
ON  REFLEXIVE  GEOMETRY*

BY

F. MOKLEY

This memoir is in continuation of two in these Transactions (vol. I, p. 97

and vol. IV, p. 1). It follows especially § 3 of the first memoir. The object

of the three is to illustrate an algebraic method of handling planar displace-

ments, which applies more immediately to elementary geometry than does the

usual coordinate geometry. While the latter heads directly for projective

geometry, the present method heads for inversive geometry. It may perhaps be

called reflexive geometry.

§ 1.   Outline of the method.

This is not the place to expound the beginnings of the method, but an out-

line may be given. On analysing displacements of a plane on a plane, on the

hypothesis that translations exist, we find easily that they amount to

(1) reflexion in a line chosen once for all,

(2) rotations about a point, chosen once for all, and

(3) translations.

We take the point on the line and call them base-point and base-line.

Let now the displaced object have symmetry ; and passing at once to the

extreme case let it be a point. Displacements previously different become the

the same, and equations arise.

The subsequent details are merely an enlargement of the planimetric inter-

pretation of the fundamental operations of algebra, as given in works on the

theory of functions and in some works on algebra.

The notation used is a superposed bar for reflexion in the base-line (thus x

is the image in the base-line, or "conjugate" of x) and the letter t or r for rota-

tion about the base-point. The symbol 0 denotes that the moving particle is

at the base-point, the symbol 1 that it has undergone a unit translation along

the base-line, the symbol t that it is somewhere on the circle with center 0 and

radius the unit of length. This circle is called the base-circle, and the special

complex number t is called a turn.

* Presented to the Society at the New Haven meeting September 3, 1906. Received for pub-

lication September 3, 1906.
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§ 2. The cy clog en.

Consider the series of self-conjugate equations :

a + ät = 0,

a + 2p.t + at2 = 0,

a + bt + bf + ät3 = 0,

a + bt + 2pt2 + bt3 + at4 = 0,

where p is real. Such an equation is of the same generality as the equation with

real coefficients usually studied in the theory of equations. In fact by mapping

the base-line on the base-circle they are interchanged. To the real roots of the

latter correspond the turn roots of the former, to conjugate roots of the latter

correspond inverse points as to the base-circle.

Thus every equation of our series, whose degree is odd, has one turn as a

root.    We take as the standard case an equation all of whose roots are turns.

Now regard in the above equations a pair of conjugate coefficients as variable.

We have then for given t a line, for varying t a curve of lines.

If we denote by n the class of the curve and by m the number of lines of the

curve in a given direction, then the curve may be denoted by C". The simpler

curves are :

C\, a point ; C\, a cardioid ;

G\, a segment ; Co » a segment * ;

C22, a circle ; C2, a parastroid ;

C\, a deltoid ; C4, a paranephroid.

These curves may be called cyclogens.

We are concerned here solely with the curves C\ for which the end coeffi-

cients are variables. If we mean by the aspect of a curve the number of

parallel tangents, then these curves are cyclogens of full aspect. They might

be called cardioids, or better ennacardioids. Thus C4 is the tetracardioid.

Denoting the curve Cnn now simply by C", the series of ennacardioids begins

with the point Cx, the circle C2, the cardioid C3. We call the equation by

which a cyclogen was defined its line-equation, having no other line-equation in

the context. It comes under what Laguerre (Works, vol. 2, p. 190), called

the "équation mixte."

* Described with superposed harmonic motions.
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§ 3.  The ennacardioid.

Taking now the case of G", we apply to it Study's theory of osculants.   We

write the line equation in abridged form

(1) («<)» = 0,

where (at) = ax + a2t, a\an~r is a coefficient conjugate to a"-ra2 and x = a".

The equation
(atl)(aty-x = 0

defines a (first) osculant ; it is a curve Gn~x.    An osculant of this is a second

osculant of C".    And so on till we come to the completely polarized form

(2) («OK)- --(«O «-o,

which shows that the n osculant points, formed from re — 1 of the n i's, lie on

a line.

The relation of x to t, deduced from

(aty=0

is

(3) ax(at)n-1=0.

This is the map-equation of Cn.    Its polars are map-equations of the osculants.

