SYMMETRIC TENSORS OF THE SECOND ORDER
WHOSE FIRST COVARIANT DERIVATIVES ARE ZERO*

BY

LUTHER PFAHLER EISENHART

1. Consider a Riemann space of the nth order, whose fundamental quadratic form, assumed to be positive definite, is written

\[ds^s = g_{rs} \, dx^r \, dx^s \]
\[(g_{rs} = g_{sr}), \]

where \(r \) and \(s \) are summed from 1 to \(n \) in accordance with the usual convention which will be followed throughout this paper. It is well known that the first covariant derivatives \(g_{rs/t} \) are zero, where

\[g_{rs/t} = \frac{\partial g_{rs}}{\partial x^t} - g_{ra} \, r^a_s - g_{as} \, r^a_r \]

and

\[R^a_{st} = \frac{1}{2} \, g^{ap} \left(\frac{\partial g_{sp}}{\partial x^t} + \frac{\partial g_{tp}}{\partial x^s} - \frac{\partial g_{st}}{\partial x^p} \right), \]

the function \(g^{ap} \) being the cofactor of \(g_{ap} \) in the determinant

\[g = |g_{rs}| \]

divided by \(g \). It is the purpose of this paper to determine the necessary and sufficient conditions that there exist a symmetric covariant tensor \(\alpha_{rs} \) such that the first covariant derivatives \(\alpha_{rs/t} \) are zero, or more than one such tensor.

2. Let \(\alpha_{rs} \) denote the covariant components of any symmetric tensor of the second order. If \(\xi_h \) is a root of the equation

\[|\alpha_{rs} - \xi g_{rs}| = 0, \]

the functions \(\lambda^r_h \) \((r = 1, \ldots, n)\) defined by

\[(\alpha_{rs} - \xi_h g_{rs}) \lambda^r_h = 0 \quad (s = 1, \ldots, n) \]

* Presented to the Society, April 28, 1923.

297
are the contravariant components of a vector. It is well known that the roots of (5) are real, and that if they are simple, the \(n \) corresponding vectors at a point are mutually orthogonal.* Moreover, if a root is of order \(m \), equations (6) admit \(m \) sets of independent solutions, and any linear combination of them is also a solution. It is possible to choose \(m \) solutions so that the corresponding vectors at a point are mutually orthogonal, and thus from (6) obtain \(n \) sets of solutions so that the corresponding vectors at a point are orthogonal; that is,

\[
g_{rs} \lambda^r_h \lambda^s_k = 0 \quad (h, k = 1, \ldots, n; \ h \neq k).
\]

Moreover, the components may be chosen so that

\[
g_{rs} \lambda^r_h \lambda^s_h = 1 \quad (h = 1, \ldots, n),
\]

that is, the vectors are unit vectors.

The curves in space whose direction at each point is defined by \(\lambda^r_h \) form a congruence of curves \(C_h \). Thus equations (6) define an \(n \)-uple of congruences of curves, such that the curves of the \(n \)-uple through a point are mutually orthogonal.

The covariant components \(\lambda_{h,r} \) of the vector \(h \) are given by

\[
\lambda_{h,r} = g_{rs} \lambda^s_h, \quad \lambda^s_h = g^{rs} \lambda_{h,r},
\]

and hence (7) and (8) are equivalent to

\[
\lambda_{h,r} \lambda^r_k = \delta_{hk},
\]

where

\[
\delta_{hk} = 1 \text{ for } h = k; = 0 \text{ for } h \neq k.
\]

The functions \(\gamma_{hij} \) defined by

\[
\gamma_{hij} = \lambda_{h,rj} \lambda^r_i \lambda^s_j,
\]

where \(\lambda_{h,rj} \) is the covariant derivative of \(\lambda_{h,r} \) with respect to \(x^s \), are invariants; they are called rotations by Ricci and Levi-Civita.† They have shown that

\[
\gamma_{hij} + \gamma_{ihi} = 0, \quad \gamma_{hhi} = 0 \quad (h, i, j = 1, \ldots, n).
\]

* Cf. these Transactions, vol. 25 (1923), p. 259.
† Mathematische Annalen, vol. 54 (1901), p. 148; also, Wright, Invariants of Quadratic Differential Forms, Cambridge Tract, No. 9, p. 68.
From (12) we have

\[\lambda_{h_1 r_1 s} = \sum_{i,j} \gamma_{h_1 i} \lambda_{i_1 r_1} \lambda_{j_1 s}, \]

and since \(g_{r_1 l_1} = 0 \), it follows from (9) that

\[\lambda_{h_1 l_1}^{r_1} = \sum_{i,j} \gamma_{h_1 i} \lambda_{i_1}^{r_1} \lambda_{j_1 s}. \]

3. If all the roots of (5) are equal, we must have \(\alpha_{r_1} = \varphi_{r_1} \). Differentiating covariantly with respect to \(x^l \), and making use of the fact that \(g_{r_1 l_1} = 0 \) and the assumption that \(\alpha_{r_1 l_1} = 0 \), we have that \(\varphi \) is constant. Consequently \(\alpha_{r_1} \) is essentially the same as \(\varphi_{r_1} \). We exclude this case from further consideration.

