curve of S coincide, those of Σ also are coincident. Moreover if the former constitute a plane curve, the tangent planes to Σ along its flecnodal curve, envelope a cone. But we have seen that this last is both necessary and sufficient to make the flecnodal curve of Σ a plane curve, for the envelope of the tangent planes along a branch of the flecnodal curve is the secondary developable. We conclude therefore that if the two branches of the flecnodal curve of a ruled surface coincide in a plane curve, the same is true of the dual surface. Moreover both surfaces have the dual property.

The University of Chicago,
March, 1915.

ERRATA, VOLUME 15

Page 106, line 2 from bottom, change last letter t in line to t_1; last line, insert at end of sentence “and (a).”