ON THE FUNDAMENTAL NUMBER OF THE ALGEBRAIC
NUMBER-FIELD \(k(\sqrt[p]{m}) \)

BY

JACOB WESTLUND

Introduction.

The object of the present paper is the determination of an integral basis and the fundamental number of the algebraic number-field \(k(\sqrt[p]{m}) \) generated by the real \(p \)th root of \(m \), where \(m \) is a positive integer greater than unity which is not divisible by the \(p \)th power of an integer, and where \(p \) is any odd prime. The case \(p = 3 \) has already been discussed by Dedekind.* The conjugate values of \(\sqrt[p]{m} \) being \(\sqrt[p]{m}, \sqrt[p]{m}^p, \ldots, \sqrt[p]{m}^{p-1} \), where \(\rho = e^{2\pi i/p} \), the number-fields \(k(\rho \sqrt[p]{m}), \ldots, k(\rho^{p-1} \sqrt[p]{m}) \) are all different from \(k(\sqrt[p]{m}) \).

In order to obtain all possible number-fields of this type we let \(m \) run through all positive integers which are not divisible by the \(p \)th power of a prime. But the fields generated in this way are not all distinct. For any positive integer \(m \) which is not divisible by the \(p \)th power of a prime may be expressed in one way only in the form

\[
m = a_1 a_2^2 \cdots a_{p-1}^2 \]

where \(a_1 a_2 \cdots a_{p-1} \) is not divisible by the square of a prime. If we then set

\[
\alpha_s = \sqrt[p]{a_1^i a_2^i \cdots a_{p-1}^i},
\]

where \(i_s \equiv si \pmod{p} \) and \(0 < i_s < p \) for \(s = 1, 2, 3, \ldots, p - 1 \), it is evident that \(\alpha_1, \alpha_2, \ldots, \alpha_{p-1} \) are algebraic integers in \(k(\alpha_1) \), and hence \(k(\alpha_1), k(\alpha_2), \ldots, k(\alpha_{p-1}) \) are identical, while \(k(\alpha_1) \) is a primitive field.

1. Rational basis.

As a rational basis of \(k(\alpha_1) \) we may take either

\[
1, \alpha_1, \alpha_1^2, \ldots, \alpha_1^{p-1}
\]

or

\[
1, \alpha_1, \alpha_2, \ldots, \alpha_{p-1}.
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Denote the discriminants of these bases by D_1 and D_2, respectively. We have

$$D_1 = \begin{vmatrix} 1 & \alpha_1 & \ldots & \alpha_1^{p-1} \\ 1 & \rho \alpha_1 & \ldots & \rho^{p-1} \alpha_1^{p-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \rho^{p-1} \alpha_1 & \ldots & \rho^{(p-1)p-1} \alpha_1^{p-1} \end{vmatrix} = m^{p-1} \begin{vmatrix} 1 & 1 & \ldots & 1 \\ 1 & \rho & \ldots & \rho^{p-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \rho^{p-1} & \ldots & \rho^{(p-1)^2} \end{vmatrix}$$

Hence*

$$D_1 = (-1)^{k(p-1)} p^m m^{p-1}.$$

In a similar way we obtain

$$D_2 = (-1)^{k(p-1)} p^p (a_1 a_2 \cdots a_{p-1})^{p-1}.$$

If Δ be the fundamental number of $k(\alpha_1)$, we must have $D_2 = n^2 \Delta$ where n is a rational integer. Hence

$$\Delta = (-1)^{k(p-1)} p \left[\frac{(pa_1 a_2 \cdots a_{p-1})^{(p-1)} \gamma}{n} \right]^2 = (-1)^{k(p-1)} p d^2$$

where d is a rational integer, and this shows that Δ contains the factor p.

2. Ideal Prime Factors of p and m.

Let q be a prime factor of m and Q an ideal prime factor of q. Then since $\alpha_i = q^i r$, where r is prime to q and $0 < i < p$, it follows that α_i is divisible by Q. Suppose that Q^r is the highest power of Q contained in q. Then α_i must be divisible by Q^r and $si \equiv 0 \pmod{p}$. Hence $s = p$ and $(q) = Q^p$, i.e., every prime factor of m is equal to the pth power of a prime ideal of the first degree.

Let us next consider the prime p. If p is a factor of m it comes under the case already considered. Suppose then that p is not contained in m. Since p is a factor of the fundamental number, it is divisible by the square of a prime ideal P. Now consider the integer $p = a_1 - b$, where $b = a_1 a_2^p \cdots a_{p-2}^p$. We have

$$(\mu + b)^p - b a_{p-1}^{p-1} = 0$$

or, if we set $d = b^{p-1} - a_{p-1}^{p-1}$,

$$\mu^p + p b \mu^{p-1} + \cdots + p b^{p-1} \mu + bd = 0.$$

Since $d \equiv 0 \pmod{p}$ it follows that μ^p is divisible by p and μ by P and hence d is divisible by P^3. Two cases arise according as d is divisible by p^2 or not.