Since (7) is satisfied whether the functions \(\lambda_h^a \) and \(\lambda_h^r \) correspond to different simple roots of (5), or to the same multiple root when such exists, we have from (6)

\[\alpha_{r_1} \lambda_h^a \lambda_h^a = 0 \quad (h, k = 1, \ldots, n; \ h \neq k). \]

Also from (6) we have

\[\alpha_{r_1} \lambda_h^r \lambda_h^r = \varphi_h. \]

From (17) we have by differentiating covariantly with respect to \(x^l \) and making use of (15), (16), and (17)

\[\alpha_{r_1 l_1} \lambda_h^a \lambda_h^a = \frac{\partial \varphi_h}{\partial x^l}. \]

Also from (16) we have, because of (13), (14), (16) and (17),

\[\alpha_{r_1 l_1} \lambda_h^a \lambda_h^a + \sum_j (e_h - e_h) \gamma_{h_1 j} \lambda_{j_1 t} = 0. \]

Multiplying by \(\lambda_t^l \) and summing for \(t \), we have

\[\alpha_{r_1 l_1} \lambda_h^a \lambda_h^a \lambda_t^l + (e_h - e_h) \gamma_{h_1 s} = 0 \quad (h \neq k). \]
From (18) it follows that if $\alpha_{rs}t = 0$ the roots φ are constant. And from (19) we have for two different roots

\[(20) \quad r_{hkl} = 0 \quad (h \neq k).\]

Let ψ_i be a root of (5) which we assume to be a multiple root of order m, and denote by $\lambda^r_h (h = 1, \ldots, m)$ the components of the m mutually orthogonal vectors corresponding to it, and by $\lambda^r_k (k = m + 1, \ldots, n)$ the components of the directions corresponding to the other roots of (5). From (20) we have

\[(21) \quad r_{hkl} = 0 \quad (h = 1, \ldots, m; k = m + 1, \ldots, n; l = 1, \ldots, n).\]

Consider the system of equations

\[(22) \quad X_k (f) = \lambda^r_k \frac{\partial f}{\partial x^r} = 0 \quad (k = m + 1, \ldots, n).\]

If we introduce the notation

\[\frac{\partial f}{\partial s^k} = \lambda^r_k \frac{\partial f}{\partial x^r},\]

then, as Ricci and Levi-Civita have shown*, the relation

\[(23) \quad \frac{\partial}{\partial s_j} \frac{\partial f}{\partial s_k} - \frac{\partial}{\partial s_k} \frac{\partial f}{\partial s_j} = \sum_{i=1}^{n} (r_{ij} - r_{ik}) \frac{\partial f}{\partial s_i}\]

is satisfied for any function f.

Applying this formula to equations (22) we have in consequence of (21)

\[X_j X_k (f) - X_k X_j (f) = \sum_{i=1}^{n} (r_{ik} - r_{jk}) X_i (f) \quad (j, k = m + 1, \ldots, n).\]

Hence the system (22) is complete and admits m independent solutions, say $f^s_h (h = 1, \ldots, m)$.

* Loc. cit., p. 150; Wright, p. 69.
Let \(q \) be another root of (5), of order \(p \), and denote by \(\lambda_j^r (j = m + 1, \ldots, m + p) \) the components of the corresponding vectors. In like manner we show that the equations

\[
\lambda^r_i \frac{\partial f}{\partial x^r} = 0 \quad (l = 1, \ldots, m, m + p + 1, \ldots, n)
\]

form a complete system and admit \(p \) independent solutions \(f_j (j = m + 1, \ldots, m + p) \).

