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Introduction.

It is proposed in this paper to determine the finite groups of collineations in

three homogeneous variables, a collineation being of the form

3

px'i = S aaxj (* = 1, 2, 3).
¿=i

The determination will be made both in the case where the coefficients af are

ordinary numbers and in the case where they are marks of a finite Galois field,

GF(pn ), p being an odd prime and n a positive integer. The variables xi are

therefore regarded as homogeneous coordinates of the points either of the ordi-

nary plane or of a modular plane,f PG{2, p").

The finite groups of collineations in the ordinary plane have been already

determined. J The treatment of the problem in this paper is however different

from any thus far given. It is based almost entirely on geometrical methods

and it is hoped may prove of interest. The discussion for this case is contained

in §§ 2-10.

Considerable work has been done on the ternary modular groups. For the

case where the coefficients of the transformations are in the GF(p), the ques-

tion was considered by Burnside.§ For the same case a complete determination

of those groups which contain operators of period p was made by Dickson. ||

* Presented to the Society, under different titles, December 30, 1909, April 30 and September

7, 1910.

tO. Veblkn and W. H. Bussey, Finite Projective Geometries, these Transactions, vol. 7

(1906), pp. 241-259.
t For a bibliography of this subject consult Wiman, Endliche Gruppen linearer Substitutionen,

Encykopädie der Mathematischen Wissenschaften, Bd. I, pp. 528-530. The first accurate solution

of the problem is due to Blichfeldt, On the Order of Linear Homogeneous Groups, these Trans-

actions, vol. 4 (1903), pp. 387-397, and vol. 5 (1904), pp. 310-325; also The Finite, Discon-

tinuous, Primitive Groups of Collineations in Three Variables, Mathematische Annalen, vol.

63 (1907), pp. 552-572.

§ Proceedings of the London Mathematical Society, vol. 26 (1895), pp. 58-106.

|| American Journal of Mathematics, vol. 27 (1905), pp. 189-202.
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For the case where the coefficients are in the GF(p2), a discussion of those

groups whose orders are divisible by ps, ps and p* was given by R. L.

Borger.*

As a result of the determination of the ternary modular groups in this paper,

the subgroups of the two systems of simple groups, LF(3, pk) and HO{ §,p°c),

are found in the cases where p is an odd prime, f The LF( 3, pk ) is the group

of all ternary transformations the coefficients of which lie in the GF(pk) and

which have for determinant a cube in that field. It is identical with the group

of all collineations of the modular plane, PG{ 2, pk), if pk — 1 is not divisible

by 3, and is a self-conjugate subgroup of that group of index 3 if pk — 1 is

divisible by 3.    Its order is

hp*k+pk + i){pk + i)p*k(pk-iy,

where p is the greatest common divisor of 3 and pk — 1. The üTO(3, pa) is

a subgroup of the LF( 3, p"1 ) having an invariant of the form

<+I + xf+1 + xf+1 = 0.
Its order is

\{p* -pk + l){pk -riypvipx -I),

where v is the greatest common divisor of 3 and pk + 1.

The binary modular groups have been fully determined. For the case where

the coefficients are in the GF(p) the determination was made by Gierster.J

In the general case the problem has been solved by E. H. Moore § and by

Wiman. || A treatment based on these two papers is given by Dickson (Linear

Groups, Chap. XII).    A new treatment will be given in this paper.

The writer wishes to acknowledge his indebtedness to Professor O. Veblen

of Princeton University for constant and valuable aid in the preparation of the

paper.

§1. Binary Groups.

We consider transformations in two homogeneous variables of the form

2

px'i = T. %*¡ («' = 1,2).
_ /=i

*Ibid., vol. 32 (1910), pp. 289-298.

tSee DICKSON, Linear Groups, pp. 75-78, 126-144.
t Mathematische Annalen, vol. 18 (1881).

| The Subgroups of the Generalized Finite Modular Group, Decennial Publications of the University

of Chicago, vol." 9 (1904), pp. 141-190.
|| Bestimmung aller Untergruppen einer doppelt unendlichen Reihe von einfachen Gruppen, Bi han g

till K. Svenska Vet.-Akad. Handlingar, vol. 25, part 1, no. 2.
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These transformations may be regarded as permuting the points (xtx2) of a line

(either ordinary or modular). Any such transformation leaves invariant either

one or two points on the line. In the case of the ordinary line any transforma-

tion of finite period leaves invariant two points. The groups containing such

transformations only are well known. They are cyclic groups of order d, dihe-

dral groups of order 2d, tetrahedral groups of order 12, octahedral groups of

order 24, and icosahedral groups of order 60. No further discussion will be

given of these groups.

We therefore consider those groups on the modular line which contain trans-

formations leaving invariant a single point. Any such transformation is additive

and of period p.* Any group containing these additive transformations will

contain at least one additive group, which leaves invariant a point and contains

all the additive transformations which have that point for fixed point. The

order of any such additive group is a power of p, say pm. If the fixed point

be (10), the additive group is represented by [x! -f-Xx2, x2] , where X takes

all the values in an additive field a^X, + a2X2 + • • • + «mXm, the a's being inte-

gers 0,1,2, — ,p — 1, and each X a mark not included in the additive field

a\ \ + " ' ' + aj-i \-i • There will be conjugate with it 1 + fpm additive groups,

/ being 0 or a positive integer. All additive transformations must therefore lie

in these conjugate additive groups.

The additive group will be self-conjugate under a maximum metacyclic group

of order dlpm, where <i, is a factor of pm — 1 (in special cases we may have

dl = l). Such a metacyclic group containspm conjugate cyclic groups, each of

which leaves invariant two points arid is of period dt. If (01) be the other

fixed point of one of these cyclic groups, the metacyclic group may be generated

by the additive group together with [rçXj, x2], where n is of period dx and

belongs to the multiplier field of the additive field. If il denotes the

order of the whole group there will be Sl/dlpm additive groups containing

(pm — l)il/dlpm additive transformations. There will also be in the group

Hfdl or il/2dl cyclic groups of order dx containing (dl — l)£l/dl or

(dl — l )il/2dl transformations, according as .one of those cyclic groups is self-

conjugate under itself only or under a dihedral group interchanging its two fixed

points. Any other maximal cyclic group of order d{, which does not lie in a

metacyclic group, will be self-conjugate either under itself only or under a dihe-

dral group of order 2di interchanging its two fixed points. Conjugate with

such a cyclic group there will be fl/d. or £l/2d. cyclic groups containing

(di — t)Cl/di or (df — 1 )il/2di transformations.

The order of the group-will be equal to the number of transformations which

it contains.    Hence ii must satisfy a Diophantine equation of the following

* Throughout the paper; denotes the modulus. The discussion of the binary groups applies
also to the casep = 2.
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form : *

n = i + (^_i) " +¿(«1-1)SL (fi=i,2).
aiP     i=i Jiai

The coefficient of il on the right of the above equation must be less than

unity. Also, since the group contains a subgroup of order dlpm, the coefficient

of Í1 on the right must be equal to or greater than (dxpm — l)/dlpm. If

d1 = 1, we find therefore that either the final sum is absent, or it contains but

one term, in which case f2 = 2.    If dx > 1, either r = 1, /, = 1, or r = 2,

/>==/2 = 2.
If dx = 1 and the final sum is absent, we obtain il=pm, i. e., a single

additive group.

If tZj = 1 and there is one term in the final sum, we have either pm = 2,

ii = 2d2, which represents a dihedral group, or pm = 3, d2 = 2, Í1 = 12, which

represents a tetrahedral group.

If dx > 1, r = 1, /, = 1, we obtain il = d1p'", which represents a single

metacyclic group.

If dx > 1, r = 2, /, —f2 = 2, we shall show that dx and d2 cannot contain

any common factor except 2. The cyclic groups of order dx, when transformed

by one of their number, will be permuted in cycles of period dx or dx¡2.

Hence the total number of conjugate groups of order dx must be of the form

1 +/<^i/2- If we suppose the groups of order dx to be transformed by one of

the groups of order d2, it is evident that the number of the former must also be

of the form fd2/2.    Hence dx and d2 can contain no common factor except 2.

The order, Q, must be the least common multiple of pm, 2dx, and 2d2. For

it must be divisible by the least common multiple, since the group contains sub-

groups of those orders. Moreover if we collect the three terms on the right

and write the equation

where M denotes the least common multiple and / is an integer, it is clear that

Í! cannot be greater than M.

Hence, if p is odd, il must have one of the two values, dxd2pm, and 2dx d2pm,

according as dx and d2 are both divisible by 2 or have no common factor. For

p = 2, il = dxd2pn.

Putting il = dx d2pm in the equation, we obtain

(d2-dx)p"-2(d2-l) = 0.
Hence

¿2 =•/>"'+ 1>        ¿i=/(i»m- 2)4-1,

* This type of Diophantine equation originated in C. Jordan's attempt to determine all finite

collineation groups in the ordinary plane, Journal für die reine und angewandte

Mathematik, vol. 84 (1878), p. 89.
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where / denotes an integer.    But dx is a divisor of pm — 1.    Hence

/=1, dx=pm-\, d2=pm + l, Cl = (pm + l)pm(pm-l).

Putting Í1 = 2d1d2pm in the equation, we obtain

(d2-d,)p"-(2d2-l) = 0.
Hence

d2 = h(fpm +i),     ¿i - i05»" +1) -/,

where / denotes an odd integer.    But dx is a divisor of pm — 1.    Hence

/=1, ^=^^, d2=P-+~, n = J(^ + l)^(^-l);

or/=3, y = 3, <Z1 = 2, d2 = 5,ft=60.

