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1. Polynomials in the coefficients of a form/(ari, • • •, ar„) which have the

invariantive property with respect to all linear homogeneous transformations

on ari, • • •, ar„ with integral coefficients taken modulo p, where p is a prime,

are called formal invariants modulo p of /if the coefficients of/are independent

variables, but are called modular invariants if the coefficients of / are integers

taken modulo p. The concept of formal invariants modulo p was introduced

by Hurwitz;f but the only known results concerning them relate to the binary

quadratic and cubic forms. Î On the contrary, a simple and effective theory

of modular invariants has been given by the writer. A new method of de-

riving modular invariants from seminvariants is given in § 8. But the main

purpose of this paper is to present a simple general method of constructing

formal invariants. The method is applicable also to formal seminvariants

and, more generally, to the invariants of any linear congruence group (§ 7).

Moreover, the new point of view forms an adequate basis for a general theory

of formal invariants.

Construction of Formal Invariants

2. The method of construction will first be illustrated by the simple example

of the binary quadratic form

Q = ax2 + bxy + cy2

for the case of modulus 2.    The only real points (i. e., with integral coordinates)

modulo 2 are

Pi=(l,0),       P.=(0,1),       P, -(1,1).

The corresponding values of Q are

a,       c,       s = a + b + c.

By the interchange of x and y in Q, a and c are interchanged, also Pi and P2.

* Presented to the Society at Providence, September 7, 1914.

t Archiv der Mathematik und Physik, ser. 3, vol. 5 (1903), p. 25.
% Dickson, On Invariants and the Theory of Numbers, Madison Colloquium Lectures, Ameri-

can Mathematical Society, pp. 40-54.
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By the transformation x' = x + y, y' = y, Q is replaced modulo 2 by a form

with the same a and b, but with c replaced by s; then c and s are interchanged,

as well as P2 and P3. Since any binary linear transformation with integral

coefficients modulo 2 is generated by the preceding two, it follows that any

such transformation gives rise to a permutation of a, c, s amongst themselves,

and the same permutation of Pi, P2, P3. Hence any symmetric function

of a, c, s is a formal invariant modulo 2 of Q.

The elementary symmetric functions are, modulo 2,

b,       q = a2 + ac + c2 + (a + c)b,       A = ac(a 4- b 4- c).

They form* a fundamental system of rational integral formal invariants

modulo 2 of Q.

3. Consider the system of forms Q and

Z = r/x + Çy.

The values of I at the points Pi, P2, P3 are y, £, y + £, respectively. The

latter undergo the same permutation as the P 's when Z is transformed linearly

{§ 2).    Hence, if 0 is any polynomial in two arguments,

<l>ia, v)f       <f>i°, £).        0(»> i)4i)

are permuted amongst themselves when Q and Z are transformed linearly

modulo 2. Hence any symmetric function of these three 0 's is a formal

invariant modulo 2 of Q and I.

Taking 0 ( a, y ) to be y, ay, and ay2, in turn, and employing the elementary

symmetric functions in each case, we get the following formal invariants of

Q and Z:

X =£2 +£r, + y2,        7T =£r,(£ +,),        j =(a +&)£ 4-(b 4-c)y,

t = oc£r/ 4-*(ai; +c£)(£ 4-n),        n = (a +&)£2 + (b +c)y2,

v =ac?y2 +s(ay2 4- c?) (£* 4- rf),

and Air, An-2.    From 0 = ay4, we get

Í7 = (a +6)£4 -f-(6 4-c)ij4 = Aw +;V.

Also Z and v can be expressed in terms of simpler invariants:

t = q\ +j2 + bu,       v = q\2 4-u2 + bU.

Whether or not the reduced set b, q, k, X, w, j, u form a fundamental system

of formal invariants modulo 2 of Q and Z has not been investigated.

But if we pass to modular invariants by regarding a, b, c, £, y to be integers

* Madison Colloquium Lectures, p. 42.
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taken modulo 2, we have k = bq,if = 0,u=j, and the reduced set b, q,

X, j form* a fundamental system of modular invariants of Q and I.

4. Passing to the general case, let

fi(xi, ■■■ ,x„),    •••,   ft(xi, •■■ ,xn)

be forms of total degrees di, • • •, dt in the independent variables ari, • • • , arn.

Let the modulus be p and let o¿ be the greatest common divisor of p — 1

and di.   Set a,- = (p — 1 )/o¿.    Then for any integer p not divisible by p,

p** = (pr-iy^i = j        (modn),

by Fermat's theorem.    Hence, since fi is of degree d,-,

[/¿(pari, ■•• ,pxn)]9i == [/i(ari, •••,ar„)]îi       (modp).

