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I. Preliminary

1. Introduction. The majority of arithmetical functions specify either

additive or multiplicative properties of numbers, ordinary or algebraic. For

additive functions the appropriate analysis is the theory of integral power

series; for multiplicative, the theory of Dirichlet series and Euler products.

Of the last the simplest example is II(1—2?-s), |s| > 1, extending to all

primes p > 1. A relation between arithmetical functions which can be so

interpreted that it remains true when the arguments of all the functions are

replaced by suitably defined elements other than numbers is called qualitative.

Such relations are numerous. A simple example is: the totient of an integer

is equal to the sum of the totients of all the divisors of the integer. A non-

qualitative relation is called quantitative. In the derivation of either kind of

relation infinite processes may or may not be used. If the former, then in the

case of quantitative relations the convergence of the processes is essential,

while in the case of qualitative relations it is irrelevant. Milder instances of

the last assertion are sometimes said to be self-evidently true, in particular

this: the results obtained by equating coefficients after formal manipulations

of series are obviously valid, and it is unnecessary to examine the convergence

of the series. Whether obvious or not the general assertion can be proved

and is established incidentally in the course of this discussion.

In the investigation of qualitative relations an algebra E (Euler) emerges

as the appropriate algorithm. The elements upon which E is ultimately based

are abstract, that is, any marks subject to the formal laws of common algebra.

This algebra Tí is in a sense the resultant of two much simpler algebras,

C (Cauchy) and D (Dirichlet). C is the algebra of power series in one variable,

and is equivalent to the Grassmann-Gibbs indeterminate-product algebra

generated by a modulus and a single unit; D is the algebra of Dirichlet series

and is the direct product of an infinite number of algebras C. C and D are

necessary preliminaries for E. By means of E the qualitative properties above

described receive a wide generalization. Numerous applications of E have

* Presented to the Society, San Francisco Section, April 7,1923.

135



136 E. T. BELL [January

been made, both to unify existing treatments of arithmetical functions and to

obtain new results in profusion. For simplicity, and to preserve the con-

tinuity of the discussion, we omit illustrations and applications except where

necessary to make clearer the nature of the abstract theory. For easy

reference we put here some definitions upon which is based everything that

follows.
(1) If the sum, difference, product and quotient (the divisor not being any

one of certain elements, called excepted) of any two identical or distinct

elements of a set is an element of the set, the set is called a system.

A system thus differs from an abstract field only by the exclusion of division by each of

several elements instead of by one. It is assumed that each rational combination formed in

accordance with (1) has a unique interpretation, and that there is at least one set of inter-

pretations of all such combinations which is self-consistent.

(2) If with respect to the elements of a given system a rational operation

is unspecified beyond the condition that it obeys the formal laws of common

algebra, the operation is called formal, otherwise, special. A system is abstract

or special according as none or at least one of the four rational operations

is special.

For example, if the elements o, 6, • • • of the system S are the ideals of a realmR, the com-

binations a + b (not to be confused with (a + b), (a — b), the G. C. D. and L. 0. M. of a, b)

are formal, for the sum a + 6 and the difference a — & of two ideals are purely formal. That

no interpretations in either S oiR beyond the formal need be assigned a+b to obtain results

of importance in S, R is evident from established usage.

(3) The unit e with respect to formal multiplication has the properties

ef = f = fe,f any element of the system.

(4) Division by e, multiplication, addition and subtraction being as in (1),

the aggregate of elements derived by iterations of these operations from

a given set of elements is called an annulus, which is abstract or special

according as none or some of the above operations are special, and the set

is its base.
An annulus thus differs from a system by the omission of division except by the multipli-

cative unit. Theorems valid for an annulus have therefore a greater extension than their

analogues for a system. If the elements are algebraic numbers and the rational operations as

in arithmetic, the definition of annulus becomes that of Ring (German), anneau (French).

(5) If some or all of the elements of a system (or annulus) can be arranged

in a definite order by some rule, the arrangement is called a sequence. An

element may occur more than once in a sequence.

(6) A sequence whose first element is zero is called exceptional.

(7) The notation (a)n is used for the sequence a0, au a», • • •, a», • • • in

which the suffixes of the successive elements run 0,1, 2, ••• ,n,- .■, and the

notation {a}n for the sequence ai, at, — •, an, • • • in which the suffixes run
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1, 2, • • •, n, • ■ •. By an obvious change in the notation of the elements any

sequence may be written in either notation. It will be of assistance to ob-

serve that the (a)n notation is used exclusively with what are called C

processes, the {a}n with D.

(8) In C, D the excepted elements are the exceptional sequences. In other

words, division as defined presently for sequences in either algebra C, D is

possible when and only when the divisor is a sequence whose first term is

different from zero. This actually is a theorem rather than a definition, but

we state it here for emphasis and clearness. Its proof is immediately obvious

from the definitions of division in C, D.

(9) Two sequences (a)n, (b)n are equal, (a)„ = (b)n, when and only when

cu = bi (i = 0,1, 2, • • • ); and {a}„ = {b}„ when and only when a, = h

(¿=1,2,...).
From the definition it will appear later that we might have taken instead of sequences as

the elements from which to construct C, D, E, certain hypercomplex numbers.

It will not be necessary hereafter to emphasize that rational operations

indicated by the usual notations of common algebra are formal as in (2)

unless otherwise stated, for where they are special they are so indicated by

the appropriate symbolism. The last is necessary in order to prevent con-

fusion in reading formulas, for in all four distinct sets of meanings (including

the formal) are assigned to the operations.

In all that follows it is assumed that the a, b, c, • ■ • with any suffixes are

elements of some system. All proofs in the paper depend only upon the

foregoing definitions, of which (9) is the most frequently used. For certain

developments it is advantageous, however, to replace (9) by (9.2), which comes

from the following fundamental postulate (or definition):

(9.1) The series 2an = a0 + «t -\-\- an H-is uniquely determined

by the sequence ( a)n of its terms ; or, a series is uniquely determined by the

sequence of its terms.

We assert only that when the law of formation of the successive elements a,,, Oi, • • •, an, • • •

of the sequence is assigned, the terms, and in particular the general term, of the series are

uniquely known. The indicated sum Oo + a, + • —f- <*„ + ' • • is merely the symbol obtained

by writing the elements of the sequence in their given order with plus signs between them.