I. d not divisible by p^2. In this case p must be divisible by P^3. Hence, if $p > 3$, d must be divisible by P^4 and therefore p divisible by P^4. Reasoning

*PASCAL, Determinanten, p. 139.
in this way we find that \(p \) must be divisible by \(P^p \). Hence \(\mu = P^p \), i.e., if \(p \) is prime to \(m \) and \(d = b^{p-1} - a_{p-1}^{p-1} \) not divisible by \(p^2 \), then \(p \) is equal to the \(p \)-th power of a prime ideal of the first degree.

II. \(d \) divisible by \(p^2 \). Let \(p^s (s \geq 2) \) be the highest power of \(p \) contained in \(d \) and \(P^r \) the highest power of \(P \) contained in \(\mu \). The equation satisfied by \(\mu \) may be written

\[
\mu (\mu^{p-1} + p\beta) + bd = 0,
\]

where \(\beta \) is prime to \(P \). If \(r \) were greater than unity, \(\mu^{p-1} \) would be divisible by a higher power of \(P \) than \(P^p \), and since \(p \) cannot contain a higher power of \(P \) than \(P^p \), it follows from the equation above that \(\mu \) would be divisible by \(p \). But if \(\mu \) were divisible by \(p \), its conjugates would be divisible by \(p \), but this is impossible, since the coefficient of \(\mu \) in the equation above contains only the first power of \(p \). Hence \(r = 1 \). It is then easily seen that \(p \) must be divisible by \(P^{p-1} \) and by no higher power of \(p \). Hence if \(p \) is prime to \(m \), and \(b^{p-1} - a_{p-1}^{p-1} \) is divisible by \(p^2 \), we have \(\mu = P^{p-1}Q \), where \(P \) and \(Q \) are different prime ideals of the first degree.

3. Integral basis.

Any integer \(\omega \) in \(k(\alpha_i) \) may be expressed in the form

\[
\omega = \frac{x_0 + x_1 \alpha_1 + \cdots + x_{p-1} \alpha_{p-1}}{D^p},
\]

where \(x_0, x_1, \ldots, x_{p-1} \) are rational integers. Let \(q \) be a prime factor of \(\alpha_i \) and let \((q) = Q^r \). Then the highest power of \(Q \) contained in \(\alpha_i \) is \(Q^{i^*} \), where \(i^* \equiv i (\mod p) \) and \(0 < i^* < r \). Hence \(x_0 \) must be divisible by \(Q \) and hence by \(q \). Denote by \(\alpha_{r_1}, \alpha_{r_2}, \ldots, \alpha_{r_{p-1}} \) the numbers \(\alpha_1, \alpha_2, \ldots, \alpha_{p-1} \) arranged according to increasing powers of \(Q \). It then follows that \(x_{r_1} \) must be divisible by \(Q \) and hence by \(q \). In the same way we find that \(x_{r_2}, \ldots, x_{r_{p-1}} \) are divisible by \(q \). It is then easily seen that \(\omega \) may finally be written in the form

\[
\omega = \frac{x_0 + x_1 \alpha_1 + \cdots + x_{p-1} \alpha_{p-1}}{p^p},
\]

where \(x_0, x_1, \ldots, x_{p-1} \) are rational integers.

If \(p \) is a factor of \(m \) we proceed as above and find that

\[
\omega = y_0 + y_1 \alpha_1 + \cdots + y_{p-1} \alpha_{p-1},
\]

where \(y_0, y_1, \ldots, y_{p-1} \) are rational integers.

If \(p \) is prime to \(m \), two cases arise, according as \(d = b^{p-1} - a_{p-1}^{p-1} \) is divisible by \(p^2 \) or not.

I. \(d \) not divisible by \(p^2 \). Introducing the algebraic integer \(\mu = \alpha_i - b \) mentioned above and making use of the fact that \(\alpha_i = \alpha_i^*/c_i \), where \(c_i \) is a rational
integer prime to \(p \), we obtain

\[
\omega = y_0 + y_1\mu + \cdots + y_{p-1}\mu^{p-1}.
\]

