NOTES AND ERRATA: VOLUME 8

L. P. Eisenhart: Applicable surfaces with asymptotic lines

Pp. 113–134. Since the publication of this memoir, the author is informed by Professor Bianchi that he obtained the fundamental theorem (p. 122) in a note, "Sulle coppie di superficie applicabili con assignata rappresentazione sferica," published in the Rendiconti della R. Accademia dei Lincei, volume 13 (1904), pp. 147–161. The methods are essentially the same.

W. R. Longley: A class of periodic orbits

P. 165, l. 23. For \(m < \mu \) read \(m < \tilde{\mu} \).

P. 166, l. 7. \[
\frac{\sqrt{1 - (\tilde{e} + e)^2}}{[1 - (\tilde{e} + e)]^2} \quad \frac{\sqrt{1 - (\tilde{e} + e)^2}}{(1 + \alpha)^2[1 - (\tilde{e} + e)]^2}.
\]

L. E. Dickson: Invariants of binary forms

P. 219, l. 6. For \(p < 2 \) read \(p > 2 \).

P. 223, formula (60). \[
\frac{1}{3n} \quad \frac{3n}{3n}.
\]

C. N. Moore: On the introduction of convergence factors

P. 305, l. 1 up. For \(\phi(0) = 0 \) read \(\lim_{x \to +0} \phi(x) = \phi(0) = 1 \).

P. 306, l. 1. Condition (iii) should read: \(\phi''(x) \) exists for \(x > 0 \) and \(\phi''(x) \equiv 0 \) \((0 < x \leq c)\).

" l. 5 and l. 6. Replace the sentence beginning in l. 5 by the following: Condition (a) follows for \(x = 0 \) from (ii) and for \(x > 0 \) from the fact that the second derivative of \(\phi(x) \) exists for all values \(x > 0 \).

" l. 2 up. For \(0 \leq x \leq c \) read \(0 < x \leq c \).

P. 307, l. 3. After Condition (ii) " follows from (c) and the continuity of \(\phi(x) \) for \(x = 0 \).

P. 308, l. 3 up. Replace this line by the following: If for any value of \(\alpha, (d) \) or \((d') \) holds for all values of \(n, \) (e) is unnecessary.

A similar change must be made in the corresponding footnote for Theorem V, and may be made, and thus

535