Using homogeneous coordinates, let ( ari, • • • , ar„ ) be the same point as

( pari, • • •, pxn ), when p is any integer not divisible by p. The preceding

formula shows that /?' has a definite value at each real point (i. e., one with

integral coordinates taken modulo p). The values at the various real points

are merely permuted amongst themselves by any linear homogeneous trans-

formation on ari, • • •, ar„ with integral coefficients taken modulo p. In fact,

the real points are permuted by such a transformation.    We thus have the

Theorem. We obtain a formal invariant modulo p of the system of forms

fi(xi, • • ■, Xn ), i = 1, • • • ,t, if we take any symmetric function with integral

coefficients of the quantities

<t>(fï, •••,/?')

given by substituting in turn for the x 's the coordinates of the

P = 1 + p + p2 + • • • + p»-1

real points. Here d> is any polynomial in its t arguments with integral coef-

ficients, and qi is the quotient of p — 1 by the greatest common divisor of p — 1

and the degree of fi.

Each g, is unity if p = 2 (cf. §§ 2, 3) ; also if p = 3 and each /¿ is of even

degree.    For example, if t = 1 and

/ = /i = ax2 + 2bxy + cy2,

and p = 3, the values of/ at the P = 4 real points (1,0), (0, 1), (1, 1),

(—1,1) are respectively

a,       c,       a — b+c,       a+b+c.

* Madison Colloquium Lectures, p. 57.
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The elementary symmetric functions reduce modulo 2 to zero and

ac — b2,       (a 4- c) (a 4- b — c) (a — b — c),

ac(a + b + c) (a — b 4- c),

respectively. The first is the discriminant D of /. The last two are y2 = V

and ay0 = J in the notations of the Madison Colloquium Lectures, pages 43-45.

A further evident invariant is the product of all non-proportional linear

functions of a, b, c with integral coefficients taken modulo 3. Hence its

quotient
B =b(b +a)(b -a)(c - a) (c - b) (c 4-b)

by TJ is a formal invariant. In the place just cited it was proved that D, T,

J, B form a fundamental system of formal invariants modulo 3 of /.

If p =5, the sum of the products by twos of the squares of the values

of / at the six real points is

3(ac-62)2       (mod 5).

Hence as before we are led to the algebraic discriminant, as well as to invari-

ants peculiar to the number theory case.

5. The present method is particularly useful for forms in three or more

variables, since the construction of formal or modular invariants by earlier

methods is excessively laborious and dependent largely upon special devices.

As an illustration, consider

F ( x ) = ai x2 x3 + a2 Xi x3 + a3 xi x2 + 6i x2 + b2 x\ + b3 xjj

for the modulus 2.    Its values Vj for the seven real points are

bi,        b2,        b3,       ai + b2 4- b3,       a2 + bx + b3,       a3 + Z»i + b2,

3

E(a» +bi).
i=i

Since their sum is zero modulo 2, we readily get

E «i «2 = E ai bi 4- E ai 4- ai a2 -\-axa3 + a2a3 = a,

Yl v¡ v2 = X) »i ̂ 2 v3 = Y. rai b\ 4- X) aî bi 4- X ai fl2 >

53 »i »2 v3 V4 = a^i' + X)ai&i(fli 4- bi) (b2 + b3) + X ai a2 &i bt

4- ( ai a2 a3 4- ai a2 b3 4- ai a3 b2 + o2 a3 bi ) X ai

+ E&Í 4-E&Ï&Ï +bib2b3Ybi.

The second is congruent to the sum of the formal invariants

A = ai a2 a3 4- X a? h,       Ax = ai a2 a3 4- E ffli b\ + X fli a*,
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which, with a modular invariant J, are given on pages 69 and 74 of the Madi-

son Colloquium Lectures.    Note that A is the discriminant of F.

If we take each a» and 6,- to be an integer modulo 2, we find that our third

invariant reduces to the modular invariant J + a + 1. Set A = a + A + 1.

It is proved on page 76 of the sa»me book that A, A, and J form a fundamental

system of modular invariants of F.

As shown indirectly in § 6, we cannot construct a fundamental system of

modular invariants of F by use of the real points only, but succeed if we use

also points whose coordinates are Galois imaginaries.

Criteria for the Equivalence of Modular Forms

6. An important application of modular invariants is that to the question

of the equivalence of two modular forms under linear transformation with

integral coefficients taken modulo p. We can treat this question by means

of the idea underlying the foregoing construction of invariants, without

actually constructing them. For example, consider the ternary quadratic

form modulo 2. As well known, such a form is equivalent to one and but

one of the forms

Xix2 +xl [4],       ariar2+arî +ar| [6],       ariar2[2],       arî[4],       0[0].

After each form we have given the number of real points for which it is con-

gruent to unity modulo 2. Hence no two of these forms are equivalent, with

a possible exception in the case of the first and fourth. To show by the same

method that the latter are not equivalent, we employ the points each of

whose coordinates are 0, 1, j or j +1, where j is the Galois imaginary for

which

(1) f+j + 1-0       (mod 2).

Now x\ vanishes for just five such points, viz., (0,0, 1) and (0,1, a),

where a = 0, 1, j or j + 1. But xi x2 + ar* vanishes for just nine such points,

viz., (0,6,0), (6,0,0), (1, 6, b2), where 6 = 1, j, or j + 1. Hence

the two forms are not equivalent.