In particular, if the elements a0,au are numbers and addition is as in arithmetic it is imma-

terial under the definition (9.1) whether or not a "sum" of the series exists; if the elements

are not numbers, "sum" is meaningless, "sum" here being understood in its customary sense

in relation to series, viz., as one definite number which may consistently replace the series in

numerical calculations. This sufficiently emphasizes that everywhere in this paper "series"

has the meaning (9.1) and no other.

The symbolic equality (a)n ~2an is to be real: the series determined by

(a)n is 2an\ and we shall say that each of (a)n, 2^ is associated with

the other.

10
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(9.2) Two series2an, 2°n are defined to be equal, 2/a»=2X>> when

and only when their associates are equal, (a)n~2am (&)n~2X> («)»= (b)n-

Note that under this definition if the terms cB are numbers and addition is as in arithmetic,

and ifZ c'n is tue series obtained by rearrangement of terms from the absolutely convergent

seriesZcn> we d° no* nave Zcn=1Ze"'

(9.3) As usual in mathematical logic two relations are called formally equi-

valent if each implies the other.

The connections between the operations of the algebras C,D,E with operations upon series

will be pointed out incidentally in the development of each algebra. The consequences of

operations X (X — C, D, E) will be shown to be formally equivalent to the consequences of

certain other operations upon series. Hence if we establish the validity of the first con-

sequences, that of the second will follow, and as a convenience in manipulation we may when

desired replace the first set of operations by the second.

It will be well here to give some indication of the origin of the following ab-

stract theory which, although it has an interest as an example of an algebra

isomorphic (except for division by more than one "zero") to common algebra

yet widely different in content, is important chiefly for the uses to which it has

been put. There exists a great mass of special theorems concerning arith-

metical functions clustering about the unique factorization theorem. These

have been stated and proved individually by various methods, the proofs in

some cases, where they depend upon devices peculiar to the theory of numbers,

degenerating to a succession of divinations without any unifying principle. In

several instances it seems almost as if the results had first been found by

means of obvious infinite processes and then translated for esthetic reasons

into pure arithmetic. In working over this mass of resulte it was noticed that

it could be unified, made symmetrical by extension in several directions, and

finally reduced to an isomorph of common algebra by means of E. It will

perhaps seem that such simple processes as those of E can lead to nothing less

obvious than the relations from which we start. This is not the case. Even

so trivial an identity as a — aft/ft when developed in E gives at once

numerous valuable consequences, one of which is the totient theorem already

cited, upon choosing for a, ft the simplest rational functions of one or two

variables t, ?, such as 1 ±5, 1 ±?*, 1 + t%, 1 ±t*%*, etc. Many of these con-

sequences have formed the subjects of notes or elaborate papers, summarized

in volume 1, chapters V, X, XIX of Dickson's History of the Theory of Numbers.

When the appropriate elementary algebra is used, the arithmetical relation

often becomes as obvious as a = a ft/ft. One important application is outlined

in § 12 ; many others, in complete detail, will be found in the paper referred

to in § 11, footnote.

2. Algebra C. The C sum (a -\- h)n of (a)„ and (b)n is the sequence Of 4- h

(i = 0,1," •); the Cdifference (a — b)n is the sequence a<— &,• (i = 0,1, •••)
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and the C zero sequence (0)n is (a¿ — a¿), («)» being any sequence. Obviously

(a-{-b)n= (£> + «),., and if (a+ &),« = (c)n, (6 + ti)«= (e)„, then (c + d)«

= (a + e)n= (a+ 6 + d)«= ai+ &»+<ii (¿ = 0, 1, • • •). Hence C addition

of sequence is commutative and associative, and similarly for subtraction. We

shall denote the nth element an + bn + dn of ( a + b + d)n by n(« + 6 + d), and

so in all like cases. Thus the nth element of (a, 6)„next defined is n(a, b).

The C product (a, b)n of (a)n, (b)n is the sequence n(a, b) (n = 0, 1, • • •),

where n(a, b) = On b0 + an-ii»iH-h «i &»-i + «o&n.

Proceeding similarly with (a)n, (b)n, • • -, (k)n we obtain their C product

(a, b,---, 7c)n defined by n(a,b,---,k) =2aaup---kx, «-\-ß-\-H* = «,

0 <«, /8, •••,*< n. The unit (u)n with respect to C multiplication is the

sequence u0 = e (cf. § 1 (3)), u¡ — 0, j >• 0. Obviously (a + &, t)n = (a, c)n

+ (6, c)n, etc., and C multiplication is commutative, associative, and with

respect to C addition and subtraction of sequences, distributive.

THEOREM I. Any set of sequences, formed from (lie elements of a system, is

the base of a special annulus in which the rational operations are C addition,

subtraction and multiplication of sequences, and all the elements of the annulus

are sequences.

This is the C annulus to the given base. The number of elements (sequences) in the base

may be either finite or infinite.

To connect this with series let Í be a parameter which by definition has with respect to

a{, b,, ck, • • • all the formal properties of common algebra, so that t"at = a.f, etc. Beyond

this t"at is undefined. For all integral values > 0 of » write an = an t", /SB = ba <",-••, ym

= cMi", and put, according to (11),

(«).1~^°»<"'       (fl."^.1". (r)~2cJn

Then from Theorem I it follows that for a definite choice of the signs, (+«+£±- ••+*■)

~(±a„±6n±---±cB)i», ^(a•^'''••'c)í"~(a'^'••''')n~Sa..í";><26»<nx•••

x^cHt", where, as in all similar cases, the indicated operations upon the series are to be

performed formally and the result is then to be rearranged as a power series in t.

If (a)n is not an exceptional sequence (§ 1(6)), and (a, a\ = (u)„, («')»

is called the Creciprocal of (a)H, find we write (a')n = (ula)n. From the given

relation, 0(«, a') = e, »(«,«') = 0 (n >0), and hence a'nOo + On-i«i -\-

+ a'iOn-i + a'oOn = 0 (n > 0); whence, with a¿ao = « we obtain the explicit

form for n > 0,

ai   an   A» • ■ • fln-2  «t»-i   an

ai,   ax   flfg • • ■ a»-8   an--i  an-i

0      «o    «1 * ' " fl-n-4    a»-3    «n~2
On •e(—a0)~

0    0    0 • • • fl0      «i      «s

0    0    0 • • • 0       fl0      «i
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which with aó = e/a0 completely defines (a')n. It has been sufficiently

emphasized that the divisor (a)n in (u/a)n is never an exceptional sequence.

