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In a paper recently published in the Rendiconti del Circolo

Matemático di Palermo (vol. 33, 1912, pp. 375-407) and en-

titled Sur un théorème de Géométrie, Poincaré enunciated a theorem of great

importance, in particular for the restricted problem of three bodies; but,

having only succeeded in treating a variety of special cases after long-con-

tinued efforts, he gave out the theorem for the consideration of other mathe-

maticians.

For some years I have been considering questions of a character similar to

that presented by the theorem and it now turns out that methods which I

have been using are here applicable. In the present paper I give the brief

proof which I have obtained, but do not take up other results to which I

have been led.t
1. Statement of the Theorem. Poincaré's theorem may be stated in a

simple form as follows: Let us suppose that a continuous one-to-one trans-

formation T takes the ring R, formed by concentric circles Ca and Cb of radii

a and 6 respectively (a > 6 > 0), into itself in such a way as to advance the

points of Ca in a positive sense, and the points of Cb in the negative sense, and

at the same time to preserve areas. Then there are at least two invariant

points.

In the proof of this theorem we shall use modified polar coordinates y = r2,

x = 0 where r is the distance of the point ( x, y ) from the center of the circles,

and 6 is the angle which a line from the center to ( x, y) makes with a fixed

line through the center.   The transformation T may be written then

x' = <p (x, y),       y' = yp (x, y).

The function \f/ ( x, y ) is a continuous function of ( x, y ), uniquely deter-

mined at each point of R, and so is periodic in x of period 2x. The function

<p(x,y) admits of an infinite number of determinations which differ from each

* Presented to the Society, October 26, 1912.
t Some of my results are contained in a paper entitled Quelques théorèmes sur les mouve-

ments des systèmes dynamiques, which is shortly to appear in the Bulletin de la Société

Mathématique de France.
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other by integral multiples of 2ir, and these determinations can be grouped so

as to form continuous branches. Since (x + 2ir, y) and (x,y) represent the

same point of R, the algebraic difference between the values of one of these

determinations taken for ( x + 2w, y ) and ( x, y ) reduces to an integral mul-

tiple of 2ir; and this difference must be one and the same multiple of 2ir for

all x and y because the difference is a continuous function. But if the point

( x, y ) makes a positive circuit of the circle Ca, the same is true of its image

(x', y'); hence along this path <p (x, y) increases by 2ir when x increases

by 2t. Thus the difference reduces identically to 2ir; in other words, the

function <p (x,y) increases by 2ir when x is increased by 2x.

In consequence of these properties of <p ( x, y ) and \¡/ ( x, y ), it is clear that

x' — x and y' — y are both single-valued and continuous in R.

The precise meaning of the theorem is that if any determination of <p (x, y)

is made for which

x' > x along Ca   and   x' < x along d,

(the conditions on T make possible such a choice) then we shall have at least

two points ( x, y ) of P for which

x' = x,     y' = y-

2. On the Method of Proof. As Poincaré remarks (loc. cit., p. 377), the

existence of one invariant point implies immediately the existence of a second

invariant point. Hence if the theorem is false we may assume that there is no

point invariant for T.   In this case we shall have

(1) (x'-x)2+(y'-y)2>d2>0

for all points of P since x' — x and y' — y are single-valued, continuous, and

not simultaneously zero, over the ring P. We shall establish the theorem

by proving that the hypothesis (1) admits a reductio ad absurdum.

3. The Auxiliary Transformation. If 0 < t < 62, the one-to-one continuous

transformation T, given by

x' = x,       y' = y — e

takes the circles Ca and C& into the concentric circles C'a : y = a2 — e and

G'b : y = 62 — e respectively, so that C'a is within Ca at a distance a — Va2 — t

from Ca, and C'h is similarly within C¡, at a distance 6 — V762 — e from Cb.