In this case we have \((p) = P^p \) and, as is easily seen, \(\mu \) is divisible by \(P \) but not by \(P^2 \). Reasoning in exactly the same way as above we find that \(y_0, y_1, \ldots, y_{p-1} \) are all divisible by \(p \). Hence we finally get

\[
\omega = z_0 + z_1\mu + \cdots + z_{p-1}\mu^{p-1},
\]

where \(z_0, z_1, \ldots, z_{p-1} \) are rational integers. But since all the prime factors of \(c \) are contained in \(m \), it follows that \(\omega \) may be written in the form

\[
\omega = x_0 + x_1\alpha_1 + \cdots + x_{p-1}\alpha_{p-1},
\]

where \(x_0, x_1, \ldots, x_{p-1} \) are rational integers. We then have the following result:

If \(b^{p-1} - \alpha_{p-1}^{p-1} \) is not divisible by \(p^2 \), the \(p \) numbers \(1, \alpha_1, \alpha_2, \ldots, \alpha_{p-1} \) form an integral basis of \(k(\alpha_1) \) and \(\Delta = D_2 = (-1)^{p-1/2}p^{p}(\alpha_1\alpha_2\cdots\alpha_{p-1})^{p-1} \).

II. \(d \) divisible by \(p^2 \). In this case we know that \((p) = P^{p-1}Q \). We also know that \(\mu^p \) is divisible by \(p \), and hence \(\mu \) is divisible by \(PQ \) and \(\mu^{p-1} \) divisible by \(pQ^{p-2} \). But

\[
\mu^{p-1} = (\alpha_1 - b)^{p-1} = \alpha_1^{p-1} - (p - 1)\alpha_1^{p-2}b \cdots + b^{p-1}
\]

\[
= \left[\alpha_1^{p-1} + \alpha_1^{p-2}b + \cdots \alpha_1 b^{p-2} + 1 \right] - \left[p\alpha_1^{p-2}b - \left\{ \frac{(p - 1)(p - 2)}{2} - 1 \right\} \alpha_1^{p-3}b^2 + \cdots - b^{p-1} + 1 \right]
\]

and since \(b^{p-1} \equiv 1 \pmod{p} \), it follows that

\[
\gamma = \frac{\alpha_1^{p-1} + \alpha_1^{p-2}b + \cdots + \alpha_1 b^{p-2} + 1}{p}
\]

is an algebraic integer. We shall now prove that the \(p \) numbers

\[
\gamma, \alpha_1, \alpha_2, \ldots, \alpha_{p-1}
\]

form an integral basis of \(k(\alpha_1) \). It is evident that these numbers form a rational basis. Denoting the discriminant of this basis by \(D_3 \) we get the following value

\[
D_3 = (-1)^{p-1/2}p^{p-2}(\alpha_1\alpha_2\cdots\alpha_{p-1})^{p-1}.
\]

Now any algebraic integer \(\omega \) may be written in the form

\[
\omega = \frac{x_0\gamma + x_1\alpha_1 + \cdots + x_{p-1}\alpha_{p-1}}{D_3}
\]

where \(x_0, x_1, \ldots, x_{p-1} \) are rational integers. It is easily seen that \(x_0 \) must be
divisible by D_3. For, denoting by $\omega, \omega', \ldots, \omega^{(p-1)}$ the conjugate values of ω, we have

$$\omega + \omega' + \cdots + \omega^{(p-1)} = \frac{x_0}{D_3}.$$

Hence x_0 is divisible by D_3. Let us then consider the algebraic integer

$$\omega_1 = \frac{x_1 \alpha_1 + \cdots + x_{p-1} \alpha_{p-1}}{D_3}.$$

If q be a prime factor of m we infer in the same way as above that x_1, \ldots, x_{p-1} are divisible by q, and hence that ω_1 may be written in the form

$$\omega_1 = \frac{y_1 \alpha_1 + \cdots + y_{p-1} \alpha_{p-1}}{p^{p-3}}.$$

Replacing α_1 by $\mu + b$ we get

$$p^{p-2}c\omega_1 = z_0 + z_1 \mu + \cdots + z_{p-1} \mu^{p-1}$$

where $z_0, z_1, \ldots, z_{p-1}$ are rational integers and c is prime to p. By a simple argument it can then be shown that $z_0, z_1, \ldots, z_{p-1}$ and hence also $y_1, y_2, \ldots, y_{p-1}$ must be divisible by p and that ω may finally be written in the form

$$\omega = x_0 \gamma + x_1 \alpha_1 + \cdots + x_{p-1} \alpha_{p-1}.$$

Hence we have the following result: If $b^{p-1} - \alpha_{p-1}$ is divisible by p^2, the p numbers $\gamma, \alpha_1, \alpha_2, \ldots, \alpha_{p-1}$ form an integral basis of $k(\alpha_1)$ and

$$\Delta = D_3 = (-1)^{p-1}p^{p-2}(a_1, a_2, \ldots, a_{p-1})^{p-1}.$$

Purdue University.