Evidently the Cproduct of (d, u/b)H and (b)n is (d)n- Hence if («)» = (d, ulb)n,

then (a, b)„ = (d)n; and conversely, since the C product of (a, b)n and (ulb)n

is (a)n, the equality (a, &),» = (d)n implies (a)n = (d, u'b)n. Continuing thus,

or directly from this result and Theorem I, we infer that, none of (a),(b),

■■• ,(c)being exceptional the relation(a:, b,■ • •, c, d, c,■ ■ ■ ,/)„ = (k, l,■ ■ ■,s)n

implies (d, e, ■ ■ •,/)« = (£,/,•••, s, n/a, ulb, •••, u/c)n, or as we shall write

it more suggestively (d, e, ■ ■ ■ ,f)„ =  —'-^-!—   •
\ a, 0, • • • , C In

THEOREM II.   The aggregate of all sequences formed from the elements of a

system constitutes a special system in which the four rational operations are C

addition, subtraction, multiplication and division, and the excepted elements are

the exceptional sequences.

The complicated determinant forms occurring in division are not required in practice ; their

only use is in demonstrating the existence of C reciprocals. The like applies to D. The series

equivalent of C division being evident it need not be written.

By (9) the equality of two sequences is formally equivalent to the identity

of their general terms, and Theorem II shows how identities of this kind may

be obtained on starting from any given set of sequences. From the fore-

going it is clear that the same identities would be reached if we operated

with the associated series instead of the sequences as summarized in the

following theorem. Hence (cf. the remarks after (9.3)) the formal use of the

series is validated.

THEOREM II'. If B(x, y, • • •, z) = 0 is a rational relation in any system,

and if, further, in algebra C the C relation B((a)n, (ft)n, • • •, (y)n) = 0 holds,

wliere (u)n~Zanln, (ft)n^Z°ntn, ■ • •, (y)n,^Zcnin> then the C relation is

equivalent to B((a)n, (b)n, • • •, (c)n) = 0, ivhich in turn is formally equivalent

to B(Zantn,Z°ntn, • • •, Zcntn) = 0 in the system and is obtained from

the last by equating to zero the coefficient of tn.

An alternative point of view may be noted in passing. Let sn denote the sequence whose
00

(»i+ l)th element is 1, and whose remaining terms are zeros. Then (a)n is y a. e., which
o

(as in hypercomplex numbers) may be written a. Then algebra C is the Grassmann-Gibbs

product algebra generated by a modulus (1) and a single unit e, ( e0 = 1, «„ = eB). This algebra

is equivalent to that of power series in one variable.

As they are frequently useful we consider briefly the meanings to be

assigned to irrational operations in C. Algebras D, E are similarly discussed

in this respect with a few obvious changes in notation and consequent modifi-

cations in the interpretations of results, so it will be unnecessary to repeat
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the argument for D, E. We are then to assign selfconsistent meanings to

irrational functions of the elements, which are sequences, in C such that these

are compatible with the rational functions.

If the a in (a, a, •■ -, a)H occurs precisely r times we write this C product

(ar)n and define it to be the rth power of («)„. Then if (b)n = (ar)n we call

(a)n the rth root of (&)» and write (a)n = (bVr)n- From this (bslr)n is defined

for r,s integers >0 by (6s/,')» = («*)»• The Creciprocal (u/a,u/a, •■■, ula)n

of (ar)„ is written (or^n. Hence from the foregoing (b~s,r)n is defined and

is equal to (a~s)n, the notation being as above. Hence, t being any rational

non-zero number, (a1) is defined. The explicit forms of the elements in this

sequence can be written easily, but as they are not required in applications

we omit them. Incidentally the explicit forms prove the existence of such

sequences. For fractional values of t they enter only as links in chains of

transformations. It is readily seen from the definitions that when t, s, • • • are

rational numbers, (al)n, (as)n, • • • are subject to the formal laws of common

algebra.

THEOREM H". Algebra C in its complete form is abstractly identical with

common algebra, and hence each identity or theorem in the latter has a unique

dual in terms of elements of C, and this dual is expressible ultimately as an

identity or theorem connecting the nth (general) elements of sequences related

to one another by the operations of C.

In practice we apply this as if the elements (a)„, (b)n, • ■ • were those of common algebra,

a, &,•••. Thus we may ignore the special uotations (a)n,(a,b)n, etc., and write simply

a,b, ab, alb, etc. In the results each a, b ■ ■ • is interpreted as the nth element of the sequence

which it represents, and similarly for aft, etc., viz. ab is not the formal product of the nth

elements of a, b, but is the nth element of the C product of a and b. As remarked, precisely

similar considerations apply to D, E, and this exposition with a few slight changes can be

fitted to them.
We shall reach our goal E through C via D. For JE, C is fundamental. The point of

departure for obtaining relations in E will be seen to be the identities obtained by applying

Theorems II, II'. Hence we next indicate the manner in which these may be fouud. We recall

first that in (9.1) any quantitive (numerical) significance of an infinite series was abandoned.

Hence we discard also the concept of an analytic function and all of its consequences. Never-

theless we shall assign a meaning to the representation of a function of an element by an

infinite series which is significant in all circumstances. In particular if the terms of the series

are numbers and the operations as in arithmetic, the function is represented by the series

whether or not it is summable by any method.

Let a, ß, • • •, y, x, X, ■ • •, a be any system of elements, and (a)„, (ß)„, •••,

(a)n sequences as usual. Note that « is not a member of (a)n, and similarly

for the rest. Let (A)n be a sequence of operators, q> any element such that

the results of operating with An (n = 0,1, • • • ) upon g> are each uniquely

significant, and let the result An<p of operating with An upon <¡p be <¡p„, or

symbolically An<p = <¡pB.   We assume that for m, n integers >0, Amtpn
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= Am(An<p) = <fm+n; so the elements (operators) of (A)n obey with respect to

suffixes the index laws of ordinary algebra, thus AmAn = Am+n = AnAm, etc.