This transformation effects a shrinking of the plane toward the origin which

leaves every point on its radius vector and which preserves areas, since dx

and dy are unaltered by the transformation and the integral of areas is

r drdd = \ I   I dx dy.
//
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Now, as long as e < d, the auxiliary transformation TT,, formed by fol-

lowing T by T., abo has no invariant point. For if we take x and y as the

rectangular coordinates of a point in the strip S:

— » < x < + »,      6* ̂  y <? a*,

corresponding to the ring R, we see that the point (x,y) is displaced at least

d units in S by T and then is further displaced a distance e by T, in the direc-

tion of the negative y-axis, so that if e < d, the point cannot come back to its

initial position.   We write this compound transformation TT, in the form

*' = <p(x, y),      y' = 4>(x,y)- t.

Let us choose the positive quantity e once for all and so small that

(2) «<&*,       €<d,       e<a*-6i.

Consider now the multiple-valued function

(3) a(x, y) = arc tan^-J,

or, more accurately, those branches of this function which give the angle that

the vector drawn from the point (x, y) to the point (a;', y') in the strip S

makes with the positive direction of the a>axis (the other branches corre-

sponding to the negative of this vector). In virtue of (1), this function is

continuous at every point of S and accordingly falls into branches single-valued

and continuous throughout S.

Moreover any such branch reduces to a fixed even and odd multiple of

x along Ca and Cb respectively, since along Ca we have x' > x, y' = y and

along Cb, x' < x, y' = y.

The functions y' — y and x' — x have been seen to be periodic in x of period

2ir, and so any such branch of <a (x, y) differs at {x + 2ir, y) and (x, y)

by a multiple of 2ir which may reduce to zero. Since the branches are con-

tinuous, this multiple is one and the same throughout S. But along Ca and

Cb these branches have a constant value, as we have noted. Hence the mul-

tiple will in fact reduce to zero. Thus these branches of a (x, y ) are periodic

in x of period 2ir, i. e., are single-valued in JÎ.

Likewise it is clear that the multiple-valued function

(4) û(x, y) = arc tan ==7^,

which gives the angle that the vector drawn from (x, y) to (x', y') makes

with the positive direction of the «-axis, falls into single-valued and continous

branches.   Moreover the functions y' — y = y' — y— e and x'-   c=x'—x are
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periodic in x of period 2ir:, also each of the branches of « (*, y) is periodic in

x along Ca and along C&. We conclude thatthe branches of w ( x, y ) as

well as of to (a:, y) are periodic in x of period 2ir, i. e., are single-valued in P.

The branches of u ( x, y ) and w ( x, y) may be associated in pairs so that

the maximum numerical difference of any pair for every (a;, y) is regulated

in accordance with the formula

(5) | <*{x, y) - w(x, y) \ < ^.

This is obvious geometrically, for the point ( x', y' ) is at least d units distant

from the point ( x, y) in S, and ( x', y')is distant e < d units from ( x', y' )

so that the angle subtended at ( x, y ) by these last-named points can never

become equal to \w. Thus if we associate the branches at a single point of S

in accordance with (5), this inequality must continue to be true as the co-

ordinates of the point vary continuously in S.

4. Construction of a Curve Invariant for the Auxiliary Transformation.

The transformation 7/7/, of P takes Ca to the circle C'a of radius l^a2 — e,

between Ca and C&, since we chose e < a2 — 62. The repetition of TT, takes

C'a into Cá , a simple closed curve. Now TT, is a one-to-one and continuous

transformation of the ring P into the ring R', limited by C'a, C'h and obtained

by letting R shrink under the transformation T,. Since C'a lies within P and

encloses Cb, its image Cá must lie within R' (and accordingly within C'a ) and

enclose C'b. Furthermore the transformation TT, takes the ring formed by

C0 Ca in P into a second ring C'a Cá in R', which abuts on the inner boundary C'a

of the first ring. If Cá lies wholly in P it will enclose C¡, as well as C'b,

and the image C„" of C'á by TT, will be a simple curve within Cá and enclosing

C\. Thus Cá Cá' will form the boundary of a third ring abutting on the

inner boundary of the second ring C'a Cá. This process may be continued

to form simple curves C'a, C'á, • • • lying one within the other, and correspond-

