it exhibits.

Let \(J\) be an imprimitive group of degree \(n\) and order \(nm\); let \(a_1, a_2, \ldots, a_q\) be the letters of a certain system of imprimitivity of \(J\). The substitutions, \(qm\) in number, that replace \(a_i\) by \(a_1, a_2, \ldots, a_q\) respectively, leave the system \(a_1, \ldots, a_q\) fixed. The product of any two of them also has this property. No other substitution of \(J\) permutes the letters \(a_1, \ldots, a_q\) among themselves. Then these \(qm\) substitutions form a group \((H)\). Let there be another system of \(q\) letters in \(J\) which has the letters \(a_1, a_2, \ldots, a_a\) in common with the first, and the remaining letters \(a'_1, a'_2, \ldots, a'_q\) distinct. The group \(H'\) which corresponds to this system has exactly \(q\) substitutions in common with \(H\): those which replace \(a_1\) by \(a_1, a_2, \ldots, a_q\). These \(qm\) common substitutions form by themselves a group \((F)\).

Now if a substitution \(T\) transforms \(J\) into itself, permutes the letters \(a_2, a_3, \ldots, a_a\) among themselves, leaves \(a_1\) fixed, and replaces \(a_{a+1}, \ldots, a_q\) by \(a'_1, \ldots, a'_q\), it transforms \(F\) into itself and \(H\) into \(H'\). We conclude that \(\Gamma_{i-1}^i\) has a set of \(q, \sum_{r=1}^{r+1}/q_x\) subgroups of order \(q, m_{i-1}\) which have in common the subgroup \((a, \text{order } m_{i-1})\) of \(\Gamma_{i-1}^i\) that leaves one letter fixed. Any two of these subgroups have in common also a subgroup of order \(q, m_{i-1}\). This set of \(q, \sum_{r=1}^{r+1}/q_x\) subgroups of order \(q, m_{i-1}\) must be such that some isomorphism of \(\Gamma_{i-1}^i\) to itself brings any two we please into a 1, 1 correspondence. In particular, no one of them can be a characteristic subgroup of \(\Gamma_{i-1}^i\). If one is invariant in \(\Gamma_{i-1}^i\), all are invariant.

We recall that \(\Gamma_{i-1}^i\) admits \(q_r + 1\) arrangements of its letters in systems of imprimitivity of \(q_r\), each such that \(q_r + 1\) systems may be taken with one common letter and no two of which have more than this one letter in common. If \(a_{i-1}^r\) be taken as the leading letter, the \(q_r^2 - 1\) letters thus associated with it are all found in the larger system \(a_{i-1}^r\). It may happen, as when \(q_{r-1} = q^2\), that the \(q^2\) letters in question form a system \((A)\) of imprimitivity of \(\Gamma_{i-1}^i\). The subgroup \(\Delta^r\) which leaves this system \(A\) fixed has a transitive constituent on the \(q^2\) letters of \(A\). We call this constituent group \(\Delta\) and suppose all the other letters of \(\Delta^r\) erased. Now \(\Delta\) has the properties of \(\Gamma_{i-1}^i\) in so far as systems of imprimitivity are concerned—even more extensive properties perhaps. Consider a substitution \(S\) of \(\Delta\) which leaves fixed two letters \(a_{i-1}^r\) and \(a_{i-1}^r\). Let \(S = (a_{i-1}^r a_{i-1}^r \cdots)\). Since \(S\) can only permute among themselves the letters
of each of the systems to which \(a_{i,k}^{-1} \) belongs—and similarly for \(a_{i,r}^{-1} \)—the letters \(a_{i,r}^{-1} \) and \(a_{i,k}^{-1} \) belong to that system which contains both \(a_{i,1}^{-1} \) and \(a_{i,k}^{-1} \). Then \(S \) displaces at most most \(q_r - 2 \) letters, from which it readily follows that \(S \) is the identity. We conclude that when \(\Delta \) is not regular, it is of class \(q_r^2 - 1 \) and has a characteristic transitive subgroup \(\Theta \) which is regular.* This regular subgroup of order \(q_r^2 \) occurs in both cases, and \(\Delta \), when regular, may be called \(\Theta \) for the sake of uniformity. This group \(\Theta \) admits a \((q_r + 1) \) fold division into systems of imprimitivity, no two systems having more than one letter in common, hence its substitutions are distributed among \(q_r + 1 \) subgroups of order \(q_r \), no two of which have an operator in common other than the identity.

