changed under both transformations T_θ and S_α. The interpretation of this fact possesses geometric interest. When an element is turned, the common conjugate direction moves in a plane whose normal has the direction established by the ratios $G_x : G_y : G_z$. When an element is transformed by S_α, the line of centers of the second osculating circles has this direction.

One final detail may be mentioned. When an element is slid, the characteristic direction turns about a fixed point in the plane of the element. That is, the tangents to the characteristics form a pencil. Denote the vertex of this pencil by V. Direct the attention upon an element at the point P. When this element is turned, the line of centers of the first osculating circles will pierce the plane of the element in a point W. It may be shown without difficulty that P is the mid-point of V and W.

Sheffield Scientific School
May, 1917

ERRATA, VOLUME 18

Page 79, line 25, the expression

$$\sum_{i=1}^{n} c_{ik} y_{0k}(x)$$

should be replaced by

$$\sum_{k=1}^{n} y_{0ik}(x) c_{kj}.$$