ing rings Ca C'a, C'a Cá, • • •, so long as the curves continue to lie wholly in

P and not in part or wholly within Cb •

The area of the ring Ca C'a is we and will, since the transformations T and T,

each preserve areas, be the same as that of its image rings C'aC'á, Cá Cá',

This series of rings can only terminate when a curve Cà' is reached ( n 5: 2 )

part, at least, of which lies within the circle Cb. But for every I, the area in-

cluded between Ca and CJ) is irh, which if I is sufficiently large exceeds the

area of P. It follows that such a curve CS0 exists. Hence we can find a

particular point P of Ca whose nth image lies inside of the circle Cb.

Now let us turn to the strip S and to one of the representations of P on the

upper side C„ of the strip. Here C'a is represented by a straight line at distance

e below Ca, and Cá , Cá'', • • - are each represented by a simple open curve

Trans. Am. Math. Soe. 9

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



18 G. D. birkhoff: [January

congruent by sections 2kir ^a:^2(Ä;-r-l)7r and extending indefinitely to

right and left. The rings Ca C'a, C'aCá, • • • clearly are represented by the

successive strata between successive curves of this set in S. Let P' be the

first image of P and join PP' by a straight line which will lie entirely within

the strip CaC'a. Let the arc P' P" be the image of PF under TT., and let

P" P'" be the image of P' P" under the same transformation, and so on. In

this way we construct successively PP' ,P'P", • • •, p("_1> P<"> lying respec-

tively in the strata CaC'a,C'aCá, • ••, (%-"&? in S, the end point P(B> of

the last of these arcs falling below the lower side Cb oí S.

Let Q be the first intersection of this succession of arcs with the lower side

Cb of the strip (see figure). It is obvious that the curve PQ formed by this

succession of arcs is a simple curve, for PP' ,P'P", • • • are successive simple

arcs which lie in the successive strata CaC'a, C'aC"a , ••• in S. Furthermore

PQ lies wholly between Ca and Cb.

The image P' Q' of PQ under the transformation TT, is made up of P' Q

and an extended simple arc QQ', the image of the arc <£""x Q where Q-1 is

the point that goes into Q by TT,. The arc QQ^bemg the image of points

of R by TT, lies wholly below the straight line C'a; the end-point Q' of this

arc lies of course C'h. Furthermore QQ' has no point but Q in common with

PQ. For if such a point exists it must lie on P' Q, and by performing the

transformation inverse to TT, we see that Q~1Q has a point other than Q-1

in common with PQ-1, which is not possible since PQ has no multiple points.

Thus PQ' forms a simple curve.

The transformation TT, takes the arc PQ of PQ' into the arc P' Q' of PQ',

advancing each point of PQ along PQ'. In this sense the curve PQ is in-

variant under the transformation.

The properties of T and T, ensure that P' has an x greater than that of P,

and that Q' has an x less than that of Q, as indicated in the figure.

5. The Rotation of the Auxiliary Point-Image Vector on the Invariant

Curve. If a point B moves along PQ' from P to Q, it is clear that its image B'

by TT, moves from P' to Q' along the same curve, never coinciding with B.

We shall now establish the fact (intuitively almost self-evident) that the
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corresponding rotation of the vector PP' thus obtained is — ir plus the sum

of the two acute angles which the straight lines PP' and QQ' make with the

z-axis.

At the outset it is obvious that the rotation can differ from this value only

by a multiple of 2tt. That the rotation has precisely the value stated

depends entirely on simple considerations of analysis situs. The fact on which

this conclusion rests is that a continuous deformation of the curve PP' QQ'

through a series of simple curves containing P, P', Q, Q' brings the curve to

the broken line position PP' QQ' (see figure).