We consider the possible group of order (pm + l)pm(pm — 1). Each addi-

tive group of order pm is self-conjugate under a metacyclic group of order

(pm — 1 )pm • Hence there are pm + 1 such additive groups. The p** + 1 fixed

points of these additive groups must therefore be permuted among themselves.

The two fixed points of each cyclic group of order pm — 1 are interchanged by

transformations of the group, i. e., they are among the pm -\-1 points. The

additive group leaving fixed one of these points is transitive on the rest.

Since three points may be sent by a transformation into any other three, we

may choose three of the pm + 1 points as (01), (10), (11). The following three

transformations will then be in the group: \_vxl, x2] , [x, + x2, x2] , [xn xx

+ x2 ], where the period of n is pm — 1. The powers of v together with 0 form

the Galois field, GF(pm). The three transformations generate a group of order

(pm + 1 )pm (pm — 1 ), which is the group of all transformations with coefficients

in the GF(pm).

We may construct the group of order

i(pM + l)pm(pm-l)

by replacing n by rf.    It is the group of all transformations with coefficients in

the GF(pm) and having for determinant a square in that field.

The group of order 60 is an icosahedral group. For it contains ÎÎ/2-2 =15

involutions, each of which lies in one four-group. Hence the fifteen involutions

arrange themselves in five four-groups. Each involution leaves fixed the four-

group in which it lies and permutes the other four in pairs. The group

must then be a G560, i. e., an icosahedral group. Such a group may be gener-

ated by the three operators,• 2?, : [Xj + x2, x2] , E%\ \ixx, — x, — ¿x2] ,

Es : [— ¿x,, ¿x2] ( ¿2 = — 1 ), which satisfy the generational relations : *

_E\ - E\ - E\ - (iW - {ExEty = (E2Esf = /.
*E. H. Moore, Proceedings of the London Mathematical Sooiety, vol. 27

(1897), pp. 357-366; DICKSON, Linear Groups, p. 289.
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§ 2. Canonical Forms of Transformations in the Plane. *

The transformations in the plane f may be classified according to the five

types of invariant figures. Those of type I leave fixed a triangle; those of

type II leave fixed two points and two lines ; those of type III leave fixed a

lineal element ; those of type IV leave fixed all the points of a line and all the

lines through a point off that line ; those of type V leave fixed all the points of

a line and all the lines through a point on that line (Fig. 1).

IV

Ch-

in

Fig. 1.

A transformation of type I may be written, in canonical form \axx, ßx2, tx3] .

This transformation is of finite period in the ordinary plane provided the ratios

of the three quantities, a, ß, 7, are roots of unity (not unity itself).

A transformation of type II may be written [ox,, x2 + x3, x3], where

a 4= 0, 1. The period of this transformation is infinite in the ordinary plane

and in the modular plane contains p as a factor.

A transformation of type III may be written [x, + x.,, x2 + x3, x3]. The

period is infinite in the ordinary plane and equal to p in the modular plane

( since p > 2 ).

A transformation of type IV may be written [ox,-, x2, x3], where a =j= 0', 1.

In the ordinary plane it is of finite period if a. is a root of unity. We will refer

to a transformation of this type as an homology. In particular, if the period

is 2, i. e., if a = — 1, we will refer to it as a reflection.

A transformation of type V may be written [xx, x2 -f x3, x3]. In the ordi-

nary plane it is of infinite period and in the modular plane of period p.    We

*Cf. Vkblkn and Young, Projective Geometry; Dickson, Linear Groups, chaps. X, XI.

t For the modular plane the discussion will be limited to the case where p is an odd prime.
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shall refer to a transformation of this type as an elation.    Any power d of the

transformation of type II such that a* = 1 is an elation.

§ 3.  General Theorems.

Theorem 1. A group leaving fixed a line and represented on the points of

that line by a four-group contains a reflection with that line as axis ; dually,

a group leaving fixed a point and represented on the lines through the point

by a four-group contains a reflection with that point as center.

We shall prove the first half of this theorem. We choose the fixed line as

x3 = 0 and the fixed pair of points of one involution of the four-group as (100)

and (010). If then we choose as (110) one of the fixed points of another of

the three involutions, the other fixed point will be (1-10). Then any two trans-

formations which are represented on the fixed line by these two involutions are

of the form

[ox, + yxxv - ax2 + 72xs, x,], [ßx2 + o>3, ßxx + S2xs, x3].

Their product is [aßx2 + €,x3, — aßxx + «2x3, x3].    This is a transformation

which is represented on the fixed line by the third involution of the four-group.

The square of any one of these three transformations will leave fixed all the

points on x3 = 0 and hence will be either an homology or an elation with that

line as axis or else the identity. One at least of them, however, must be an

homology of even period, since if the periods of a2 and ß2 are both odd the

period of — aPß2 will be even. An homology of even period will contain as a

power a reflection.

The dual theorem may be proved in a similar manner.

Theorem 2. A group permuting cyclically the vertices of a triangle and rep-

resented on each side of the triangle by a cyclic group of order d is of order

Zdd', where d' is a factor of d which is divisible by all the prime factors ofd

of the form Sf — 1 and all the factors 3 with the exception of at most one.

We choose the fixed triangle as the triangle of reference. A transformation

which is of period d on x3 = 0 may be written [»,, <ox2, <»ex3] , where a> is of

period d, the coefficient of x3 being a power of a> since the period of the trans-

formation on x, = 0 and x2 = 0 must be a factor of d. If we transform this

transformation by a transformation permuting cyclically the vertices of the fixed

triangle, we obtain [xl5 arex2, a>1-exs] . The eth power of the first transfor-

mation by the second is the homology [xp x2, (ûe'-'+1x3~\.

From the theory of quadratic forms it follows that e* — e + 1 cannot be

divisible by any primes of the form 3/"— 1 or by 3 to a higher power than the

first. The period of the homology is then divisible by all the prime factors of

the form 3/"'— 1 and all the factors 3 with the exception of at most one.

Theorem 3.    A group making all six permutations on the vertices of a tri-
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angle and represented on each side of the triangle by a dihedral group of order

2d is of order 2d2 or 6d2 if d is divisible by 3 and of order 6d2 if d is not

divisible by 3.
We choose the fixed triangle as the triangle of reference. The group will

contain a transformation of period d on x3 = 0 of the form, [xl5 <»x2, <«>ex3] ,

where a> is of period d. A transformation interchanging x, = 0 and x2 = 0 and

leaving x3 = 0 fixed transforms this into [xt, <o~1x2, <»e_1x3]. As a product we

obtain the homology (or the identity), [xx, x2, û>2i!_1x3]. Similarly there is in

the group the homology, [x,, x2, û>2_,,x3] . The product of the first homology

by the square of the second gives [xp x2, w3xj. This homology is of period d/3

or d according as d is or is not divisible by 3.

In particular if there are no homologies with centers at the vertices of the

triangle and having for axes the opposite sides, we must have d = 3. If there

are only reflections, we must have d = 2, 6.

§4. Multiplicative Groups containing only Homologies and Trans-

formations op Type I ;  General Properties.

Since homologies and transformations of type I are called multiplicative, groups

containing transformations of those types only will be referred to as multipli-

cative groups.    Any group in the ordinary plane is thus multiplicative.

Theorem 4. In a multiplicative group a transformation which leaves fixed

the center of an homology must leave fixed its axis and vice-versa.

The product of an homology and the transformed of its inverse by a trans-

formation leaving fixed its center but not its axis is an elation.

Theorem 5. No multiplicative group can contain two homologies such that

the line joining their centers passes through the intersection of their axes.

The product of two homologies such that the line joining the centers passes

through the intersection of their axes is of type II or III.

§5.  Multiplicative Groups containing Homologies of higher

Period than 3.

Theorem 6. No multiplicative group which does not leave invariant a point,

line, or triangle can contain homologies of period greater than 5.

A group which does not leave invariant a point, line, or triangle and which

contains homologies of period greater than 5 will contain two such homologies

which are not commutative. These two homologies will leave invariant the

point of intersection of their axes and the line joining their centers. But they

cannot generate on the line joining their centers a group which is cyclic, dihe-

dral, tetrahedral, octahedral, or icosahedral. Hence no group can contain

homologies" of period greater than 5.

Theorem 7. No multiplicative group which does not leave invariant a point,

line, or triangle can contain homologies of period 5.
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Consider two homologies of period 5 which are not commutative. They must

generate the icosahedral group on the line joining their centers. Since there

are in the icosahedral- group involutions interchanging the fixed points of the

C5 there will be two homologies of period 5 represented on the fixed line by the

same C5. As a product we may then obtain an homology of period 5 having

the fixed line for axis. But there will also be a reflection having that line for

axis, since the icosahedral group contains a four-group as a subgroup (The-

orem 1). There must then be an homology of period 10 having that line for

axis, which is impossible (Theorem 6).

Theorem 8. No multiplicative group which does not leave fixed a point,

line, ôr triangle can contain homologies of period 4.