If in a map-equation we calculate Dtx and make it zero, we obtain values of

t which, when turns, give cusps.    The cusps of (at)" are then given by

(4) axa2(at)"-2 = 0,

a self-conjugate equation.   Thus C can have n — 2 cusps.   To avoid periphrasis

I will use the projective view and say that there are always n — 2 cusps, real or

imaginary, though, strictly, imaginary points have no foothold in the reflexive

geometry, which is a chapter of mathematics preceding projective geometry.

The cusps themselves are
a1(at)n-1=0

where
ctla2(aty-2=0,

or are

(5) a2(ai)-2=0.

The map equation of an osculant is

ax(atx)(aty-2=0

and this equation holds when (4) and (5) do.    That is :  The osculant is on the

cusps of C".
The osculants are thus defined by the facts of touching the curve and being

on the n — 2 cusps.
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§ 4.  The envelopes of osculants.

Denoting the osculant
(atx)r(at)n-r=0

by Or, it has an envelope and a cusp-locus. The envelope contains the original

curve C" and the curve xr- I* ^s *° De shown that the cusp-locus of Or is xr+l •

The map-equation of Or is
ax(atx)r(at)n-r-l = 0.

Now to obtain the envelope of

x=f(t,tx)
the rule is that

(6) Dtx/t: Dhx/tx, is real.

Here then
ax a2 ( atx )r ( at )n~T-2/t : ax a% ( atx )r~x ( at )n-r-1/<1, is rea

But the equation

axa2(atxy(aty--2 = 0

is self-conjugate.    Hence either t=tx, which gives Cn, or

axa2(atpf(at)-2=0,

which manifestly gives the cusp-locus, or

atcti(eaiy-l{at)rr-l^Q,

which gives %r.    Thus %r+x is given by

(7) ^ax(atxy+x(aty—2=Q,

0.

f ax(atx)r+x(at)"-r-2 =

[axa2(atxy(aty-'-2 =

The former equation may be replaced by

a2(atx)r(aty-r-2 = Q,

and this again by
ax(atx)r(aty-r-l= 0.

This proves the theorem.

There are then associated with Cn a series of curves

Xx  the cusps,

X2  the cusp locus of Ox and envelope of 02,

^j  the cusp locus of 02 and envelope of 03;

and writing again the equations for %r :

<W«*i)r~1(flt*)"~*"1-o.

a2x(atxy-1(at)—T-l = 0,

Trans. Am. Math. Soc. a
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we see that since we may interchange t and tx the curves xr and xr> are the

same if
r + r = n.

Thus for the curve C4 there are

Xx  the cusps,

X2  a circle or arc of a circle (according as the cusps are not real or real) which

is the cusp locus of osculant cardioids and the envelope of osculant circles;

and for the curve C5, which has as osculants C4, C3 and C2,

Xx   the cusps,

X2  which is at once the cusp locus of C4, the envelope of C3, the cusp locus

of C3, and the envelope of C2.

§ 5. Note on the rational plane curve in general.

For rational plane curves in general, given for convenience of statement in

lines, it is equally true that the cusp locus of Or is the envelope of Or+x. We

know from Study's theory that the cusps of the given curve are on Ox, and

the cusps of Or on Or+x.    Let Or be given by

^=(asf(aty-'-,

v = (ßsy(ßty-%

ç=(ySy(yty-,

where
at = ax + a21.

The cusp parameters are given by

if v n=o,
that is by

or by

(as)r(at)n-r

a2(asy(aty-*-x

a22(as)r(at)n-r-2

= 0

ß\

ß\

7Î

Vi

«!«2       ßlßi      tl%

The envelope of Or+x, or

is given by

(as)r(at)n = 0.

Ç=(as)r+x(at)n-r-x, etc.,

if d,v ^ri-o,
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or by
(as)r+x(at)n-r-x

a2(aSy   (aty~r-^

a2(as)r+x(aty-r-2

= 0;

and this on throwing out the factor a — t gives the same result as before.

Thus for example with the rational curve of class 4 is associated a curve x2

on which lie the cusps of osculant cubics, and which has as tritangent conies all

osculant conies.

§ 6. Construction of the ennacardioid.

The number of coordinates specifying a Cn is n + 1. For the number of

arbitrary real constants in ( at )" is n — 1, and the base-point is here a definite

point as to the curve — say its center.