From (22) and the equations

\[
\lambda^r_h \lambda_{h,r} = 0 \quad (h = 1, \ldots, m; k = m + 1, \ldots, n)
\]

it follows that there exist functions \(a^r_h \) such that

\[
\frac{\partial f_h}{\partial x^r} = \sum_{\sigma} a^r_h \lambda_{\sigma,r} \quad (h, \sigma = 1, \ldots, m).
\]

In like manner, we have

\[
\frac{\partial f_j}{\partial x^r} = \sum_{\tau} b^r_j \lambda_{\tau,r} \quad (j, \tau = m + 1, \ldots, m + p).
\]

Consequently we have

\[
g^{rs} \frac{\partial f_h}{\partial x^r} \frac{\partial f_j}{\partial x^s} = \sum_{\sigma, \tau} a^r_h b^s_j g^{rs} \lambda_{\sigma,r} \lambda_{\tau,s} = 0,
\]

that is, any hypersurface \(f_h = \text{const.} \) is orthogonal to each of the hypersurfaces \(f_j = \text{const.} \).

Proceeding in this manner with the other roots of (5) we obtain a group of hypersurfaces corresponding to each distinct root of (5), the number of hypersurfaces in a group being equal to the order of the root. Any two hypersurfaces of two different groups are orthogonal to one another. If we take these \(n \) families of hypersurfaces for the parametric surfaces \(x^r = \text{const.} \) \((r = 1, \ldots, n)\), it follows that the functions \(g_{rs} \) are zero, for the case where \(x^r = \text{const.} \) and \(x^s = \text{const.} \) are hypersurfaces of different groups; in this sense we say that \(r \) and \(s \) refer to different groups, or different roots of (5).

From the equations (22) for this choice of the variables \(x \), it follows that \(\lambda_k^r = 0 \), for \(r \) and \(k \) referring to different roots of (5). From (9) it follows also that \(\lambda_{k,r} = 0 \) for \(k \) and \(r \) referring to different roots.
Equations (6) may be replaced by*

\[(24) \quad \alpha_{rs} = \sum_{h} q_{h} \lambda_{h,r} \lambda_{h,s} \]

whether the roots of (5) are simple, or some are multiple. From (24) and the preceding observations it follows

\[(25) \]

\[\alpha_{rs'} = g_{rs'} = 0, \]
\[\alpha_{rs} = q_{h} g_{rs}, \]

where \(r \) and \(s' \) refer to any two different roots and \(r \) and \(s \) refer to the root \(q_{h}. \)

From (25) we have \(\alpha_{rs'} = 0 \), hence if \(\alpha_{rs'j} = 0 \), we must have (cf. (2))

\[\alpha_{rl} R_{s't}^{l} + \alpha_{s'q} R_{rl}^{q} = 0 \quad (l, q = 1, \ldots, n), \]

that is

\[\left[\frac{\partial g_{s'r}}{\partial x^{l}} + \frac{\partial g_{t'r}}{\partial x^{s'}} - \frac{\partial g_{s't}}{\partial x^{r}} \right] + \alpha_{s'q} g_{lq} \left[\frac{\partial g_{rs}}{\partial x^{l}} + \frac{\partial g_{lt}}{\partial x^{s'}} - \frac{\partial g_{rl}}{\partial x^{r}} \right] = 0. \]

If \(r \) refers to the root \(q_{1} \) of (5), say \(r = 1, \ldots, m \) and \(s' \) to the root \(q_{s} \), say \(s' = m + 1, \ldots, m + p \), we have from (25)

\[\alpha_{rl} = q_{1} g_{rl} \quad (l = 1, \ldots, m); \]
\[\alpha_{rl} = 0 \quad (l = m + 1, \ldots, n); \]
\[\alpha_{s'q} = q_{2} g_{s'q} \quad (q = m + 1, \ldots, m + p); \]
\[\alpha_{s'q} = 0 \quad (q = 1, \ldots, m, m + p + 1, \ldots, n). \]

Hence the above equation reduces to

\[q_{1} \left(\frac{\partial g_{s'r}}{\partial x^{l}} + \frac{\partial g_{t'r}}{\partial x^{s'}} - \frac{\partial g_{s't}}{\partial x^{r}} \right) + q_{2} \left(\frac{\partial g_{rs}}{\partial x^{l}} + \frac{\partial g_{lt}}{\partial x^{s'}} - \frac{\partial g_{rl}}{\partial x^{r}} \right) = 0. \]

If now \(t \) and \(r \) refer to the same root, this equation reduces to
\[
(e_1 - q_s) \frac{\partial g_{rs}}{\partial x^s} = 0,
\]
and if \(t \) and \(s' \) refer to the same root, we have
\[
(e_1 - q_s) \frac{\partial g_{s'r}}{\partial x^r} = 0.
\]
If \(r, s' \) and \(t \) refer to three different roots, the equation vanishes identically.