Consider two homologies of period 4 which are not commutative. They must

generate the octahedral group on the line joining their centers. The centers and

axes of the two homologies must then harmonically separate each other. We

choose them as (010) and x2 = 0, (01-1) and x2 — x3 = 0. Since in a G2i

there are involutions interchanging the two fixed points of a Ci there is an

homology with center (001) and axis x3 = 0 and consequently an homology with

center (100) and axis xx = 0. Hence there must be an axis joining any two

centers. Consequently, since but six axes can pass through (100), there can be

no homologies the centers of which do not lie on one of those six axes. Since

we assume no line remains invariant under the group there must be other cen-

ters on each of the six axes. If a center on x2 = 0 be chosen as (10-1), the

corresponding axis must harmonically separate (100) and xx = 0, and will there-

fore be x, — Xj = 0. But (10—1) and xx — x3 = 0 do not harmonically separate

(01-1) and x2 — x3 = 0. The two homologies having them for centers and axes

cannot then generate an octahedral group on x1 + x2 -f x3 = 0. No group

containing homologies of period 4 is therefore possible.

§6.   Multiplicative Groups containing Homologies of Period 3.

- Theorem 9. The Hessian group G2l6 is the only multiplicative group con-

taining homologies of period 3, which does not leave invariant a point, line, or

triangle.

A group which contains homologies of period 3 and which does not leave

invariant a point, line, or triangle, will contain two such homologies which are

not commutative. We choose the center and axis of the first as (100) and

Xj = 0, and the center of the second as (HI)- If.the point of intersection of

the two axes be chosen as (01-1), the axis of the second will be some line of the

pencil, Axx + x2 + x3 = 0. The group of the points on the line, x2 — x3 = 0,

which joins the two centers, must be the tetrahedral group Gl2. For if it were

the octahedral or icosahedral group there would be an homology of period 3

having x2 — x3 = 0 for axis, since in either of these groups there are involutions

Trans. Am. Math. Soc. 15
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interchanging the fixed points of the Ci. But since there must be a reflection

having that Une for axis (Theorem 1), there would then be an homology of period

6 having that line for axis, which is impossible (Theorem 6). In order that the

two homologies shall generate the tetrahedral group on x2 — x3 = 0, the axis of

the second must be xx + x2 + xs = 0.    The two homologies are then

[«Bp x2, x3],

x'1 = (<o + 2)x1 + (<o — l)xi + (<o — l)xi,

x; = (»-l)x1-(-(û)-(-2)x2+(ffl-l)x3,    (u« + u + i = 0).

< - (»-1)*, + (» - l)x2 + (a> + 2)x3

There are then on x2 — x3 = 0 the four centers (100), (111), (®11), (»2H),

and there are four axes xx = 0, Xj + x2 + x3 = 0, o>2xl + x2 + xa = 0,

we, -f x2 -f x3 = 0, passing through (01—1). The group is of order 24, having

(2, 1) isomorphism with the tetrahedral group. The transformations which are

represented by C2 on x2 — x3 = 0 are Oi in the plane. Together these three

C4 form the quaternion Gs.

In any group containing this group of order 24 every other homology of period

3 must be commutative with one of the above four. For consider one which is

not.     It cannot generate with  the reflection with center (01-1) and axis

Fig. 2.

x, — xs = 0 a tetrahedral group on the line joining their centers, since we have

seen that the transformations in the plane which are represented by C2 in the

tetrahedral group are C4 in the plane. The group on the line joining the centers

must then be dihedral. But this will involve an homology of period 3 having

for axis the line joining the centers.    But since the group of the lines through
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(01-1) must be the tetrahedral group, there can be but four axes through it.

There can be therefore no such homology.

There can be but two homologies of period 3 commutative with each of the

four homologies in the group of order 24, since if the group of the points on one

of the four axes is not dihedral, there will be a reflection having that line for

axis (Theorem 1) and hence an homology of period 6 having that line for axis.

If a center on x, = 0 be chosen as (010), the corresponding axis must pass

through (100) and with the center harmonically separate (01—1) and x2 — x, = 0,

which are the center and axis of the reflection (Fig. 2). The homology is then

[as,, «*x2, xs].

There are then twelve homologies of period 3 in the group which form by

threes four triangles. The group leaving one of the triangles point-wise invari-

ant is of order 9, all six permutations are made on its vertices, and the group is

transitive on the triangles. Its order is therefore 9-6.4 = 216. It is the well-

known Hessian group, permuting among themselves the nine inflexional points

of a cubic curve. In this case they are (01-1), (01-o>), (01-a»2), (10-1), (10-o>),

(10-*»2), (1-10), (l-«i)0), (l-»*0). It is the largest group which leaves invari-

ant the Abelian G9 generated by [xL, «ux2, o>*xs] , [x2, x3, x,]. From the

unique choice of coordinates it follows that there is a single conjugate set of

Gm nnder the whole collineation group of the plane.

§ 7.  Multiplicative Groups which contain Reflections ; General

Properties.

Having made an exhaustive study of multiplicative groups which contain

homologies of higher period than 2, we will assume in the remaining discus-

sion of those groups that the only homologies which are present are reflections.

We suppose the existence of a group which contains reflections and consider a

particular reflection in the group. We denote its center and axis by A and a

respectively. There will be a group commutative with it which is (2, 1) iso-

morphic with the group of the points on a. There will be points conjugate with

A under the group, some of which will not lie on a, since we assume that no

triangle is left invariant. The points conjugate with A will lie on lines through

A which will form one or more conjugate sets. Such a line may be an axis of

a reflection, in which case its center will lie on a (Theorem 5). There will then

be a center at its intersection with a, which may or may not be conjugate with A.

Consider a line through A which contains centers of reflections and which is

not itself an axis of a reflection. There cannot then be a reflection with center

át its intersection with a. The group of the points on this line cannot contain

a four-group as a subgroup and hence will be dihedral, containing a cyclic base

of odd order. Since a dihedral group may be generated by two reflections, the

axes of all the reflections, whose centers lie on the line, will pass through a point.
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All the reflections with centers on the line will be conjugate. We shall refer to

a line of this character as an o-line.

There will be a cyclic group of odd order, d, having the o-line for one of the

sides of its fixed triangle. This cyclic group will be self-conjugate in general

only under the dihedral group of order 2d. If however d = 3, it may be self-

conjugate under a group of order 18, under which all six permutations are made

on the vertices of its fixed triangle (Theorem 3); If therefore d 4= 3, there will

be conjugate with this cyclic group il/2d cyclic groups, where ii denotes the

order of the whole group. In these groups there will be (<Z — 1 )il/2d trans-

formations excluding the identity. If d = 3, there will be conjugate with the

cyclic group either Í2/2-3 or ft/6.3 cyclic groups containing

(3-1)^    or    (3-l)A

transformations other than the identity. If two o-lines are not conjugate, the

two cyclic groups which leave them fixed will not be conjugate. Corresponding

then to each conjugate set of o-lines on which the group is dihedral there will be

a conjugate set of cyclic groups of type I.

Any two o-lines through the center of a reflection which are conjugate under

the whole group are conjugate also under the group commutative with that reflec-

tion. For if two o-lines, 0 and b', through A are conjugate, there are transfor-

mations which send 0 to 6' and a center on o into any center on o'. In partic-

ular there are transformations which leave A fixed and send b to b'. Hence if

the group commutative with a reflection be of order g, there will be \g o-lines

in each conjugate set through its center.

Theorem 10. In a multiplicative group which does not contain homologies

of period 3 but which contains a C3 self conjugate under a Gg permuting

cyclically the vertices of its fixed triangle, any two of the C3 which are conjugate

under the whole group are conjugate also under the subgroup leaving the Gg

invariant.

We choose two of the C3 in the Gg as those generated Dy [x,, o>x2, »2x3] ,

[x2, x3, x,] , where o>2 + w + 1 = 0. The four fixed triangles of the C3 in

the Gg then form the Hessian configuration. All the Gg in which one of these

03 lies form a single conjugate set. For if the group leaving its fixed triangle

point-wise invariant is of order d, it will lie in d/S groups Gg. But the group

leaving the triangle point-wise invariant which also leaves one of the Gg invariant

is of order 3, since we have assumed no homologies of period 3 to be present.

Hence the d/S groups G9 are all conjugate.

If there are transformations in the group which transform one G3 into an-

other C3 in the same G3, there will then be transformations which transform

the first C3 into the second, and a Gg in which the first lies into any Gg in
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which the second lies.    In particular the two C3 will be conjugate under the

group which leaves invariant the G9 in which both lie.

§ 8.  Multiplicative Groups containing no Four-Groups.

Theorem 11. The only multiplicative groups, which do not leave invariant

a point, line, or triangle, and which contain reflections but no four-groups, are

the two Hessian groups f936 and G72.

If a group contains reflections but no four-groups, all the centers of the

reflections will lie on o-lines through one of them. Consequently all reflections

in the group will be conjugate. Commutative with each reflection there will be

a certain group, whose order we denote by g. No transformation except the

identity can be commutative with more than one of the reflections. If ft

denotes the order of the whole group, there will then be ft/g reflections and

(g — l)il/g transformations other than the identity in the groups commutative

with the reflections. We suppose there are r conjugate sets of o-lines on which

the centers of the reflections lie. The order of the group will then be equal to

the product of the order of the group commutative with a single reflection times

the number of reflections.    Hence

il=g 1 + fgK-i)}
The order of the group will also be equal to the number of transformations

which it contains, as follows :

ft = i + (yi)" + tK-i)~+...,

where, if dt =(= 3,/, = 2 ; if di = 3,/. = 2, 6.
We find that there are the following four solutions :

«7 = 2, 1—1, /| = 2, ft = 2o\

g = 2, ,- = 4, ¿,-8,/,-6, ft = 18.