Hence when 2(n — 2) = n + 1, or n = 5, the cusps determine a Cn, though

not perhaps uniquely.    Where n > 5 the cusps are not independent.

Two osculants, say

(atx)(aty-x        and ( at2 ) ( at)n-x,

have a common osculant

(atx)(at2)(aty~2.

But conversely if two C"-1's have a common osculant, they are osculants of a

Cn. For an osculant of one Cn~x can touch the other ; if in addition it is on

the cusps, this is n — 3 conditions and the coordinates of the two and

2n— (n — 3)        or        n + 3.

But this is also the specification of Cn and two osculants.

The tangent at t of the osculant at tx, C~x, is

(atx)(aty-x = 0.

This is satisfied when ax(at)n~x = 0, and this gives the point t of C". Varying

t, we obtain a rigid pencil of lines, each touching some osculant Cn_1. Con-

versely, consider any two C"_1's. Let an angle slide around them. The locus

of its vertex is easily seen to be a polynomic or curve of the form

x = Pt+ Q(l/t)

where P and Q are polynomials. And in fact any polynomic can be so

constructed.

But when the two C"-1's have a common osculant C~2, and are therefore

osculants of a C", the locus of the vertex can be this C".

Thus granting that we can construct one and therefore two C'a of which an

osculant C"_1 is given, then we mark on each line of C~x the corresponding
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points of the two C"'s, and the lines of these C"'s at these points meet on

a Cn+X. Thus the curves can be drawn in succession ; the first step is to take

two intersecting circles, and draw lines on a common point ; the tangents of the

circles at the other intersections meet on a cardioid.

§ 7.  The Cn~x of an n-line.

It was shown in these Transactions (vol. 1, p. 102) that (with the nota-

tion there used) the circles of 3 from 4 lines are osculants of a C3,

x = ax — 2a2t + a3t2,

where | a21 = | as |.

Calling this the cardioid of the 4-line we have now the theorem :

The cardioids of 4 from 5 lines are osculants of a C4 ; and in particular

meet at two points (the cusps).

For the curve for 5 lines

x = ax — 3a2t + 3a3tf — afî
is a C4.

And so in general:

The C"~x's of n — 1 from n lines are osculants of the Cn of the n lines,

and in particular are on the n — 2 cusps.

Conversely, a Cn and n + 1 osculants determine at once n + 1 lines, for a

C" and n osculants determine the line

(atx)(dt2)...(atn)=0.

This line may be found thus. We are given a C" and n osculant C"_1's. Every

two C~x,a have a common osculant Cn~2. Hence a selected C"~x has n — 1

osculant C"_2's ; and so finally we come to a C3 with three osculant C2's whose

common osculants are points on the line in question.

There is then for an n-line a curve Cn~l. There is also a definite circle

called (vol. 1, p. 99) the centre-circle. I will call it now the centric circle and

its center the centric of the n-line. I proceed to give a general meaning to

these two curves.

§ 8.   The images of a point in J¡. lines.

To connect by a curve the images of a point x0 in four given lines we employ

the process of interpolation. This is not a definite process, but employed as

follows what results is the conic on x0 and its images.

Write the lines

x — a2sx + a3s2 — xs3 = 0,

where the 3 turns whose symmetric functions are sx, a2, a3 are selected from 4

whose product is — 1.
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Then the image of x0 is

x = a2sx     a3s2 + ^o^-

We have to symmetrize this.

Assume two turns t, Tt such that

21

(8)
where

x = Ar3 + Axr\- ARC -h)~ Am^~ h),

At2 + Axr\ = a2,

Then

or

Ar + Axrx = a3,

A + Ax = x0.

«oTTi — «3(T + Tl) + «2 = °'

a;0-a2(T+Tl) + O!3TTl=0-

Thus x0 is any point inside the C3

xx — 2a2r + a3r2 = 0.

We have then, symmetrizing (8),

(9) = Ar* + Axrl-AR(T-^-AxR(Tx-V
r — t. rx - t:

where A and Ax are known.

This is the map-equation of a hyperbola.    It evidently is on the 4 images of

x0, but further it is on x0 itself.

For eliminating A and Ax the equation is

(10)

r3-
n

r^t
Ti-

ll,

rx-t

T"

T

0.