Since \(q_t \) and \(q_s \) are not equal by hypothesis, we have that each function \(g_{rs} \)
depends only on the coordinates referring to the same root as \(r \) and \(s \).

Consider again
\[
\alpha_{rs} = e_1 g_{rs} \quad (r, s = 1, \ldots, m).
\]
Now
\[
\alpha_{rs} t = e_1 \frac{\partial g_{rs}}{\partial x^t} - \alpha_{rt} f_{st}^l - \alpha_{st} f_{rt}^l \quad (l = 1, \ldots, n),
\]
which by (25) is reducible to
\[
\alpha_{rs} t = e_1 \left(\frac{\partial g_{rs}}{\partial x^t} - g_{rt} f_{st}^l - g_{st} f_{rt}^l \right) = e_1 g_{rst} = 0.
\]
Hence we have the following theorem:

A necessary and sufficient condition that a Riemann space admit a symmetric covariant tensor of the second order \(\alpha_{rs} \) other than, with a positive definite fundamental form (1), \(g_{rs} \), such that its first covariant derivative is zero, is that (1) be reducible to a sum of forms

\[
\varphi^{(0)} = g_{r's'} dx^{r'} dx^{s'},
\]
where \(g_{r's'} \) are functions at most of the \(x \)'s of that form; then

\[
\alpha_{rs} dx^r \ dx^s = \sum_i q_i \varphi^{(i)},
\]
where the \(q \)'s are arbitrary constants.
In particular, if all the roots of (5) are simple, the space is euclidean; if its fundamental form is taken in the form

\[ds^2 = \sum_i dx^i \]

\((i = 1, \ldots, n) \),

then

\[\alpha_{rs} dx^r dx^s = \sum_i \alpha_i \, dx^i \]

\((i = 1, \ldots, n) \),

where the \(\alpha_i \)'s are \(n \) different arbitrary constants.

When any one of the roots of (5) is simple, the corresponding congruence is normal, and the tangents to the congruence form a field of parallel vectors in the sense of Levi-Civita.*

5. In this section it will be shown that the problem of determining whether a given Riemann space admits one, or more, symmetric tensors whose first covariant derivatives are zero is a problem of algebra.†

We recall that if \(\alpha_{rs} \) is any symmetric tensor, then

\[\alpha_{rsijk} - \alpha_{rs/kj} = \alpha_{rst} B_{sjkt} + \alpha_{st} B_{rjkt}, \]

where \(\alpha_{rsijk} \) is the second covariant derivative of \(\alpha_{rs} \), and \(B_{sjkt} \) are the components of the Riemann tensor of the second kind formed with respect to (1). If then \(\alpha_{rsijk} = 0 \), we must have

\[\alpha_{rsijk} - \alpha_{rs/kj} = 0, \]

and consequently we have equations of the form

\[\alpha_{rst} B_{sjkt} + \alpha_{st} B_{rjkt} = 0 \]

\((j, k, r, s, t = 1, \ldots, n) \).

Differentiating these equations covariantly successively we have the sets of equations

\[\alpha_{rst} B_{sj/km} + \alpha_{st} B_{rj/km} = 0, \]

\[\alpha_{rst} B_{sj/km_1} + \alpha_{st} B_{rj/km_2} = 0, \]

\((j, k, r, s, t, m, m_1, m_2 = 1, \ldots, n) \).

Since \(g_{rs} \) satisfies (28) the systems (29) and (30) are satisfied by \(g_{rs} \) and consequently are algebraically consistent. From this it follows either that the functions \(g_{rs} \) are the only solution of (29) and (30), or that (29) and the first \(l \geq 0 \) sets of (30) admit a complete system of solutions \(g_{rs} \) and \(\alpha^{(1)}_{rs}, \ldots, \alpha^{(p)}_{rs} \) which satisfy also the \((l+1)\)th set of equations (30). In the latter case the general solution is of the form

\[
\alpha_{rs} = q^{(0)}_{rs} q^{(1)}_{rs} + \cdots + q^{(p)}_{rs} \alpha^{(p)}_{rs}.
\]