S—4, r = 2, ¿i = 3,/i = 6, ft = 36.

g = 8, i—l, ¿, = 3, ¿ = 6, ft = 72.

The first solution gives simply a single dihedral group. In each of the other

three cases there are four C3, each of which is invariant under a Gls. If two

C3 be [x,, wx2, «2x3], [x2, x3, x,], where o>2 + to + 1 = 0, the four C3 are

then determined. If these groups exist they must then be subgroups of the

Hessian G2W. They do exist, since the G2l6 is readily shown to be isomorphic

with a tetrahedral group permuting the four triangles.
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§ 9. Multiplicative Groups containing Four-Groups.

Theorem 12. If a multiplicative group contains four-groups, every dihedral

group which it contains xoill be contained by a group leaving invariant a conic.

We choose two reflections which generate the dihedral group as those with

centers (001) and (Oil), and axes x3 = 0 and x2 + Xx3 = 0 respectively. The

invariant family of conies is then Ax\ + x\ + Xx* = 0, where A is the parameter

(Fig. 3).

Fig. 3.

If there is a single reflection which does not lie in a four-group, the centers of

all the other reflections will lie on o-lines through its center. Hence all reflec-

tions will be conjugate and no reflection can lie in a four-group. If four-groups

do appear therefore, every reflection must lie in a four-group. Consider for

example the reflection with center (001) and axis x3 = 0, and suppose that the

only reflections with which it is commutative have centers at (100) and (010).

Since no triangle is supposed left invariant, (100) will be conjugate with points

not on xx = 0 or xt — 0. These points must then lie on o-lines through (001),

and hence must be conjugate with (001). But if (100) is a center of a reflec-

tion, more than two reflections will be commutative with that reflection. Hence

more than two reflections in such a case must be commutative with the reflection

with center (001).

There will be then in any case reflections commutative with that with center

(001), whose centers are not (100) or (010).    If the center of such a reflection
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is (110) and its axis is fjuxx -\- x2 = 0, the reflection will leave invariant in common

with the dihedral group the conic ¡ix\ + x\ + Xx| = 0.

Theorem 13. A group which does not leave invariant a point, line, or tri-

angle, and which contains four-groups, will contain either an octahedral group

G2l or an icosahedral group Gw.

Any group which does not leave invariant a point, line, or triangle, and which

contains reflections, will contain two reflections which are not commutative and

hence a dihedral group. It will then contain a group leaving invariant a conic

(Theorem 12). The groups which leave a conic invariant are the regular solid

groups. The only two which contain dihedral groups as subgroups are the

octahedral group Gu, and the icosahedral group G^.

Theorem 14. The Grxes is the only multiplicative group which contains an

octahedral group GM, but not an icosahedral group Gw.

If we choose the four points which are permuted by the octahedral group as

(111), (-111), (1-11), (11-1) (Fig- 4), it may be generated by the following
transformations :

0 :  [_ — Xj, Xj, x2 J ,

1 :   L x2, xx, Xj J ,

U:  [x,,x3,x2].

Fig. 4.

These generators satisfy the relations :

s2=t2=u2= (ST)3 = ( suy = (Tuy = /.

The Gu contains two sets of reflections, three in one set conjugate with SU

and six in the other set conjugate with U. Any group which contains the Gu

must contain reflections not in the G2i, since the latter can be invariant under
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no larger group. Every reflection not commutative with one of the three reflec-

tions conjugate with SU must generate with the four-group containing those

three reflections an octahedral group, since it will leave invariant a conic com-

mon to that four-group. There can be no dihedral group of order greater than

8 (Theorem 12). Hence each of the reflections conjugate with SU can be commu-

tative with but four reflections. The invariant four-group of the G2i generated

by S, T, and U, i. e., the four-group with fixed triangle (100) (010) (001), can

therefore lie in but three other octahedral groups, i. e., groups having for fixed

triangles (100)(011)(01-1), (010)(101)(10-1), (001)(110)(1-10). Hence every

reflection in the group containing the G2i must be commutative with a reflection

of the G„.. No more reflections can be commutative with a reflection which is

conjugate under the Gu with SU, and but two more reflections can be commu-

tative with each of the six reflections which are conjugate with U under that

group. The only group which may contain the G2i is therefore a group con-

taining 3 + 6-(-6.2 = 21 reflections. The centers of these twenty-one reflec-

tions must lie on the four axes and on four o-lines through a center of one

of them. They will all be conjugate, and the order of the group will be

8-21 = 168.
A reflection commutative with £7 must generate with S a dihedral group of

order 8 (Theorem 12).    Such a reflection is

x¡ = — X2x2 — X2x3,

V: x2 = — 2x, + Xx2 — Xx3,

x3 = — 2x, — Xx2 -f Xx3.

This reflection must generate a Gu with the dihedral Ge generated by T and U,

and hence either its product by T must be of period 3 or the product of VU by

Tmust be of period 3. Without loss of generality we may take (TV)3 = /.

The condition for this isX2 — X-f-2 = 0,X=|±ii/ — 7. In this case we

have the generational relations :

v2 = (vuy = (VTy = /,     vsvs=u.

A group of order 168 is then generated by S, T, U, and V. We suppose the

operators of the G2t written down in a horizontal row, and form a multiplication

table (multiplying on the left) of seven rows, of which the multipliers are'/, V,

TV, UTV, STV, SUTV, TSUTV. If these seven rows be numbered from

1 to 7 in the order in which their multipliers are written, they are permuted as

follows by the four generators when applied as left-hand multipliers :

S: (1)(2)(35)(46)(7),

T: (1)(23)(4)(5)(67),

U: (1)(2)(34)(56)(7),

V: (12) (3) (4) (56) (7).
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The 168 operators are thus permuted among themselves. The rows must all be

distinct, for if two coincide, all must coincide. This is impossible, since V

does not lie in the octahedral group. Hence a group of order 168 is generated.

It is representable on seven letters, e. g., on the seven rows, and is simple.

Theorem 15. The G63eo is the only multiplicative group containing an

icosahedral group G60.

We choose (100), (010), (001) as the three centers of one of the four-groups

of a Gm. Since a four-group in a Gm is self-con jugate under a tetrahedral

group, there will be four C3 permuting cyclically these three centers. Each of

the C3 must be self-con jugate under a G6. We choose as (111) the fixed point

of a C3 through which pass the three axes of reflections. Two of the transfor-

mations of the tetrahedral group are then

Ex:   [x2,x3, xj, E2:   [x,, -x2, -x3].

A reflection generating with Ex a dihedral G6 takes the form

x'j = ( a2 + a ) xx — ax2 + ( a + 1 ) x3,

E3: x2= — axx+ (a + l)x2 +(a2 + i)x3,

x3 = (a + l)x1 -f (a2 + a)x2 — ax3.

The centers of the fifteen reflections in the group with the exception of (010)

and (001) must lie on o-lines through (100) which contain three or five centers

(Fig. 5).    At least one of the three reflections in the dihedral group containing

Fig. 5.
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Ex must be such that its product by E2 is of period 3. In order that

(E2Eif = I, we must have <z2 + <x — I = 0, a = (— 1 ± i/5)/2. In this case

the three transformations satisfy the following relations :

E\ = El = E¡ = (ExE2f = (ExEJ = (E2E3f = I.

They therefore generate the icosahedral group G^.*

There is a single conjugate set of Gm under the whole collineation group,

since the two Gm which correspond to the two values of a are conjugate under

the transformation [Xj, x3, x2].

We inquire first whether any group can contain the G^ and have only

two reflections commutative with each reflection. The reflections in such a

group must arrange themselves by threes in four-groups, the vertices of the

fixed triangles of these four-groups being permuted cyclically. Every reflection

not in the four-group with fixed triangle (100)(010)(001) must generate with

that four-group a Gm. Corresponding then to each pair of o-lines through one

center which contain 3 centers there will be a pair of o-lines which contain 5

centers. Since there is no Ct commutative with a reflection, the group cannot

contain as a subgroup either the Hessian Gx or the G72. Consequently since

there can be but one conjugate set of o-lines containing 3 centers, the vertices

of the fixed triangles of the C3 cannot be permuted cyclically (Theorem 10).

If we denote by ft the order of the whole group and by g the order of the

group commutative with a four-group, ft must then satisfy a Diophantine equa-

tion of the form :

n-i + (*-i)£+(6-i)¿ + <i-i)¿+....

In order that the coefficient of ft on the right shall be less than unity, we

must have g = 4, ft = 60. Hence no group can contain the Gw if only two

reflections are commutative with a reflection.

We suppose next that a reflection is commutative with more than two reflec-

tions. Since the group cannot contain a dihedral group of order greater than

10 (Theorem 12), the centers and axes of two reflections which are commutative

with the same reflection, but not with each other, must separate each other har-

monically. There can then be but four reflections commutative with any reflec-

tion. A four-group can then be commutative only with itself. A reflection

commutative with E2 must then generate a G2i with the Gi2 generated by Ex

and E2. Such a G2t is an octahedral group and will leave invariant a conic.

This conic cannot be x\ -f x2 -f x2 = 0, since that is left invariant by a G^.