Let t be any monotonie parameter for the curve PQ taking on the increasing

values t0, t'o, h, t[, at P, P', Q, Q' respectively. Let r ( t ) be the value of

this parameter for B' where t is its value for the corresponding point P. Clearly

t ( t ) is a continuous increasing function of t ( t0 < t < t\ ) which has the

property t ( t ) > t. Consider now any varied simple curve through the same

four points P, P', Q, Q' on which a monotonie parameter t is so chosen that as

before t0, t'o,t\, t[ correspond to P, P', Q, Q' respectively.* If the distance

between any point of the varied curve and the point of PQ with the same

parameter value is uniformly small, the corresponding vector PP' along the

varied curve will undergo precisely the same total rotation as along PQ,

since the initial and final positions are the same in either case and the

angular differences of the vectors in all intermediate positions are uniformly

small also.

As a consequence of this reasoning it follows that we may deform the curve

PP' QQ' continuously through any series of simple curves containing the same

four points P, P', Q, Q' provided that for the varied curves the parameter

is properly chosen, and the total rotation of BB' will not thereby be altered.

The curve PQ lies wholly in S, so that the straight line QQ', being out-

side of S, does not intersect the curve PQ. It is therefore apparent that

the arc QQ' may be continuously deformed to this straight line position QQ'

without taking the curve QQ' outside of the strip formed by C'a and C'b; for the

continuum formed by this strip is simply-connected after a cut in it by the

curve P'Q is made, and hence any simple curve joining the points Q and Q'

of this continuum, and lying in it, can be continuously deformed into any

other such simple curve through a series of simple arcs not having any

points but Q and Q' in common with the boundary of the cut strip.

Next, the arc P' Q may be continously deformed, through a series of simple

arcs joining P' to Q in the strip C'a Cb in which P' Q wholly lies, into the

straight line PQ, inasmuch as the straight lines QQ' and PP' have no points

within this strip.

* I include in the term " varied simple curve " any simple curves with the same geometric

locus but with a different parameter.
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Hence the rotation of BB' during its first series of positions is precisely the

same as it is along the broken line formed by the three straight segments

PP', P' Q, QQ'. The rotation along the broken line from the initial to the

final position is clearly — ir plus the sum of the acute angles which the vectors

PP' and QQ' make with the «-axis.   Thus our statement is proved.

In the first series of positions, B' is obtained from B by the transformation

TT,. If the coordinates of B are ( x, y ), those of B' are accordingly ( x', y' ),

and the rotation of BB' is measured by the change in the function, w ( x, y ) as

(x,y) moves from P to Q along the invariant curve PQ.

Let us fix upon that continuous branch w\ (x, y) of this function which is

measured at the point P by the negative of the acute angle which the vector

PP' makes with the z-axis. At the point Q this determination will have the

value — t plus the acute angle which the vector QQ' makes with the a;-axis.

6. The Rotation of the Point-Image Vector for T. Now fix upon that

continuous branch wi (x, y) of the function w (x, y) which, along the upper

side Ca of S, takes on the value zero.

These two functions wi ( x, y ) and «i ( x, y ) differ by less than %ir at the point

P and hence are branches of » ( x, y ) and w ( x, y ) associated by the inequality

(5), which holds throughout S. Moreover the terminal value of the function

«i (x, y) has been shown to differ from — w by less than \w at Q, so that

coi ( x, y ) differs from — ir by less than it at Q. Any branch of the function

to ( x, y) however has been seen to be precisely equal to a fixed odd multiple

of ir along Cb • Hence this function wi ( x, y ) must have the value — t at

Q and also at all points of Cb •

The variation of coi (x, y) is therefore — ir when the point (x, y) moves in

any manner whatever from a point of Ca to a point of Cb. In other words

if we let the point B move in any manner from Ca to Cbin S, and let B' denote

the image of B by the transformation T, the total rotation in the vector BB' will

be precisely — it .

7. Completion of the Proof. Consider now the transformation T-1 inverse

to T, which is in every respect similar to T except that points on C„ and Cb,

and hence on the two sides of the strip S, are moved in the reverse direction.