Let \(s_1 = 1, s_2, \ldots, s_{q_r} \) be the substitutions of one of these subgroups, one of whose substitutions is conjugate to some substitution \(t_j \) not in it. Let \(t_1 = 1, t_2, \ldots, t_j, \ldots, t_{q_r} \) be that one of the \(q_r - 1 \) subgroups in question which includes \(t_j \). Now every substitution of the group \(\Theta \) is given by \(s_\alpha t_\beta (\alpha, \beta = 1, 2, \ldots, q_r) \). But clearly \(t_\beta s_\alpha^{-1} s_\alpha s_\beta t_\beta \neq t_j \). Then each of the \(q_r + 1 \) subgroups is invariant, and since no two have anything in common but the identity, every substitution of one of these subgroups is commutative with all the substitutions not in it. Then the group \(\Theta \) is Abelian. Let \(q_r = mp^s \), where, if possible, \(m \) is prime to \(p \) (\(p \) being a prime number). The Sylow subgroup of \(\Theta \) of order \(p^{2s} \) must have \(mp^s + 1 \) subgroups of order \(p^s \) with nothing in common but the identity. Then

\[
1 + (mp^s + 1)(p^s - 1) = p^{2s},
\]

so that \(m = 1 \). If now we take the two subgroups of order \(q_r = p^s \) in which the subgroups composed of the operators of order \(p \) are of the lowest possible orders \(p^{k_1} \) and \(p^{k_2} \), \(k_1 \geq k_2 \), we get the inequality \(p^{k_1 + k_2 - s} \geq p^{k_1} \), whence \(k_1 = k_2 = \alpha \). Then \(\Theta \) is of type \((1, 1, \ldots)\).† The elementary group of order 16 has 5 subgroups of order 4, no two of which have anything but the identity in common. It is found in the quintuply transitive group of degree 24 of Mathieu.‡

Another assumption we may make in regard to \(\Gamma_i^{-1} \) is that there is in it an imprimitive system of \(q_r^2 + q_r \) letters including \(a_{i,1}^{-1} \) and the \(q_r^2 - 1 \) letters associated with \(a_{i,1}^{-1} \) in imprimitive systems of \(q_r \) letters each. Just as in the preceding case there is a subgroup \(\Delta' \) that has a transitive constituent \(\Delta \) of degree \(q_r^2 + q_r \), which we now investigate.

Let \(S \) be a substitution of \(\Delta \) that leaves fixed two letters \(a_{i,1}^{-1} \) and \(a_{i,2}^{-1} \). By

† Cf. Miller, Bulletin of the American Mathematical Society, vol. 12 (1906), pp. 446–449. This is the proof Professor Miller mentions in the note at the bottom of page 449.
the method used above we know that the only letters which S can displace are the $q_r - 2$ other letters of a system which includes both a_i^{-1} and a_i^{-1}, the q_r letters not in a system with a_i^{-1} and the q_r not in a system with a_i^{-1}, $3q_r - 2$ at most. But if $S = (a_i^{-1} a_i^{-1} \cdots \cdots)$, it must replace every system of q_r letters in which a_i^{-1} is found by a system in which a_i^{-1} is present. Then S displaces at least $q^2 - q_r + 2$ letters. Now $q_r^2 - q_r + 2 > 3q_r - 2$ when $q_r > 2$. It is obvious that when $q_r = 2$, Δ is regular. Then for all values of q_r, Δ is either regular or of class $q^2 + q_r - 1$. In the latter case Δ contains a regular characteristic subgroup. Then the regular subgroup Θ of order $q^2 + q_r$ is always found in the constituent Δ of Δ^\prime. Let $\Lambda_1, \Lambda_2, \cdots, \Lambda_{q_r+1}$ be the subgroups with nothing in common but the identity which correspond to the $q_r + 1$ systems of imprimitivity of q_r letters each in question. In Θ systems of q_r letters each are permuted according to a transitive group of degree $q_r + 1$. All the substitutions which lie in the subgroups Λ_1, \cdots leave fixed at least one of these systems of imprimitivity. This is seen by applying to Θ all the substitutions of its conjoin.* Then Θ has just q_r substitutions which displace all $q_r + 1$ systems. The group of degree $q_r + 1$ in the systems is of class q_r. For it is a characteristic property of groups of "class $n - 1$" that they have just $n - 1$ substitutions of degree n.† Hence Θ has a characteristic subgroup Π which leaves fixed none of the $(q_r + 1)^2$ possible systems. It is clear that Λ_1, \cdots are conjugate under Π. Consequently the group in the systems is of order $(q_r + 1)q_r$ and doubly transitive. Hence Π is Abelian of type $(1, 1, \cdots)$.‡ If $q_{r-1} = q_r(q_r + 1)$, we have $q_{r-1} + q_r + 1 = p^{2a}$. The doubly transitive group of order 432, degree 9 and class 6 is a case in point. The transitive subgroup of degree 6 in it is non-cyclic.

Stanford University.

* Jordan, Traité des Substitutions, 1870, p. 80.