It must then be x2 -f cox2 + to2x2 = 0, where co is a cube root of unity. There

must be at least 45 reflections in the group, since a reflection not in the Gw

*E. H. Moore, Proceedings of the London Mathematical Society, vol. 28 (1897),

pp. 357-366 ; DICKSON, Linear Groups, p. 289.
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must be conjugate with at least 30 reflections under that group. We may show

that the maximum number must be 45. There are three reflections in the

invariant four-group of the GX2 generated by Ex and E2, and two more reflec-

tions commutative with each of those three. Every reflection not commutative

with any one of the three reflections of the four-group will leave a conic

invariant in common with the four-group, and hence must generate with the

four-group either a Gu or a Gm. The four-group can lie in but three octahe-

dral groups other than the one under which it remains invariant, i. e., octahedral

groups whose invariant four-groups contain a reflection, in common with the

above four-group. Each of the three G2i will contain four reflections not com-

mutative with any one of three reflections of that four-group. Since the four-

group can be commutative only with itself, every GK in which it lies must con-

tain the GX2 generated by Ey and E2. Since the conic x\ + tax2 + «*2x3 = 0 is

left invariant by a GM, there can be but two such G^, i. e., those having for

fixed conies x\ -f x2 + x2 = 0, x2 + û>sx2 + <ox23 — 0. There can then be but

8-r-3.2-f-3.4-f2-12 = 45 reflections. There will be four o-lines through

the center of a reflection, on which lie 5 centers. Hence the group commuta-

tive with a reflection must be of order 8 and the whole group of order

8-45 = 360.    One of the reflections commutative with E2 is

E4:  [xlt «*2x3, <ax2].

This reflection satisfies with the three generators of the Gn the following

relations :

El = (Ex EJ = ( E2EJ = ( ESEJ = I.

It therefore generates with the GK a £r3M-* Two ír360 corresponding to the

choice of oi contain the Gm. The GMt however contains two sets of Gm and a

transformation carrying a G^ not conjugate with the Gm generated by Ex, E2,

E3 into the latter transforms one G3m into the other. There is therefore a

single conjugate set of G3m in the plane.

§ 10.  Groups containing only Transformations of Type I.

A complete discussion of multiplicative groups which contain homologies has

been given. Any group which contains only transformations of type I must be

of odd order, since a transformation of period 2 is a reflection. Any cyclic

group contained by such a group can then be self-conjugate only under itself or

under a group permuting cyclically the vertices of its fixed triangle. If ii denotes

the order of the whole group, it must then satisfy a Diophantine equation of

the form

íi = l + ¿K-l)>-> (jfi-l.S).
_                                      ¿=i               Jiai

* Moobe, loc. cit., Dickson, loe. cit.
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If the order of the group is divisible by 3, we may take dx to be divisible by

3. If then f = 3, there must be four conjugate sets of C3 (Theorem 10).

Hence r = 4, and each of the first four à" s is divisible by 3. This can happen

only if r = 4, d2 = d3 = dt = 3, ft = Sdx. If on the other hand fx = 1, we

find.t—1, ft = d,,orr=2, d1 = 3,ft = 3d2.

If the order of the group is not divisible by 3, we have r = 1, ft = dx. We

have therefore

Theorem 16. No multiplicative group which does not leave invariant a

point, line or triangle can contain only transformations of type I.

The discussion of the groups in the ordinary plane is therefore complete.

§ 11.  Groups containing Transformations of Type III,

BUT  NOT  ElATIONS.

We now consider the possibility of groups containing transformations of type

III, but not elations, and consequently no transformations of type II. There

can be no homologies present which have a common center but different axes,

or vice-versa, so that Theorem 4 holds. Theorem 5 does not hold, but instead

we have

Theorem 17. A group containing transformations of type III but not ela-

tions cannot contain two homologies such that the line joining their centers

passes through the intersection of their axes unless they are both of period 2.

The product of two homologies such that the line joining their centers passes

through the intersection of their axes will leave invariant two points on that line

unless one transformation on that line is conjugate with the inverse of the other.

Unless the homologies are both of period 2 we may choose their powers so that

this is not the case.    The product is therefore of type II in the plane.

Theorems 6, 7, 8, 9 are proved independently of the assumption of the non-

existence of transformations of type III in the group. The Hessian group Gm

however contains no transformations of type III.    Hence we have

Theorem 18. There is no group which contains transformations of type III

but not elations, which does not leave invariant a point, line, or triangle, and

which contains homologies of higher period than 2.

If transformations of type III appear, there may be a new kind of o-lines

through the center of a reflection, i. e., o-lines on which the group of the points

is metacyclic, containing an additive base. There cannot be more than a single

conjugate set of such o-lines, since their number must be of the form 1 +fpm,

where pm denotes the order of the additive group on the line. If the order of

the group commutative with a reflection is g, and the order of the subgroup of

that group which leaves fixed an o-line of this sort is h, the number of such

o-lines through the center of the reflection will be g/h.

Theorem 10 holds in this case also.    In the proof of Theorem 11 however it
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is necessary to consider the additional case where o-lines of the sort described

above appear.

If there are no reflections commutative with a reflection, and if there is a set

of o-lines, each of which is left invariant by a metacyclic group of order hpm,

any group which exists (of order il) will contain (g — l)H/g transformations

in the groups commutative with the reflections and (pm — 1 ) il/hpm transforma-

tions of type III.    Hence il must satisfy an equation of the form :

il = l+(<7-l)" + (^-l)~+---

In order that the coefficient of ÎÎ on the right shall be less than unity, no more

terms representing transformations can appear, and also h — g. We then have

ii = gpm, which represents the single metacyclic group.

If we combine this result with Theorem 11, and observe that the £r36 and G72

contain no transformations of type III, we have

Theorem 19. No group exists which contains transformations of type III

but not dations, which does not leave invariant a point, line, or triangle, and

which contains reflections but no four-groups.

Theorem 12 holds in this case without modification.    We prove also

Theorem 20. If a group containing four-groups contains a metacyclic group

of order 2pm (the operators of period p being of type III), that metacyclic

group will be contained by a group leaving invariant a conic.

A metacyclic group of order 2pm will leave invariant a one-parameter family

of conies.    For consider a single transformation of type III, such as

[xx + x2 + x3, x2 + 2x3, x3].

This leaves invariant the family x\ + Ax\ - 4xtx3 = 0 (Fig, 6).    The above

Fig. 6.

transformation is invariant under any transformation of type III leaving fixed

(100) and x3 = 0 and the same family of conies.    Hence we may choose the
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center of a reflection in the metacyclic group arbitrarily as (010). The.axis

will be a line, x2 + ux3 = 0, passing through (100). This reflection will trans-

form the above transformation into a transformation which is its inverse on

x3 = 0.    The transformed transformation is

[x, - x2 + (1 - 2u)x3, x2 — 2x3, x3].

The product of the two is an elation unless /* = 0. The reflection must

therefore leave fixed the conies. Hence every reflection in the metacyclic group

leaves fixed the conies. Since the metacyclic group of order 2pm may be gener-

ated by the pm reflections which it contains, it leaves fixed the conies.

Since we have assumed the existence of four-groups, the reflection with center

(010) and axis x2 = 0 will lie in a four-group. Since the metacyclic group is

invariant under any elation with center (100) and axis x3 = 0, we may choose

the center of a reflection in that four-group arbitrarily as (001). Its axis will

be a line, x, + vx3 = 0, passing through (010). This reflection leaves invariant

in common with the metacyclic group the conic x2 — 2ke3 — 4x,x3 = 0.

Theorem 21. If a group containing four-groups contains transformations

of type III, it will contain a group leaving invariant a conic, which is either

an octahedral group G2t, an icosahedral group Gm, a group of order

(pm + 1 )pm(pm — 1 )/2, or a group of order (pm + 1 )pm (pm — 1 ).

Any group which contains reflections will contain two reflections which are not

commutative, provided no point, line or triangle is left invariant. Hence it will

contain either a dihedral group or a metacyclic group and therefore (either by

Theorem 12 or by Theorem 20) a group leaving invariant a conic. The group

leaving a conic invariant is simply isomorphic with the group of the points on

a line.* Hence this group must be either an octahedral group Gu, an icosahe-

dral group Gm, a group of order (pm + l)pm(pm — 1 )/2, or a group of order

(pr+l)p*(rr-l).    (Seefl.)
Theorem 22. A G7X6S(p = 3 ) is the only group containing transformations

of type III such that its largest subgroup leaving invariant a conic is a Gu.

The proof of this theorem is the same as that of Theorem 14 ; except that,

having obtained the group of order 168, we have yet to determine when it

contains transformations of type III. This will be the case only if p = 3, 7.

For p = 7 the Gxm leaves invariant a single conic. Hence the theorem is as

stated.

Theorem 23. A Gr3M(p = 5) and a G120(p = 5) are the only groups con-

taining transformations of type III such that their largest subgroup leaving

invariant a conic is a GK.

The proof is the same as that of Theorem 15 with slight modifications. We

make use of Theorem 20 as well as of Theorem 12 in showing that the only

* Veblen and Young, Protective Geometry, Chapter VIII, Theorem 15.
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o-lines which exist contain 3 or 5 centers. We show in the same way that

there can be but 45 reflections in the group. It was shown under Theorem 15

that the group commutative with a reflection was of order 8, since there must be

through its center four o-lines containing 5 centers each. For p = 5 however it

is possible that there may also be a group of order 16 permuting these four

o-lines. A transformation of period 8 transforming the Gm(p = 5) into itself

is given by

[as,, (2<o + l)x2 + (to-l)x3, -(« + 2)íB1 + (2« + l)íBI].

A group of order 720 therefore exists.

The Gm also contains transformations of type III if p = 3. In this case

however it leaves invariant a single conic.    Hence the theorem is as stated.