The second of our five forms vanishes for just nine such points, viz.,

(0,0,1), (l,j, a), (1, j + 1, a). Finally, Xi x2 vanishes only for nine

such points. Hence the five forms vanish for respectively 6, 8, 4, 2, 14

imaginary points whose coordinates depend upon j. Thus the classes of

conies modulo 2 are completely characterized by the number of their imaginary

points whose coordinates are functions of a root of (1).

We readily find the characteristic invariant 7* for the kth class, i. e., an

invariant with the value unity for any form in the Ärth class and the value

zero for the remaining forms.    For the class represented by our second form,
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72 is the sum of the products six at a time of the values of F for the seven

real points. For the class represented by xi x2, I3 is the sum of the products

by twos of those values. We get 7i + 74 by using the products by fours; to

get 7i itself, we employ imaginary points as above.    Finally,

1 + 7i -f 72 + I3 + h = h.

Construction of Formal Seminvariants

7. The preceding method is readily extended to the general case of the

formal invariants of any system of forms under any group of linear trans-

formations modulo p.

By way of illustration, consider the form Q of § 2 and the group composed

of the identity and

T: x' = x+y,       y' m y       (mod 2).

It is therefore the question of the formal seminvariants of Q. Since T leaves

unaltered the point Pi of § 2 and interchanges the points P2 and P3, a and

any symmetric function of c and s are formal seminvariants. The elementary

symmetric functions are a + b and cs. These with a form in fact a funda-

mental system of formal seminvariants modulo 2 of Q (Madison Colloquium,

page 42).

Similarly, the system of forms Q and I (§ 3) have the formal seminvariants

modulo 2

a,       y,       0(c, £) +0(5, y + £),        0 (c, £) • 0(s, y + £),

where 0 is any polynomial in its two arguments.

Derivation of Modular Invariants from Seminvariants

8. The method will be illustrated for the binary quadratic form Q (§ 2)

and the modulus 2. The coefficients are integers taken modulo 2. To make

the treatment self-contained, we shall first derive a fundamental system of

modular seminvariants.    The transformation

(x+ty,y):       x' = x + ty,       y' = y

replaces Q by ax2 + bxy 4- c' y2, where c' = c + (a + b)t. Hence a and b

are seminvariants of Q. If a -\- b = 1, we take t = c and have c' =. 0. If

a + b = 0, then c' = c and the value of c is given by

J =(1 4-a +b)c.

Since J has the same value for equivalent forms Q, it is a seminvariant. The

first column of the following table gives a representative of each class ci, • • • , ce

of forms Q.
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Representative of the
Class

Qi = x* + xy + y2
Qi = x1 + xy

Q* = yi

Qi=x*
Oe = xy_

Determined by
Seminvariants

a = 6 = 1, J = \
o = & = l, / = o
a = b = 0, J = 1
o = 6 = 0, ./ = 0
a = 1, 6=0
a = 0,    6 = 1

Characteristic
Seminvariant

t = 06/ = a6c
ab ( J + 1 ) = ir + a&

( a + 1 ) ( 6 + 1 ) J = x + J
(a + l)(6 + l)(/ + l) =/

a(6 + l)
_(a+ 1)6_

By definition, the characteristic seminvariant of a class c¿ is one having the

value unity for each form of the class c,- and the value zero for each form in

the remaining classes. In the present case, the characteristic seminvariant

of class Ci was found by inspection from the values of the seminvariants in

the second column which specify that class,—it is a product in which any

factor is one of those seminvariants or the sum of it and unity, according as

the seminvariant is 1 or 0 for the class.

To derive the invariants of Q from its characteristic seminvariants, we

separate the forms Q into classes C¿ of equivalent forms under the group G of

all binary linear transformations modulo 2. Now G is generated by ( x + y, y)

and (y, x). Since classes ci, • • •, c4 are each composed of a single form,

and since the forms Qi and Q4 are unaltered by ( y, x ), while Q2 is changed

into a form of c6, and Q3 into Q5, we see that the classes under G are

Ci =ci,       C2 = c2 + c6,       Cz = c3 + Ci,       d = c4.

Hence, for i = 1 or 4, the characteristic invariant 7¿ for class d is the

characteristic seminvariant for c¡. But 72 is the sum of the characteristic

seminvariants for c2 and c6, and 73 the sum of those for c3 and c¡,. Thus the

characteristic invariants are

7i = tt,       72=ir+6,       I3=Tf+J+ab+a=I+b+l,       h=I.

In § 2 it was shown that 6, q, k form a fundamental system of formal

invariants modulo 2 of Q. Taking the coefficients to be integers modulo 2,

we obtain the modular invariants 6, q = ô, k = bô, where

6=7i+72,       5 = ac+(6 + 1) (a+c) = 7i+73.

Conversely, from 6 and 5 we get

ir=6S,       7 =(6 + 1)(S +1).

This new method of deriving all modular invariants from the seminvariants

is more direct and simpler than the method employed in the Madison Col-

loquium, pages 28-32.
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