We shall say that (y)„ is developed by (A)n from y, and write this (A)ny

= (<p)n. When there is no occasion to indicate the specific developer (A)H

we shall write y' for (A)n<f. If y = «/>, then by definition </>' = if/. For

simplicity we assume that A0 y = <p0 is different from zero. Developers are

classified according to their properties with respect to sums, differences,

products and quotients of elements.   The (A)n considered now is called, for

obvious reasons, a C developer. By definition we take (A)n(a -f- ft-|-\-y)

= (« -f ft4- • • • 4- y)' = «'4- ft'+ • • • 4-/, and this is equal to («)„4- (ft)*
-\-h (r)n, with a similar definition when some of the signs are negative;

(A)n(aft • ••/') = (aft ...Y)'=(a,ft, • ■ ■, y)n, giving the development for

a product of elements; and for the development of a quotient

laft...y\        ¡çcft^A'^ t«,ft,--,Y\
K   Jn\xX...<J]    ~\xX-..(s]        \x,).,...,ajñ

There can be no confusion if we simplify the writing by putting

<„,...,)w,.../.    (vfa)'-ífcf.
so that the multiplications indicated in the first, a'ft'- • • ;■', are purely symbolic,

and likewise for the multiplications a ft'.-.y, xX'-.-o1 and the division

a!ft'- - • y'/x'X'- ■ • & in the second.

THEOREM II"'. The rational relation B (a, ft, ■--, y) = 0 implies

B(a',ft',...,y') = 0.

This is an immediate consequence of the definitions and Theorems II, II". A rational relation

may in general be written in several distinct forms, say aß + ßy = â, or a + y ■=. ß'S. By

the theorem these imply a'ß'+ß'y' = ¿', a'+y' = i'lß', which are (aß)'+ (ßy)' = â', a'+y'

= (d/ß)'. The accented relation is of the kind in the theorem for algebra C, and it has been

obtained by development ( J)n from the unaccented relation between the elements a, ß, •■• ,y.

The extension to irrational relations follows as in Theorem H".

By the definition of (A)n combined with the specific properties of a C

developer with relation to sums, etc., it follows that Am (A„(aft)) must be

identical with Am+n(aft), with the like for sums, differences and quotients,

if the definition and specified properties are to be consistent. It therefore

remains to show that for at least one class of elements a, ft, • • •, y and one

developer (-d)n these conditions are satisfied. The following is an important

example.
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Let the a, ß, ■ • ■ ,y denote single valued functions of x such that all their

derivatives exist and are finite and single valued when x = 0. (Any number

other than 0 might be chosen, but the statement is simplest in this case.)

Let An be the operation of taking the nth derivative of a given function with

respect to x, replacing a; by 0 in the result, and finally multiplying this by

xnlnl Then so far as sums and differences are concerned it is obvious that

(A)n satisfies the conditions in question. The like follows at once for products

from Leibniz's theorem for the successive derivatives of a product. Hence

the conditions are satisfied also for a quotient.

We have (A)nu = (a)n; and if (a)n '^2ctn =2X", we call the series

2^n« the (A)n development of a. In the above special example the (A)n

development is the Maclaurin series. The (A)n development in every case is

unique and significant, and from the foregoing theorems such series can be

formally manipulated in any system.

3. Algebra D. By the remarks on notation in § 1 (7), it is unnecessary

to repeat the definition and properties of addition and subtraction for sequences

written in the {a}n notation. For uniformity with what follows these opera-

tions in this case are called D addition and subtraction. The D product of

the sequences {a}n,{b}n,-- -, {k}n is the sequence {a, b, ■ • -, k}n whose nth

element »{a, b, • ■ -, k} is defined by

n{a, b,---,k} =2aauß---kx,     ttß-..x — n,

l<a,ß,---,x <n,

the notation indicating that the summation extends to all possible sets of

positive integers a,ß,--.,x whose product is n, the number of integers in

each set being equal to the number of sequences whose product is taken.

Clearly {a,b,---,k}„ is invariant under all permutations of a,b,---,k.

Hence D multiplication is commutative. To see that it is also associative let

{a}n, {b}», • --, {k}n be distributed in any way into sets such that each

sequence occurs once and once only in all the sets; form the D product for

all the sequences in each of the sets, and finally take the D product of these

products. Then evidently the result is the D product of all the sequences.

Similarly it is seen at once that with respect to D addition and subtraction D

multiplication is distributive. The unit with respect to this multiplication is

the sequence {v )n, vx = s, vn = 0 (n >■ 1 ).

The sequence {a'}n satisfying {a,a'}n= {v)n, where {o}„ is not excep-

tional, is called the D reciprocal of {a}« and is written {v/a}n. To simplify

the printing put for a moment (i,j) = 0 or mu according as i/j is not or is

an integer > 0. Then preceding as in C we find
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(n,n — 1)       (n,n — 2)    ■■■    (n,2)        (n,\)

(n—\,n — \)(n — \,n — 2)...(n—\,2)(n—l,l)

0 (n-2,n — 2).-. (n — 2,2) (n — 2,1)

0 0 •••     (3,2)        (3,1)

0 0 •••     (2,2)        (2,1)

which with a'i — e/oi completely defines \via)n. Continuing, with the neces-

sary and obvious modifications, as in C we infer that the first of the following

relations implies the second, none of {a},», {&}«,•■•, {c}„ being exceptional:

{a,b,--.,c,d,e,. ••,/}»» = {k, I, • • -, s}n,

{d,e)-",f}n= {k,l,- ■■,s,v!a,v/b,...,v/c}n,

or, as we shall write it,

THEOREMS III, IV,1V".  Beplace CbyD in Theorems I, LI, II".

The connection with Dirichlet series is obtained thus. For all integral values > 0 of n

write o. = ann', ßn = bn»',•••, yK = «»»'. and Put {a}„~2Xn'' {'î}»~2Xn,'' * "•

{r}ao>Zcnn'- Then for a definite choice of the signs,

{±a±ß±...±r)nc»Z»(±«n±K±---±On'->

and to find the series associated with {a,ß,.--,y)Hyre multiply together formally the

associated series of {a jn, {/*}„,•••, {y}H and rearrange the result in the form ^fc„n':

[<*,ß,---,Y}*e*2a»n'><2b»n'><",:<2c»n'=2k»n'-

The further development parallels that for algebra C upon replacing the (a)n notation by the

{a }n and referring the discussion to coefficients of n' instead of t" as before.

Corresponding to the alternative for C we have for D the algebra in which the units e« are

commutative, with the law of combination eM eB = *„,„. This algebra is the direct product of

an infinite number of algebras C, generated by a modulus and units «i, e,, • • • respectively.