By symmetry, the vector B'B which joins B' to its image B under T~l must

now rotate through an angle + irasB and B' move from Ca to Cb •

Here the vector B'B is of sense opposite to that of BB'. But the actual

rotation of the vectors BB' and B'B is of course one and the same quantity, so

that a contradiction has been reached. Hence the theorem is completely
proved.

8. Generalizations of the Theorem. In phrasing his geometric theorem Poin-

caré makes the hypothesis that we have some integral invariant JjP( x,y)dxdy

(P (x, y) > 0), not necessarily the invariant of areas.   However, we can,
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by a suitable change of coordinates from (x, y) to (£,17), change the

integral invariant to the simpler area invariant.

Let the lines 17 = const, be the circles concentric with Ca and Cb, and

let the number 77 (y) be so chosen for each circle that as a point moves from

Cb to C0 the double integral taken over the ring between Cb and the concentric

circle through the moving point is equal to 77:

1^ = £\x P{x' y)dx\dy-

This function 77 (y) is clearly eontinuous and increasing and has a positive

continuous derivative, namely

dy (y)
dy

=  I     P (z, y)dx.
Jo

Speaking somewhat inexactly, the 77-curves are all so placed as to measure

off equal increments of J j P ( x, y ) dx dy for equal increments of 77. Now

(speaking in the same inexact sense) choose the ¿-curves so as to measure off

equal increments of the same double integral between these successive 77-curves

and the line x = 0.

The possibility of making such a choice of curves £ = const, may be seen

as follows: Let x = f (y) be any curve lying in P, joining Ca to Cb, and such

that the part of the area between the initial line x = 0, this curve, the circle

Cb and the circle y = const, is constantly proportional to 77 ( y ) :

jTjjT p(a;)î,)da;Jdy = A,(2/)i

In view of the above mentioned properties of 77 ( y ), this equation is equivalent

***»,_ ..w__ kdv(y)Jew»
P(x, y)dx =

0 2w     dy

For a given k, the quantity/ (y) is clearly a single-valued continuous function

of y since P (x, y) and drj (y)j dy are positive and continuous. Moreover

an increase in k continuously increases f (y). Thus, we get a set of non-

intersecting curves x = / (y) which, like the circles 77 = const., fill up the

ring P. It is necessary to notice that x = 0 corresponds to k = 0, and that

x = 2tt is the curve for k = 2ir by definition of 77 (y) We take k as deter-

mined by the above method to be the coordinate £ of any point on the curve

Thus we have coordinates (£, 77) for which the integral invariant is the

invariant/ f dl-dn. Taking (£, 77) as the modified polar coordinates of a point

in a new plane, we find that, expressed in these coordinates, T has all the
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properties specified for T in the theorem. Thus we infer that there are at

least two invariant points as before.

A further generalization is that the curves Ca and Cb may be allowed to be

any simply closed curves, one within the other, bounding a ring R; we may

again state a similar theorem, for we can make a preliminary transformation,

for instance a conformai one, to take these curves into concentric circles, when

of course the integral invariant merely changes form. Here it may be necessary

to consider with care the nature of the integral invariant near the boundaries

after the transformation of coordinates.

Finally we may permit the function P ( x, y ) to vanish at some or all points

of the curves Ca and Cb. Under certain restrictions it is certain that in this

limiting case there will be invariant points also.

9. Poincaré's Method. It is interesting to notice that Poincaré uses only

a single property consequent on the existence of an invariant integral, namely

that no continuum on R can be transformed into part of itself by the transfor-

mation T (loc. cit.. p. 377). It seems improbable that this condition is equiva-

lent to the condition that there exists an invariant integral. The existence of

such an invariant integral is a fact which enters more intimately into the proof

which I have given above. I do not know whether the modification of

Poincaré's theorem which results when the condition that an integral invari-

ant exists is replaced by this weaker condition is true.

Harvard University,

October 20, 1912
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