§12.  Groups containing Transformations of Type III which contain

larger Subgroups leaving a Conic Invariant.

Theorem 24. There exists no group which does not contain elations or

homologies of higher period than 2, and which contains a set of refections

each of which is commutative with a group (2, 1) isomorphic with either the

tetrahedral, octahedral, or icosahedral group.

If a group commutative with a reflection is (2, 1) isomorphic with either the

tetrahedral or icosahedral group, it can contain no four-group. For all the

involutions in either a Gl2 or a Gm lie in four-groups (on the axis), in any one of

which all three involutions are conjugate. If two of the involutions are per-

formed by reflections, the third will be performed by a Ct. But this is impos-

sible, since the three involutions are conjugate. Hence no one of the involutions

on the line can be performed by a reflection.

If the group commutative with a reflection is (2, 1) isomorphic with an octa-

hedral group, none of the involutions of the included tetrahedral group can be

performed by reflections. The six involutions not in the tetrahedral group how-

ever may be performed by reflections. In this case there will be twelve reflec-

tions commutative with the given reflection. The group commutative with the

given reflection will contain four conjugate dihedral groups of order 12 and

three conjugate dihedral groups of order 8.

Each of these dihedral groups will be contained by a group leaving invariant

a conic (Theorem 12). Hence some of the twelve reflections commutative with

the given reflection will be conjugate with that reflection, and hence all will be.

There will then be twelve reflections commutative with every reflection. A

dihedral group of order 8 will therefore lie in a group leaving invariant a conic

which contains two conjugate sets of reflections. Such a group will be of order

(pm + l)pm(pn — 1), where 2(pn — 1) = 8, pm=b. No group is then

possible unless p = 5.
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Consider now a dihedral Gl2. Each reflection commutative with one of the

six reflections of this G12 (other than the invariant reflection) must generate a

Gm with the Gl2. Since a Gl20 contains 25 reflections and the Gx2 contains 7,

the reflections commutative with these six reflections which are not in the dihe

dral group must be grouped in sets of 18. But there are 60 such reflections

and hence this is impossible.    No group can then exist for p — 5.

Theorem 25. A G\i2S> is the only group such that its largest subgroup

leaving invariant a conic is a Gm (p = b), provided that no dations are

present.

A Gm (p = 5 ) is generated by

Ex:  [x2,x3,x1],        E2:  [xx, — x2, — x3],        E5:  [xx, x3, x2],

E3: x'x = Xj — 2x2— 2x3,       x'2 = —2xx — 2x2+x3,       x'3——2xx + x2 — 2x3.

The invariant conic is x\ + x\ -f- x3 = 0. The GX2a contains two conjugate sets

of reflections. Each reflection conjugate with E2 is commutative with a dihe-

dral group of order 8 ;' each reflection conjugate with Es is commutative with a

dihedral group of order 12.    (Fig. 7.)

Fig. 7.

A group which contains the GX20 will contain reflections not in the Gm.

Since the Gm is supposed the largest subgroup leaving invariant a conic, no

dihedral group of order greater than 12 can appear (Theorem 12). It may be

shown readily that under any group containing the Gl20 E2 must be invariant

under a larger group. The only possible larger group which will not introduce

a dihedral group of order greater than 12 and which will allow the group of the



1911] H.   H.   MITCHELL:    TERNARY   LINEAR   GROUPS 231

points on Xj = 0 and xx — x3 = 0 to be dihedral is a G2i having for fixed tri-

angle the fixed triangle of the Gl2 generated by Ex and E2. This G2i contains

the C3:

[Xj,   £OX2,   f02X3] (u2 + u + l=0).

The fixed triangles of all the C3 in the group will then be invariant under a

G9. The four-group which is invariant under the Gl2 generated by Ex and E2

will then lie in three Gm. Each of those Gl20 will contain 22 reflections not in

that four-group. The four-group will also lie in nine G2i under which it is not

invariant, i. e., G2i whose invariant four-groups have each a reflection in com-

mon with the above four-group. Each of these nine G2i will contain 4 reflec-

tions not in anyone of the three Guo. There will then be 3+3.22 + 9.4=105

reflections. These will all be conjugate and the order of the group must be

24-105 = 2520.

As a product of the above C3 and Es we obtain

Et:   [x,, co2x3, a>x2~\.

The five generators are found to satisfy the relations :

E\ = E\ = E\ = E\ = E\ = I,       (EtE„J-It       {E^f = I
(¿>i + l).

A £r2520 is then generated.*

Theorem 26. No group which does not contain elations can contain a group

of order (pm + l)pm(pm — l)/2 or (p? + l)pm(pm — 1) leaving a conic

invariant, provided pm > 5, and provided it contains no larger group leaving

a conic invariant.

The group commutative with a reflection in a group of order

i(pm + l)pm(pm — 1)    or    (pm + \)pm(pm — 1)

leaving a conic invariant is dihedral and hence the group of the points on the

axis of the reflection is dihedral. There is but one pair of points on the axis

which are interchanged provided the group of the points on the axis is larger

than the four-group, i. e., provided the group commutative with the reflection is

of order greater than 8. For the group of order (pm + l)pm(pm — l)/2 this

will be true if pm ± 1 > 8, pm> 9 ; for the group of order (pm + \)pm(pm - 1 )

it will be true if 2 (pm ± 1 ) > 8, pm > 5. If then pm > 5 and if the group is

not the Gl6S(pm = 7) or the (r360(pm = 32), there will be but one pair of

points on the axis which are interchanged by the group.

Excluding for the moment these two cases, we may show that there can be

no more reflections commutative with a reflection.    For there certainly cannot

* Moobe, 1. c. ; Dickson, I. c.

Trans. Am. Math. Soc. 16
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be more than two such reflections, i. e., the two leaving the two points point-

wise invariant. (If a reflection interchanges the points, it will leave fixed the

conic.) But if we add two reflections we must add more than two, since any

such reflection must generate together with a dihedral group containing the

reflection with which it is commutative (other than the dihedral group which

leaves the latter reflection invariant) a group of order (pm -f l)pm(pm — l)/2

or (pm + 1 ) pm(pm — 1 ) leaving invariant a conic. This group can have in com-

mon with the other group which leaves fixed a conic only the reflections of the

dihedral group. Hence there will be more than two reflections added which are

commutative with the latter reflection.

If the group is the Gm(pm = 7 ) or the G3m(pm = 32), there can be no more

reflections commutative with a reflection. For since the group is supposed the

largest group present which leaves invariant a conic, there can be no dihedral

group present of order greater than 10 (Theorem 12). Hence there can be only

four reflections'commutative with any reflection in the group.

Suppose now that there is a reflection not commutative with any reflection in

the group. It will leave invariant in common with any four-group of that group

a conic. It must generate with that four-group some group leaving invariant a

conic which can contain no reflections commutative with any of the three reflec-

tions of the four-group except those three reflections themselves. Such a group

must be an icosahedral group Gm. Every reflection not in the original group

leaving fixed a conic must then generate with this four-group a Gw. But there

cannot be any transformations commutative with the four-group other than those

of the four-group itself without involving more reflections commutative with the

reflections of the four-group. Hence there cannot be more than four C3 per-

muting cyclically the vertices of the fixed triangle of the four-group, i. e., all the

Gm must contain the same tetrahedral group. A tetrahedral group however

leaves fixed but three conies, one of which is the original conic. There can then

be but two such Gw, each of which contains twelve reflections other than those

of the four-group. There cannot then be more than 24 more reflections, which

is impossible.

§ 13.  Groups containing only Transformations of Types III and I.

Theorem 27. There exists no group which contains only transformations of

types III and I and which does not leave invariant a point, line, or

triangle.

Any group which contains only transformations of types III and I must be of

odd order, since a transformation of period 2 is a reflection.

An additive group of order pm containing transformations of type III will be

self-conjugate under a metacyclic group of order dxpm, containing//' conjugate

cyclic groups of order dx which contain transformations of type I.    (In partie-
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ular dx may be unity.) Any cyclic group of order d. containing transformations

of type I will be self-conjugate either under itself only or under a group of

order 3d. permuting cyclically the vertices of its fixed triangle.

If we denote the order of the whole group by ft, and enumerate the trans-

formations which the group must contain, we are led to the following Diophan-

tine equation :

a = 1 + ^'-1^+t^-1)M       (/i=ll3)-

If fx — 3, we may show that dx = 3. Let the fixed point and line of an

additive group be (100) and xs = 0 and let the vertices of the fixed triangle of

a cyclic group of order dx in the metacyclic group, under which the additive

group is self-conjugate, be (100), (010), (001). A transformation of period dx

in that cyclic group will be given by

(1) [&,, «e,,«*^],

where the period of a> is d,. A transformation of type III in the additive

group will be given by

x[ = Xj + ax2 + ßxs,

(2) »i- x2+yxit (a+o, x + u).

If we transform (2) by (1), we obtain

x[ = xx + <h»x2 + ßo>'xs,

(3) x; = x2+v°>-\,

x'i = *s-

If we transform (2) by (3), we obtain

x[ = xx + ax2 + (ß + aya'-1 — aya>)x3,

(4) x2= x2       +       7X3,

The transformation (4) is the same as (2) on the line x3 = 0. Hence (4)

must be identical with (2). Hence a»*-1 = at, e = 2 (mod dx). But if the

vertices of the fixed triangle of (1) are permuted cyclically, we must have

e2 — e + 1 = 0 (mod d,). [See the discussion under Theorem 2.] Hence

22_2 + 1 = 0 (moddx); d, = 3.
But if fx = 3, d, = 3, there must be four conjugate sets of Cs (Theorem 10).
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Hence rä4. The coefficient of ÎÎ on the right is then greater than unity, and

hence there can be no solution.