The correspondence between the algebras is as follows. Let n = o" ß* • • • be the resolution of n

into its prime factors, and let a be the ¿th prime, ß the Mb prime, etc. Then •» sss «J«„« • •.
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II.  ALGEBRA E

4. By the proper change in notation any sequence may be written in the form

at, as, A4, • • •, On, • - ■, and if we put ai = « (§1 (3)) whatever the sequence,

we consider throughout this part {a}n, that is, ax(=e), ai} as, ■ - •, instead

of the original sequence <ig, as, • • •. This inclusion of e as the first element in

every sequence is merely a device to shorten the statements of processes and

results in what follows. We now make a radical change in notation and

elaborate the concepts upon which E is constructed.

(10) Having written our initial sequence as above prescribed in the form

{a}n with first element e, we next put at = xlt at = x%, a% = x3, a4 = x&,

fl5 = x%, • • •, On = xp, • • •, where p is the nth prime number > 1. We thus

obtain {a}n in the normal script xx,Xi, x3, x5, Xt,xxx,Xis,xXt, ■ • • ,Xp, • ■•,

which is written '{x}p and is called a,primary sequence. The first element ai

of '{x}p is e.

This again is nothing more than an artifice by which the algebra is greatly simplified in

expression. In the extension of E processes to multiple sequences (not discussed here) the

inherent complexity of the generalized concepts is such that a simplified notation is imperative.

The extension of the above device is immediate.

(11) The aggregate X of all formal products x„Xß- ■ • xer of positive integral

or zero powers xaa, xp", ■ ■ ■, xt of distinct elements xa, xp, • • •, xy of '{x}P is not

a sequence until a law is assigned by which the several products are ordered.

We adopt first the convention that each product of this type in which all of

the exponents a, &,•••, care zero is identical with a?i(= e). Since xxXn = xH

it follows that '{x}p is contained in X, that is, every element of '{x}p is an

element of X.- If now n = aa ßh- • • yc, where a, b, • • -, c are all different from

zero, is the resolution of n into its prime factors > 1, we define xn by

xn = xaaXß- • • xcr and form the sequence {x}'n == Xi,x%,x%,x^, • • • ,x,i, • • •,

called the first derivative of the primary '{x}p.

Each product is now placed; for example sr'ajjxj, = a;20SJOOg. Conversely the resolution

of each element of {*},' into a product of powers of distinct elements of '{x} is uniquely

known; thus x,toi = x\xtx\. If from {x},' we delete all elements whose suffixes are com-

posite there remains ' {x} .

Now obviously {x}„ may be written in normal script as a primary sequence,

say "{x}p, and we can take its first derivative "{x}'n, or more briefly {x)'n,

which is called the second derivative of {x}'p. Continuing thus we define

the rth derivative for r any integer > 1. For simplicity we consider here

only the case r = 1.

(12) Let a, b, • • •, c, ••• • denote an infinity of integers each of which may

vary from zero to positive infinity, and let «, ß, • • •, y, - - - denote the primes
> 1 in any order. Denote by any one of the infinity of symbols f0(x¿), where
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«5 > 1 is prime, the unit with respect to multiplication in the abstract annulus

(§1 (4)) whose base is the aggregate of elements fa(xa),fb(xß), • • •, fc(xr), ■ ■ ■

where a,b,- • • ,c,- • • and a, ft,- • • ,y,- • • take all values consistent with their

definitions; and let each element of the annulus have a unique significance in

terms of elements of '{x}P. Then for specific a and «, fa(xa) is called

a. primary function of xa, and similarly for fb(xß) and Xß,--- ,fc(xr) and xr, • • • ;

and these primary functions are associated with the element?; xaa, Xß, ■ • •, xcr, • • •

of {x)'n respectively. From the definition of the wmt, f0(xa) fb(xß) = fb(Xß),

fo(xa)fo(xß) =fo(xa) =f0(xß), and so on.

(13) The notation being as in (12), so that « > 1 is prime, the sequence/¿(.ra),

fi(x*),Mxa),~',f»(xa),--, which we shall write (f(xa))n, is called

a primary functional sequence.

(14) We next order the products contained in the annulus of (12) into

a sequence. Let n = aa ftb ■ • • yc be the resolution of n > 1, and recall that

by (11) the element xn of \x}'n is xaa Xß • • • xr. With this element we associate

the product fa(xa)fb(xß) • • -fc(xr) and denote it by either of fx(n) orfn(x).

If m is not prime fn(xm) is meaningless; also/x(a:) is not yet defined. As

suggested by 1 = «°= ft0 = ■ ■ • = a°ft° = etc., we now identify fx (x) with

the unit/0(a;a), ^f0(xß) ■ ■■=f0(xr), etc., defined in (12). When n is

given, the place of xn in {x}'n is known, and likewise forfn(x) in the sequence

fi(x),f,(x),fa(x), ■••,/*(»),•••, which we shall denote by {f(x)}„ and
call a derived functional sequence. Obviously each product contained in the

annulus occurs once and once only in \f(x)}„, which also contains all primary

functional sequences (f(xP))n, p running through all primes p > 1.

The x in fx(n) or/)( (x) indicates only that the arguments of the several fa,ft, ■ • • ,/e in the

formal product which is denoted by either of these symbols are elements of the sequence { x }n,

and x itself is not one of these arguments, for it is not an element of the sequence. If the

sequence were {y}n our symbol would be written f„(y) or fy(n). The x in/n(x) is thus

purely umbral, and has not the usual significance that/n(x) is a function of x. But on the

other hand the element xn being uniquely determined when n is assigned, fx(n) is in the

ordinary sense a function of the positive non-zero integer n.

When several derived functional sequences {f(x)}„, {g(x)}„, • • • are being

considered together we postulate that/i (x), gx (x),- ■ • are identical and that

(as in § 1 (1)) the formal sums, differences and products constructed from

elements of all the sequences are uniquely significant.

As an example of the notation, /««> (x) = /, (x,) /, (xt) f¡ (x6), since 360 = 23 32 5 and

hence xsfl0 ~^ x¿ x8 x6.

5. E composition. This process, which is fundamental for E, has the

formal properties of multiplication and is radically distinct from any in C, D,

although, as will appear, it combines both C and D multiplication. The derived

functional sequence \f(x)}n is uniquely determined (§4(14)) by the aggregate
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of primary functional sequences (f(xp))n where p runs through all primes

p > 1. Conversely, all of the sequences in this aggregate are necessary for

the determination of {f(x)}n, and the aggregate defines one and only one

derived functional sequence. Let us express this by saying that {f(x)}n is

the E composite [(f(xP))n] of all the sequences in the aggregate of primary

functional sequences (f(xp))n, and let us write this symbolically as follows:

[(f(Xp))n] = {/(*)}»,

which may be read: the E composite of all the sequences in the aggregate

(f(xp))n where p runs through all primes > 1 is the sequence {f(x))n, and

this sequence is obtained from the aggregate by E composition.