If any one of the functions \(\alpha^{(\sigma)}_{rs} (\sigma = 1, \ldots, p) \) is substituted in (29) and the first \(l \) sets of (30), and these equations are differentiated covariantly, we have, in consequence of the above requirement, that the functions \(\alpha^{(\sigma)}_{rs/m} (\sigma = 1, \ldots, p; m = 1, \ldots, n) \) satisfy (29) and the first \(l \) sets of (30). Consequently we have

\[
\alpha^{(\sigma)}_{rs/m} = \lambda^{(\sigma \omega)}_{m} g_{rs} + \lambda^{(\sigma 1)}_{m} \alpha^{(1)}_{rs} + \cdots + \lambda^{(\sigma p)}_{m} \alpha^{(p)}_{rs},
\]

where the \(p(p+1) \) vectors \(\lambda^{(\sigma \beta)}_{m} (\sigma = 1, \ldots, p; \beta = 0, 1, \ldots, p) \) must be such that the functions (32) shall satisfy (28). Substituting in these equations we find that the functions \(\lambda \) must satisfy the system

\[
\frac{\partial \lambda^{(\sigma \tau)}}{\partial x^\rho} - \frac{\partial \lambda^{(\sigma \tau)}}{\partial x^\sigma} + \sum_{\omega} \left(\lambda^{(\sigma \omega)}_{p} \lambda^{(\omega \tau)}_{q} - \lambda^{(\sigma \omega)}_{q} \lambda^{(\omega \tau)}_{p} \right) = 0 \quad (\sigma, \omega, \tau = 0, 1, \ldots, p).
\]

In order that \(\alpha_{rs} \) given by (31) shall satisfy \(\alpha_{rs/t} = 0 \), it is necessary and sufficient that the functions \(q^{(0)} \) satisfy

\[
\frac{\partial q^{(0)}}{\partial x^t} + \sum_{\sigma} q^{(\sigma)} \lambda^{(\sigma 0)}_{t} = 0 \quad (\sigma = 1, \ldots, p),
\]

and

\[
\frac{\partial q^{(\tau)}}{\partial x^t} + \sum_{\sigma} q^{(\sigma)} \lambda^{(\sigma \tau)}_{t} = 0 \quad (\sigma, \tau = 1, \ldots, p).
\]

In consequence of (33) equations (35) are completely integrable and therefore admit solutions involving \(p \) arbitrary constants. Because of (33) the conditions of integrability of (34) are satisfied; hence \(q^{(0)} \) involves these \(p \) arbitrary constants and an additive arbitrary constant which may be neglected.*

* If \(\alpha_{rs} \) is a tensor whose first covariant derivative is zero, so also is \(\alpha_{rs} + \lambda g_{rs} \), where \(\lambda \) is an arbitrary constant.
In view of the above results we have the theorem:

If equations (29) and the first \(l (\geq 0) \) sets of equations (30) admit a complete system of solutions \(g_{rs} \) and \(a_{rs}^{(\sigma)} (\sigma = 1, \ldots, p) \) which are also solutions of the \((l + 1)\)th set of equations (30), there exists a symmetric tensor of the second order, involving \(p \) arbitrary constants, whose first covariant derivative is zero.

6. Suppose that the fundamental form is the sum of \(j \) forms (26). By definition

\[
B_{pqrs}^a = g^{aq} B_{pqrs},
\]

where \(B_{pqrs} \) is the covariant Riemann tensor of the fourth order, that is,

\[
B_{pqrs} = \frac{1}{2} \left(\frac{\partial^2 g_{ps}}{\partial x^p \partial x^r} + \frac{\partial^2 g_{qr}}{\partial x^q \partial x^p} - \frac{\partial^2 g_{pr}}{\partial x^p \partial x^q} - \frac{\partial^2 g_{qs}}{\partial x^q \partial x^s} \right)
+ g^{lm} \left(\Gamma_{pq,m} \Gamma_{qr,l} - \Gamma_{pr,m} \Gamma_{qs,l} \right),
\]

where

\[
\Gamma_{pq,m} = \frac{1}{2} \left(\frac{\partial g_{pm}}{\partial x^q} + \frac{\partial g_{sq}}{\partial x^p} - \frac{\partial g_{qs}}{\partial x^m} \right).
\]

For the case under consideration, namely (26), it is readily shown that the components \(B_{pqrs} \) are zero, unless \(p, q, r, s \) refer to the same root of (5); likewise \(B_{pqrs}^a \), and its first covariant derivatives \(B_{pqrs}^{a\mu} \). Consequently equations (29) and the first set of (30) admit, in addition to \(g_{rs} \), the \(j \) sets of solutions of the form (25). If it is understood that each of the forms (26) is not further reducible to sums of such forms, we have a complete set of solutions of (29). Hence when the space is referred to the coordinates giving (25) the number \(l \) in the preceding theorem is zero.

PRINCETON UNIVERSITY,
PRINCETON, N. J.