If f = 1, r = 1, £l = dlpm.    This represents a single metacyclic group.

If dx = 1, either r = 2, f2 = S, pm = S, il = Sd2, or else r = 1, il =pm.

The first represents a group permuting cyclically the vertices of a triangle, and

the second a single additive group.

§ 14.  Groups containing Elations.

Theorem 28. The only groups which do not leave invariant a point or a

line and which contain elations are: the HO (3, }>u); groups containing the

HO (3, p2k) as self-conjugate subgroups of index S, if pk + 1 is divisible by

S ; the LF (3, pk); groups containing the LF(S, pk) as. self conjugate

subgroups of index 3, if pk — 1 is divisible by 3.

Any group which contains elations will contain a group of largest order con-

sisting wholly of elations with a common axis and center. We denote the order

of such a group by pk. We choose the center and axis of one such group as

(010) and x3=0. Since we assume that no point or line remains invariant

under the group, there will be groups of elations whose centers do not lie on

x3 = 0 and whose axes do not pass through (010). We choose the center and

axis of such a group as (001) and *2 = 0. By hypothesis then the order of the

group consisting of all the elations with center (001) and axis x2 = 0 will be less

than or equal to pk. The group generated by these two groups of elations will

leave invariant (100) and xx = 0. The group of the points on x, = 0 cannot

contain an additive group of higher order than pu, and hence (by § 1) must

be of order (pk-\-\)ph(pk—\)/2 or 60(p'' = 3). (The group of order

(pk + 1 )pk(pk — 1 ) on the line cannot be generated by additive transformations

only.)

Under either of these two groups, (010) and x3 = 0 will be conjugate with

(001) and x2= 0. Hence (010) and x3 — 0 will be conjugate with the center

and axis of any group of elations, since in any conjugate set of such groups

there will be groups whose centers do not lie on x3 = 0 and whose axes do not

pass through (010).

If the group of the points on xx = 0 is of order (pk + 1 )pk(pk — 1 )/2, we

may choose it as the group generated by the two groups of elations

(E):  [Xj, Xj + Xx.,, x3], [xx, x2, Xx2 + x3],

where X takes all values in the GF(pk). This group contains an invariant

reflection with center (100) and axis x, = 0 (Theorem 1). The group contains

a set of cyclic groups of period (pk — 1 )/2 on xx = 0. One such group is gen-

erated by [x,, r¡x2, n-' x,], where y is of period pk — 1 .    This cyclic group is of
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period pk — 1 on x2 = 0 and x3 = 0. The group generated by the two groups

of elations (E) also contains a set of cyclic groups of period (pk + l)/2 on

x, = 0. Such a cyclic group which leaves fixed (Old) and (01-d), where lis

a square-root of a not-square in the GF(2)k), may be generated by a transfor-

mation of the form

x¡ = xx,        Ix2 + x3 = J( Ix2 + x3 ),        Ix'2 — x3 = J l ( Ix2 — x3 ) ,

where J is a mark of period pk + 1. This cyclic group is of period pk + 1 on

Ix2 + x3 = 0 and Ix2 — x3 = 0 .

A group of order 60(p/c = 3) on xx = 0 is generated by the two groups of

elations :

[Xj , x2 + x3, X.( J, [Xp  x2,   ix2 + x3J,

where i2 = — 1. The group contains a set of cyclic groups of period 2 on

Xj = 0. One such group is generated by [x,, — ix2, ¿x3]. It is of period 4

on x2 = 0 and x3 = 0. The group in the plane is of order 120, as it contains

the invariant reflection [x,, — x2, — x3] (Theorem 1).

Since we assume that no point or line remains invariant, there will be groups

of elations whose centers do not lie on x, = 0 and whose axes do not pass

through (100). We consider one such group. It must generate together with

the reflection with center (100) and axis xx = 0 a group on the line joining their

centers which does not contain an additive group of higher order than pk. If

pk~> 3, this group on the line must be of order (pk + l)p*Q/— l)/2 or

(p* + 1 )pk(p" — 1 ). If pk = 3, it must be of order 12, 24, or 60. In any

case there will be a reflection having this line for axis, and having for center

the point of intersection of the axis of the generating group of elations with

x, = 0 (Theorem 1). The involution on x1 = 0 performed by this reflection

must leave invariant the group of the points on x, = 0.

In the special case where the group of the points on xx = 0 is of order

60(pk = 3), the involution performed by this reflection on xt = 0 must belong

to the group of order 60. Suppose for example that the center of the reflection

is (010) and its axis x2 = 0. The group of the points on x2 = 0 contains a Ct

generated by [x,, — ix2,ix3]. It must then be of order 24. But the fixed

points of this C4 will be interchanged by the group. The transformed trans-

formation is [ix,, — ix2, x3]. This is of period 4 on x, = 0. The group of

the points on xx = 0 is now no longer of order 60 and hence it must contain an

additive group of higher order than 3. We therefore exclude this case from

the discussion entirely.

In the general case, in order that the reflection whose center lies on xx = 0

and whose axis passes through (100) shall permute among themselves the^j* + 1

centers of elations on Xj = 0, either (i) its center must lie at some point conju-
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gate with (Oil) and its axis pass through the conjugate point with respect to

the GF(pk), or (ii) its center will coincide with one of the centers of elations

and its axis will pass through one of the other centers.

We consider the case (i). Consider in particular the reflection with center

(017) and axis 7x2-f-x3=0. The axes of the elations with centers on

Ix2 + x3 = 0 must all pass through (01/). The group of the points on

Ix2 + x3 = 0 contains a cyclic group of order/?* -f 1 with fixed points (100) and

(01—7). It must then be of order (pk -f-1 )pk(pk — 1 )• Since there must be

transformations leaving fixed (017) and interchanging (100) and (01—7), the

group of the points on x, = 0 must be of the same order. The axes of all ela-

tions whose centers lie on x, = 0 must then pass through (100). Hence a

unique correspondence must be established between the centers and axes of ela-

tions and between the centers and axes of reflections. There can then be no

centers of elations on any of the pk + 1 axes of elations through (100) except

those on xx = 0.

All the centers of elations except those on x, = 0 must then lie on the

pk( p* — 1) lines through (100) whose coordinates are in the GF(p2k), but not

in the GF(pk). Since there will be pk + 1 on each of these lines, the total

number of centers of elations will be

p* + 1 + (p* + l)pk(pk - 1 )=/>* + 1.

All the centers not on xx = 0 will be conjugate under the group generated by

the two groups of elations ( E). We choose a center on Ix2 + x3 = 0 arbri-

trarily as (-11-7). The p7* -f 1 centers will then be the points (e, ai + ß,

yl+ 8), where e, a, ß, 7, 8 are in the GF(p") and aS — ßy= é.    (Fig. 8

Fig. 8.
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represents the configuration for pk = 3. ) The coefficients of the transformations

permuting these points will lie in the GF(pu). We first seek to determine

those groups which contain only transformations having for determinant a cube

in the GF(p2k).

The group will be transitive on the p2k ( p2k — p* + 1 ) points whose coordinates

lie in the GF(p2k), but which are not centers of elations. The group of the

points on any one of the axes of elations is metacyclic, containing p2k involutions

with a common fixed point. (The p3k other axes of elations must meet that axis

in p2k points in sets of pk each.) Hence (100) is conjugate with all the points

on the axes of elations through it whose coordinates lie in the GF( p2k ) with

the exception of the pk + 1 centers of elations on xx = 0. It is also conjugate

with all the points on the axes of reflections through it whose coordinates lie in

the GF(p2k), but which are not centers of elations.

Since all six permutations are made on the vertices of the triangle

(100) (017) (01-7), there will be an homology of period pk + 1 or (pk + l)/2

with center at each vertex (Theorem 3). But if pk + 1 is divisible by 3, the

determinant of an homology of period ^'+1 will not be a cube in the GF(p2k).

Hence the period of the homology will be (pk + l)/v. (See Introduction.)

The group leaving invariant (100) and x, = 0 is then of order

-v{pk+iyP\pk-i).

The whole group is of order

-(p* _;,* + 1 )(j,* + lfp3k(pk - 1).

In order that the group of elations with center (-11-/) shall permute among

themselves the pik + 1 centers, we find that it must be given by

x\ = |(2 + IX)xx + \IXx2 - £Xx3,

x2-\IXxx + i(4 - 7X)x2 + \Xx3,

x3 = \PXxx + J/2Xx2 + i(4 - 7X)x3,

where X takes all values in the GF(pk ).

We may identify the group determined with the hyperorthogonal group,*

HO(o',p2k), by observing that it leaves invariant the function

/        1    V+1       /        1    y**1
<+l + ï[xî + jxs)    -kytt-jBu)

*Cf. L. E. Dickson, Mathematisch e Annalen, vol. 52 (1899), pp. 561-581 ; also Linear

Groups, Chap. V.



238 H.   H.   MITCHELL:    TERNARY  LINEAR  GROUPS [April

The locus of the points which are such that their coordinates satisfy this function

equated to zero are the p3k + 1 centers of elations.

li pk + 1 is divisible by 3, a group exists containing the 770(3, plk) as a

self-con jugate subgroup of index 3. It may be generated by the 770(3, p2k)

together with an homology of period pk + 1.