(15) The E composites [if(xP))n], [(g(xP))n] are defined to be equal,

Kf(xp))n] = [(g(xP))n], when and only when {f(x)}n = {g(x)}n.

Theorems for E operations are thus restatements in terms of E composites of theorems in

a I) algebra in which the elements are derived functional sequences, and they follow at once

from Theorems III, IV, IV", upon translating them into their equivalents in terms of derived

functional sequences. The discussion will be more easily followed from the series equivalents

of E composition which we consider next.

6. To obtain the formal equivalents of E operations we require the

parameters U which are defined on replacing a: in §4(10), (11) by t. Thus

n = aaßb ■■ -yc being as before the prime factor resolution of n, the element tn

of {t}„ is ta § • • • fr, ta — tx = e (a any prime), tx tn = t„ ; and if n = aa,

tn = ta. With respect to the elements of derived functional sequences \f(x)}H,

{o(x)}n, • ■ • ,tn has all the properties of formal multiplication so that tnfm(x)

= fm(x) tn, and if tnfm(x) = tngm(x), then/„i(a;) = gm(x).

Write for a moment tpfH(xp) =fñ(xp).   Then 2fn(xp) ~ (/' (xp))H
o

^2tpfn(xp).  From the definition of E composition and (15) the sequence
o

{f'(x)}n is uniquely determined by the aggregate of sequences (/'(a>,))«,

where p runs through all primes^- 1.   Hence since {f'(x)}no~£fn(x),

the series 2 tnfn(x) is uniquely determined by the aggregate of sequences
i _

(f'(xp))n, and therefore by the aggregate of associated series Zt'pfn(xp).
o

In other words when the general term in each series of the aggregate is

known, so also is the general term tHfn(x), and evidently this term can be

found by multiplying together formally all the series in the aggregate, or as

we shall write it symbolically

\2tpfn(Xp)] =2tnfn(x),
»    L 0 J 1
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for the coefficient of tn = taa tß■ ■ • fr in the formal product is fa(xa)fb (xß)

■ ■ -fe (xr) — fn(x).  This is the formal equivalent of E composition.

7. Generators.  These play a part in E analogous to that of logarithms

in common arithmetic. In the typical factor of the above formal product write

tp~ t, xp= £, so that it becomes F(t, £) = Ztnfn(%), which is to be
o

regarded as a function of two independent variables t, ?. We define F(t,^)

to be the generator otfn(x), and write

F(t,ï).r.fn(x),

which is to be read: F(t, £) is the generator of fn(x).

To write down the /„(x) generated by F (í, f) =^<»/B (I)  we first set /„(x)
o

— fm(xa)ft(xa)-"fc(xy)i where »i = a"ßl...y'is the prime factor resolution of »i, and

then in this substitute for /„(*„), ft (x„) ,•••, f,(xJ) as defined by /„(x) which is given, since

F(t, f ) is assumed known. Thus fm(xa) is obtained from/„(f) by putting n = a, f = xa.

E.g., if/„(!) = £", F(t, f) ==ZtnZn generates x'ax^..-xc — xn.   Conversely, to write
u

down the generator when the form of/n(x) is known, = fa(xa) fb(x/j) ■ ■ • fc(xy), we replace

in any factor, say/a(xa), the argument xaby £ and the suffix by n, getting /„(£), multiply

by <" and sum forn = 0,1, 2, • • •: thusj^ <"/•'(£)> — '(*i ?)•
o

Either from our definitions or by convention t° has with respect to powers

of t the multiplicative properties of unity, and similarly for each of the identical

symbolsf0(í), g<¡(í),--- with respect to each of /»(?), #»»(?)>•••• Only these

properties will be used in generators, so that each of these symbols may be

replaced by 1. A generator therefore is a power series in t whose first term

is 1 and in which the coefficients of the several powers of t are functions of ?

(some or all of which may reduce to constants). With each generator is

associated (§ 1 (9.1)) a sequence, and these sequences are combined only accor-

ding to C multiplication and division ; with the sequences resulting from these

operations are associated series, and clearly each of these series is a generator.

Hence, under C, multiplication (and division) of series generators form a group.

Algebra E is concerned with the relations between the/B(x), g„(x), • • • generated by the

members of this group. Specific applications of E are determined by special choices of the

initial generators (e. g., each /(f), g(£),••• is an algebraic function of £), and specific

interpretations of the system of elements xnupon which the f,g,-" are constructed (e.g., xn= n,

giving ordinary arithmetic). By means of the Maclaurin development after Theorem II'" it may

or may not be possible in a given application to reduce all of the generators in the group to

finite form. This is the case, however, in one of the most important applications (§ 12), when

generators are combined according to the rules for the multiplication of ordinary algebraic

fractions in two letters.
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Understanding that the arguments are t, ? we may shorten F(t, £) to F,

and similarly/»(x) may be abbreviated to/, so that the generational relation

will be written where convenient as F- r.f.

8. The definition (15) and § 5 yield an important consequence. Take the

Cproduct, (§2), (f(xp), g(xp), •••, h(xp))n, of the primary functional

sequences (f(xp))n, (g (xP))n, •--, (h (xp))n, noting that the argument xp,

and hence the prime p > 1, is the same in all. If for a moment we denote the

nth element of this Cproduct by yn(xv), = n(f(xp), g(xp), • • -,h (xp)) we

have ((f>(xp))n a primary functional sequence, and we can form the 2? com-

posite [(tp(xp))n] == [(f(xp), g (xp), ••-,h (xp))n\. On the other hand we

form theZ) product, (§ 3), \f(x), g(x),---,h(x)}noi the derived functional

sequences {f(x))n, \g(x))n, - ■ -, {h(x)}n, and have at once the following:

THEOREM V.   The E composite and the Dproduct are identical:

[(/(xp), g(xP), --, h(xp))n] = \f(x), g(x), ...,h(x)}„.

The content of this theorem will be evident from its equivalent in generators, given next.

From now on the algebra may be developed either from the standpoint of sequences or from

that of generators. The latter leading at once to the extremely simple working rules of E, we

choose it.