*» '1

The terms independent of ¿ give œ0.    But the terms in t are

n n,

A =

0

and the conjugate of this is

T- t

r2

r

Aí/t3!-3.

rx-t
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Hence A = 0 is a self-conjugate equation, giving a value of t which is a turn.

That is, we have the hyperbola on xx and its images.

The clinants of the asymptotes are found at once to be 1/t and l/rx.

There are now two special conies :

1) the rectangular hyperbola, when

r + t1 = 0,

the point xx is then given by

x + a3 TT,

and is on the centric circle ;

2) the parabola, when
T=T1,

the point is then on the cardioid. Thus the conic on a point x0 and its images

in 4 given lines is a rectangular hyperbola when x0 is on a circle and a parabola

when x0 is on a cardioid.

g 9.   The images of a point in n lines.

The generalization is now immediate.    Thus if 5 lines be written

x — a2sx + a3s2 — a^ + xsi = 0,

where the s{ are symmetric functions of 4 from 5 turns whose product is 1, the

images of of x0 in the 5 are on

,      n
x    r-

r — t

where

X0 ~ «2(T + Tl + T2) + «3(T1T2 + T2T +  TTi) - a4TTl'r2 = 0-

We have then a pencil of cubic curves J3 passing through the images of x0, and

twice through x0.

If we make r = corx = co2 r2 where co2 + co + 1 = 0, then

x0 — a4r3=0,

that is, for points xa on the centric circle the cubic has equispaced asymptotes.

If we make r = rx = r2 the point x0 is on the C4 of the 5 lines and the J3

meets infinity (regarding infinity as a line, i. e., speaking projectively) at one

point only.

And so in general, calling a curve of order m with a multiple point of order

m — 1 a Jonquières curve Jm :

1     rx-t

'1

r.

n2

= 0
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Beta J»-2 be drawn with multiple point at x0 and on the images of x in r,

Zl o7l % e J * hr:equispaced as^totes then *° * - ¿ m

Cr^r arlnatUral!y ■*- SPecial ««• portant among these as giving the

a }l-T thTrm 1S?» T WW the ̂ - «« ̂  ("or » odd) Lui te
It    ■   ' , Th^mV0lveS the vanishi»g of minors of the elements in t in the

SXTlü?        gS US baCk t0 the analySÍS giVeD " theSC T-nsactions!

The statement of Clifford's theorem in terms of C"~x is : The curve C2-x

ÍntT ir1"' °m WhÍCh redUCeS t0 a P°int 5 the Paramete- -e the canoni-
sant of the cusp-parameters. For the curve tf- the locus of points which are

degenerate osculant C"a is a circle.

§ 10.  The case when the C"~x of an n-line is a circle.

We have seen that the image-curve for a point on the centric circle is an

eqmspaced J~     Let the point be the centric of n - 1 of the    nes     The

remaming line and therefore the image of ,„ in it becomes arbitrary     Henc

Xtd tXl 7 '"the m?ple point of not one but • p«*~
ri2 2     (n     3 7   T TT  °f ?"    Eut   the  PenCil  meCts   aSain   in

^) -(^-3) -(n-l)orn-4 points.    Hence the n - 1 lines be-

long to a symmetric system of 2n - 5 lines     Thar ï« m »       7,7

Any m of these have the same centric, and therefore the centric circle of

m + 1 !s a pomt.    The analytic condition is then, since the centric circle is

x = ax-a2t,

that a2 formed for any m + 1 lines in 0.    This requires for the 2m - 3 lines
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that a2 = a3 = • ■ ■ = am_2 = 0.    The radius of the centric circle of any m lines

is | am_x |, and therefore any m have the same centric circle.   Since all a'a except

am_x vanish, the conditions are summed up by saying that the C2m~4 of the

lines is a circle.

Thus in particular 4 lines determine a fifth ; the 5 forming say a pentacle,

sach that the centres of the 10  3-lines are on a circle.    The figure is drawn

simply by placing a ring of 5 circles with centres on a given circle and each

intersecting the next on this circle.    The 5 other intersections of the adjacent

circles being joined in order form the pentacle, and the salient thing is that the

intersections of non-adjacent sides are also on the respective 5 circles.

Ceatbe CiiUB, Essex, N. Y.,

July, 1906.