As follows from the unique choice of coordinates, there is a single conjugate

set of 770 ( 3, p2k ) under the whole collineation group.

We turn our attention again to the two groups of elations (E), and consider

case (ii). If there is a group of elations with center on one of the axes

through (100), and axis passing through the intersection of another one of those

axes with xx = 0, the group on that axis must be of order (pk + 1 )pk( pk — 1 ),

since it contains a cyclic group of order pk — 1. Hence (100) will be conjugate

with each of the pk -f 1 centers of elations on x, = 0, since the fixed points of

this cyclic group will be interchanged. Hence there will be at least pk + 1 axes

of elations passing through each center. There can then be no centers not on

any one of the pk -f 1 axes through (100), since in that case we found that a

polar configuration was determined.    There will be pk + 1 centers on each of

Fig. 9.

those pk + 1 axes, i. e., p2k +pk -f 1 in all.    (Fig. 9 represents the configura-

tion for p" = 3.)

If one of the centers on x3 = 0 be (110), the p2k -f pk + 1 centers will be the

points (a/87), where a, ß, 7 lie in the GF(pk). The coefficients of the trans-

formations in the group will then lie in the GF(ph). We consider first the

groups containing only transformations the determinants of which are cubes in

the GF(pk).
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A group of elations with center (110) and axis passing through (001) will be

given by

[(1-+ X)x, — Xx2, Xx1 + (1 — X)x2, x3],

where X takes all values in the GF(pk). Under the group generated by this

group of elations together with the reflection with center (100) and axis x, = 0,

(001) will remain invariant and there will be transformations interchanging

(100) and (010). All six permutations will then be made on the vertices of

the triangle (100) (010) (001). Hence there will be an homology of period

pk — 1 or (pk — 1 )/2 with center at each of the vertices (Theorem 3). But since

if pk — 1 is divisible by 3 the determinant of an homology of that period will

not be a cube in the GF(pk), the period of the homology will be (pk — 1 )/u.

(See Introduction.) The group of the points on any axis will be of order

(pk 4- l)pk(pk — 1), and consequently the group leaving (100) and xi = 0

fixed will be of order (p* + 1 )pk(pk — l)2//¿. The group leaving fixed only

(100) will be of order (p* + l)p3k(pk — l)2/fi, and the whole group of order

(j,» + p" + 1 )(p" + 1 )f (pk-l)2/a.    This is the LF(3, p").*

If p" — 1 is divisible by 3, a group exists containing the LF(3, ph) as a

self-conjugate subgroup of index 3. It may be generated by the LF(2>, p')

together with an homology of period pk — 1.

§15.  Subgroups of the Simple Groups LF(3, pk).

The subgroups of the LF(S, pk) are those groups which have been deter-

mined in this paper such that the coefficients of the transformations which they

contain are in the GF( pk ), and the determinant of any one of those transfor-

mations is a cube in that field, together with those subgroups which leave

invariant a point, line, or triangle. There is a single conjugate set of each one

of the groups under the whole collineation group of the plane. We suppose

that the plane in which we are working is the PG(2, pk). If then the

LF(Z, pk) is the whole collineation group of the PG(2, p'c), i. e., if pk — 1

is not divisible by 3, there will be a single conjugate set of each subgroup ; if

pk — 1 is divisible by 3, but a subgroup is invariant under a group of three

times its order which is not a subgroup of the LF(S, pk), there will be also a

single conjugate set of those subgroups; if however p* — 1 is divisible by 3

and a subgroup is not invariant under a group which is not a subgroup of the

X-F(3, pk), then there will be three conjugate sets of those subgroups.

The subgroups are as follows :

1. Groups of order (pk + l)p3k(pk — 1)2/m- Each of these groups leaves

invariant a point and is isomorphic with a group of order(p* + l)pk(pk — 1),

permuting the lines through that point.

* Cf. L. E. Dickson, Linear Groups, pp. 76-78.
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2. Groups of order (pk + l)p3k(pk — 1 )2//*- Each of these groups leaves

invariant a line and is isomorphic with a group of order (pk + 1 )pk(pk — 1 ),

permuting the points on that line.

3. Groups of order 6(pk — l)2//*- Each of these groups leaves invariant a

triangle with coordinates in the GF( pk ), and makes all six permutations on its

vertices.

4. Groups of order 3(p2* + pk + 1)//*- Each of these groups leaves inva-

riant a triangle with coordinates in the GF(p3k), but not in the GF(pk), and

permutes its vertices cyclically.

5. Groups of order (pk -f l)/>*(p* — 1 )• Each such group leaves invariant

a conic.

6. Groups of the same structure as that of the LF(S, pk) itself, i. e., the

LF( 3, pm ), where m is a factor of k.

7. Groups containing the LF(S,pm) as self-conjugate subgroups of index 3

if pm — 1 is divisible by 3, and k/m is divisible by 3.

8. The hyperorthogonal groups, 770 ( 3, p2m ), where 2m is a factor of k.

9. Groups containing the HO(S, p2m) as self-conjugate subgroups of index 3

if pm + 1 is divisible by 3, and k/2m is divisible by 3.

10. The Hessian groups of order 216 (if pk — 1 is divisible by 9), 72 and 36

(if pk — 1 is divisible by 3).

11. Groups of order 168, which exist if V — 7 exists in the GF(pk), i. e.,

if k is even, or (by the law of quadratic reciprocity) if k is odd and p = 7,

7/-|-l,7/'-f2,or7/*-(-4. For p = 7 any one of these groups leaves invariant

a conic.

12. Groups of order 360, which exist if both Vb and a cube root of unity

exist in the GF(pk); i. e., if k is even, or if k is odd, provided p = 15/+ 1

or 15/"+ 4.    For p = 3 any one of these groups leaves invariant a conic.

13. Groups of order 720 containing the groups of order 360 as self-conjugate

subgroups.    These exist only for p = 5 and k even.

14. Groups of order 2520, each isomorphic with the alternating group on

seven letters.    These exist only for p = 5 and k even.

Since the largest subgroup is of order (pk + l)p3k(pk — l)2/u, we have

Theorem 29.    The smallest number of letters on which the group, LF(3, pk),

may be represented as a permutation group is p2k + pk -f- 1.

§ 16.  Subgroups of the Simple Groups 770(3,p"1).

The subgroups of the HO(S, p2k) are those groups determined above which

have an invariant conjugate with

xf+1 + xf+1 + xS4+1 = 0,
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together with the subgroups which leave invariant a point, line, or triangle.

Each set of subgroups forms a single conjugate set provided the 770( 3, p2k) is

invariant under no larger group under the whole collineation group of the plane,

i. e., if p* + 1 is not divisible by 3. If p* -f 1 is divisible by 3, each set of

subgroups will form a single conjugate set if any one of them is invariant under

a group of three- times its order which is a subgroup of the group under which

the 770(3, p2k) is invariant but not of the 770(3, p2k) itself ; otherwise there

will be three conjugate sets.

The subgroups are as follows :

1. Groups of order (pk -\- l)p3k(pk — l)fv. Any such group leaves

invariant the center and axis of a group of elations and is isomorphic with a

metacyclic group on the axis of order (p2k — 1 )p2k/v.

2. Groups of order (pk + l)2pk(pk — l)/v. Any such group leaves

invariant the center and axis of an homology and is isomorphic with the group

of the points on the axis, which is of order (pk + l)pk(pk —1).

3. Groups of order 6(p* -f- l)2/v. Any such group leaves invariant a tri-

angle whose coordinates are in the GF(p2k) and makes all six permutations on

its vertices.

4. Groups of order 3(p2* — pk + 1)/». Any such group leaves invariant a

triangle whose coordinates lie in the GF(p6k), but not in the GF(p2k), and

permutes its vertices cyclically.

5. Groups of order (pk -f l)pk(pk — 1). Any such group leaves invariant

a conic.

6. The hyperorthogonal groups, 7/0(3, p2"1), where to is a factor of k and

k/m is odd.

7. Groups containing the 770(3, p2m) as self-con jugate subgroups of index

3 if pm + 1 is divisible by 3 and k/m is odd and is divisible by 3.

8. The Hessian groups of order 216 (if pk + 1 is divisible by 9), 72 and 36

(if pk + 1 is divisible by 3).

9. Groups of order 168, which exist if V— 7 does not exist in GF(pk),

i. e., if k is odd and p = lf+ 3, lf+ 5, or 7/ + 6. For p = 7 these groups

also appear, but each leaves invariant a conic.

10. Groups of order 360, which exist if V5 exists and a cube root of unity

does not exist in the GF(pk), i.e., if k is odd and p = 5,15/— 1, orlo/"— 4.

If k is even and p = 3 these groups also appear, but in that case each leaves

invariant a conic.

11. Groups of order 720, which exist if p = 5 and k is odd.

12. Groups of order 2520, which exist if p = 5 and k is odd.

The largest subgroup of the770(3, p2k) is of order (p* + 1 )pSk(pk — l)/v,

«xcept for p* = 5, in which case the largest subgroup is of order 2520. Hence

we have
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Theorem 30. The smallest number of letters on which the group

HO(3, p2k) .may be represented as a permutation group is pik + 1, except

for pk = 5, in which case the smallest number is 50.

That the HO ( 3, p2k ) can be represented as a permutation group on p3k + 1

letters has been shown by Dickson (Mathematische Annalen, vol. 55, p.

532). Similar results are obtained by him in that paper for the general hyper-

orthogonal group in m variables.

New Haven, Conn.,

September, 1910.