9. E multiplication. Consider the r relations

F-r.f,     G-r.g,     ...,     H-r.h.

The product !£= F G • • • 77 is a generator, say K ■ P> k. We define k to be the

£7 product/c7---A otf,g,---,h. Or writing this in full, kn(x) = (fg • • - h)n(x).

That is, the generator of the E product fg • • • h of /, g, ■ • •, h is the product

of the several generators. This merely defines the symbol fg • ■ -h which must

now be evaluated. Evidently kn(x) is the nth term n{f(x),g(x), • • •, h(x)\

of the D product of the r sequences {f(x)}„, {g(x)}„, • • •, {h(x)}n. Hence

the explicit form of kn(x) is fg• • • A == (fg • • • h)n(x) == 2fAxf9â(x) • • •
n

hT(x), where the summation refers to all sets (d, a, • • -, t) of r integers each

> 0 whose product is n.

The detailed proof is the same for any number of factors : let »• = 2. The C product K ( t, f) of

F(t, $) =2>/„(£)"«dG(i, « = 2>*.<«»2M.(*). wh(*e W =2£(«*„_(«;
0 0 0 rso

and by the definition of a generator, K(t, £) • T. kn(x), where, n = amßh- •. y* being

the prime factor resolution of n, ku(x) = kt(xa)kt(xfi)...ke(xr). It is to be shown

that fe„(x) = „{f(x),g(x)\. Let n = di be the resolution of n into any pair of conjugate

divisors > 0, and d = a'i ßti... yci, â = a'-"t ß>-hi • ■ • ye-ci the prime factor resolutions of d, 6.
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In these some of the exponents may be zeros.  Substituting in kn(x) the values of ka(xa),

iè(.r.),..., kc(xy) defined by the generator K(t,£) we get for fc„(x) the expression

a -1   r      b -i i-      c

Zf'S^fi-S*^   2X(V^->.(a7¡) ■■■ Z^Mr^c-c^

=2f^x*)f»S V • ■ •/^(ar)fl,«-.,(ar«>i?»-»,(!r^ • ■•se-cS*r),

the Z referring to all Oi, bt, • - -, et defined by 0 :S ax 5 a, 0g 6i S b, • • •, 0 ^ Ci ̂  c.  But

f«Sxa)ftS*p) ■ • /„O"/) =/«<*),     .y._^(*a)ff»_h(*p) ■ ■■.?._„ 0^) = ^(x)-

Hence fc„(x) — /Xtx)^^), the sum referring to all pairs of divisors <?,c? >0 of« such

that di — n. That is, fcB(x) = a{f(x),g(x)}.

Obviously/</ • • ■ h is invariant under all permutations oif,g,..-,h; hence

F multiplication is commutative. That it is also associative follows immediately

as in D.

(16) The unit of Emultiplication is r¡ = i¡n(x) = r¡x(n) defined by tyr(l) = 1,

**(n) = 0(«>l).
10. E division. By definition the E reciprocal/' of/is generated by tht

reciprocal F' of the generator F of /. In this F' is obtained by the formal

division of 1 by F.  Since FF' = 1, FF' is the generator of i¡.

With respect to E multiplication and division i¡ has the properties of unity

in ordinary algebraic multiplication and division, for «// = /, so that the

factor r¡ may be omitted from any E product, and evidently i¡ is its own

reciprocal. Since F is any generator, r¡ has an infinity of generators. By an

obvious algebraic analogy, jf— »? may be written when convenient in either

of the forms / = i¡lf, f = i¡/f
The E reciprocal of an E product is obviously the E product of the several

E factors of the product:

n     _ n n     n
fg---h      f g      h'

The Eproduct offg■• ■ h and i\\y</'••• x is written in the form

fy-h
<pip...X'

and clearly such E fractions have all the multiplicative properties of ordinary

fractions.
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11. E addition and subtraction. Since by § 4 (14) (end) the fn(x),

gn(x), • • ■ form an annulus, ±fn(x) ± gn(x) ± • • •, for a definite choice of

the signs in an element ln(x) of the annulus. Shortening the notation as before

we write, for a definite choice of the signs I = ±/± g • ••, thus defining E

addition and subtraction. For the same choice of signs the E product of <p

and I is q> I-, and at once from the definitions we have

(pl= ±q>f±<pg±-"

Since E addition and subtraction are obviously associative these operations

have all the formal properties of algebraic addition and subtraction.

In full for I —f+g: let ¿n(x) = fn(x) + gn(x). By the definition of E multiplication,

(?l)n(x) =^pd(x)l¿(x), the sum extending to all pairs of integers d,¿>0 such that
n

iS = n. Hence (?l)n(x) =2?¿x) U¿*i+9a{*>\ =2^x)-fâ (*> +2*'(X/'aix>
n n n

= (p/)n(a=) + (fS,)n(x); viz., <pl = ?f+ <pg.

THEOREM VI. The aggregate of all the elements of all derived functional

sequences forms a system ivith respect to the four E rational operations.

Fractional and negative powers are introduced precisely as in C, and com-

bining these with Theorem VI, we have the complete algebra E.

We note that the product fn(x) gn (x) •••hn(x)iB an element of the above

aggregate. It cannot be abbreviated to fg ■ - - h in applying E, for this

denotes the Eproduct.  We accordingly use \fg• • -h\, writing therefore

\fg • • ■ h\n(x) =fn(x)gn(x) • • • h„(x).

With this we form E products. Thus the E product of \fg\ and k is written

\fg\k, and is in full2fd(x)ga(x)k¿(x).
n

The algebra is used as outlined in the following example.*

12. Example. Let

F(if»=s *+*/,.(» ) + ••• + <■/„($)

be a polynomial in the two independent variables t, ? of degree n > 0 in t,

and let all the coefficients of 7^ lie in the domain of rationality V. We call F

* Detailed applications of this have been made with numerous special theorems as examples,

by Miss E. D. Pepper, Tôhoku Mathematical Journal, vol. 22, Nos. 1, 2. The

theorems include many of those mentioned at the end of § 1 and are sufficient in number to

show the increase in power and the great saving in space and labor of manipulation gained

by these methods. Finally the paper contains applications of E to the multiplicative properties

of algebraic numbers, the ideals of any realm, and systems of polynomials to a single or

a double modulus. It will therefore be sufficient here to sketch the development in one case.
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and Í/F primary generators, which are prime or composite according as F is

irreducible or reducible in V- The aggregate P of all primary generators ob-

tained by taking n = 1, 2, • • •, and fx (?),/2 (?),••• successively equal to all

polynomials in one variable ? with coefficients in V may be arranged in pairs

(F, F'), (G, G'), ••■, such that either generator in a pair is the reciprocal of

the other. It F - r.f, F'- r.f, then since /= i¡/f,f= y/f, we may take

as fundamental either/or/', regarding the other as its reciprocal. We shall

choose as fundamental that one of /,/'whose generator is a polynomial, viz.,

is in finite form.   For example, of /,/'generated by 1 — t% and2/¿M£n
o

respectively, / is fundamental. The generator F of a fundamental / is called

fundamental, and/is prime or composite (inV) according as F is prime or

composite.

If in the E product fg- ■ ■ h the r factors f,g,---,h are identical, it is

written f, and by convention/0'.= i¡. Obviously iiF-P-f, then Fr- r.f

and F'r- r.f where F' = 1/F,f = y/f. Any fundamental generator may

be resolved uniquely in V into a product of powers of distinct prime

fundamental generators. Let F = Ga Hb- • • Kc be the prime resolution of F,

and let F-T.f, G-T.g, etc. Then f=gahb...lcc is called the prime

resolution of / (in V), and similarly for /' = i¡lf= ti^h* • ■ • ¥. These

resolutions are unique.

Next consider the aggregate 77 of all generators formed from the products

1, 2, 3, • • • at a time of all the generators in P. Any generator in II is of the

form F/0, where F, O are primary and fundamental, so that F, <Z> are in

finite form and are not resolved into their factors in V- If F, O are relatively

prime in V, F/Q is called reduced, and likewise for//op where Fl® ■ r-f/f.

If in this case/ = g* hb • • • kf, g> = Xm /*n • • • q3 are the prime resolutions of

/, <p, we call f hb ■ ■ • /ci//">n • • • qs the prime resolution of f/<p. If F = TFU

O = Td>i where Fx, ®x are relatively prime in V, F/Q = Fi¡®i and the

latter, being reduced, yields the prime resolution of f/q>. Or the same result

can be reached by cancellation of powers of g, h, • • • against like powers of

identical X, /*,••• in //y after the prime resolutions oif,<p. From the manner

in which it has been obtained the prime resolution of f/<p is unique.

The aggregate of all E quotients f/<p, including all cases in which either/

or <p is the unit t¡, is denoted by A; the generators of these quotients are

those in 77.

To investigate the relation between given members of A we first find their

prime resolutions and then note the multiplicative relations between the

results to obtain identities, performing multiplications and divisions as in

arithmetic. Two problems arise which are complementary to one another.

First, suppose we are given the generatoi;, which may be of one of the forms
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F, Il F, FIG, where F, G are fundamental and primary; it is required to find

the corresponding/, qlf.flg.  The most general form of F is

F(t, S) = 1 + **/*(*) + • • • + *•./..($),

where none of the polynomials /}(?) with coefficients in F is identically zero,

and the a's are integers :> 0. There is no difficulty in writing down the /n(a:)

generated by this (cf. § 7), but as the expression is complicated when s >1,

we omit it. In the forms MF, F¡G we first perform the formal divisions and

then proceed as in § 7. Next, if we are given the/n(a:) we find its generator

by §7. If this generator is in A, it is a matter of algebra to reduce it to finite

form and find its resolution in V into prime factors, whence, noting the

functions generated by the several prime generators, we get the prime

resolution of/. The identities between tnef,g,--- may be written down

either from the generators or the prime resolutions. Each such identity gives

a result of the kind mentioned in the introduction (a simple example is given

at the end of the paper). The same identity may be read in many ways; thus

figih =fgh-gh =/'• g*-h, etc., where in fgh-gh we take first the E
nroiaetsfgh,gh and then take the E product of the results. Each such

reading gives a theorem.

To get theorems relating to the natural numbers take xp = p (p any prime),

and hence xn = n (n any integer > 0). This is called the numerical case. It

refers to the arithmetical functions built up from the concept of divisibility

and the unique factorization law, sometimes called numerical functions.

The aggregate n is characterized by two essential features: (1) each

generator in II is expressible in finite form as a rational algebraic function of

two variables; (2) the coefficients of each generator are in V. An examination

of Dickson's History (loc. cit.) will show that all of the numerical functions

in the literature have simple generators satisfying (1), and that the majority

satisfy also (2). The only exceptions are those in which occur, as coefficients

of the several powers of t, instead of algebraic functions of Ï, certain simple

transcendental functions, such as (—1)^, or those expressing a quadratic

character. Moreover withjme exception V =. -R(l), the rational domain. In

the exception V == B (íV%).

Even trivial algebraic identities yield results of interest. Thus it is readily seen that in the

numerical case the equivalent of
1        \-t 1

1 — t' 1 —tt?        1—if

is the totient theorem cited in § 1. Of this kind of theorem some of Gegenbauer g are as com-

plicated as any in the literature.* For example, if Jv (n) is Jordan's generalization of Euler's

* Cf. Dickson, History, vol. 1, p. 298 (72).
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ç>(«), ./„(n) = the number of different sets of v equal or distinct positive integers <n whose

G. C. D. is prime to », and uk(n) = n*, and pk t(n) = the sum of the fcth powers of those

divisors dt of n whose conjugate divisors are exact sth powers, Gegenbauer gives

which in E notation is \Jvuk\pt, = /»^  ,.  From the above definitions it is easily seen that

1-P«     r i r     i _    J_r
l_fw->i        I'W' (!_»<)(!_<•)        ft..-

Hence Gegeubauer's result is the translation of the identity

l — Pt_1_1_

i—Í**»!"" (l —f*i)(i —*•) :" íi-f^Od-í')'

Noting that A(n) = +1 or — 1 according as the total number of prime divisors of n is

oven or odd is generated by 1/(1 + t), and that Miïbius's n(n) is generated by (1 — <), also

ft1 by ( 1 -(- <), and that the generator of at (n) _ the sum of the feth powers of all the divisors

of m is 1,'( 1 — ?1/), also that 1/(1 — Í*) generates râ(») ^ 1 or 0 according as « is or is not

the sth power of an integer > 0, and that 1 — £*< generates |/»m4|, we see that the same

simple identity yields several more results upon rearrangement of its factors, etc., either for

special values of fc, v, s or for general.
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