
MANIFOLDS WITH A BOUNDARY AND THEIR TRANS-
FORMATIONS*

BY

SOLOMON LEFSCHETZ

This is the continuation of the paper which appeared in the January, 1926,

number of these Transactions.! Its chief object is to extend to an Mn

with a boundary the results already obtained for transformations of mani-

folds without boundary. To these already treated in full we devote a few

pages chiefly to elucidate and simplify certain points of importance for the

extension. We have succeeded in deriving coincidence and fixed points

formulas for the two types of transformations that are alone amenable to

anything like a general treatment and extended the formulas of this and the

preceding paper to transformations between two different manifolds with

or without a boundary. As an incidental acquisition there should be pointed

out some highly interesting topological propositions obtained in Parts II,

III. Of importance also is the fact that by means of ample use of matrices

we have been able to put all coincidence formulas of this and the previous

paper in very simple and manageable form.

I. General remarks on manifolds

1. A theorem on intersecting complexes. Let Ct, Ck, Mp be two com-

plexes and a manifold on Mn, all polyhedral and with Ck a sub-complex of

Mp. We wish to prove that the intersections Cn'Ck taken on M„ and

(Ch'Mp)'Ck taken on Mp coincide and when h+k = n the related Kronecker

indices are equal. We assume that as regards all intersections to be considered

the restrictions of Tr., No. 15, are fulfilled. The problem is then reduced

at once to the case where the complexes are simplexes and the manifolds

* Presented to the Society, October 30, 1926; received by the editors in November, 1926. See

also Proceedings of the National Academy of Sciences, vol. 12 (1926), p. 737.

t Referred to in the sequel as Tr. Unless otherwise stated, the notations, terminology, assump-

tions, etc., of that paper will apply directly here. The only changes will be actually in the definition

of an M„, and using for cycles besides T, also y as in Tr., Part II, and later other letters for special

types. Since we shall make considerable use of matrices we may as well give our notations here.

All our matrices will have integer terms. Any matrix will be designated as its generic element with

position indices omitted. The transverse of a matrix m will be called m'\ when m is square its deter-

minant is denoted by \m\ and the sum of the terms in its principal diagonal is called its trace.
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linear spaces. The natural procedure is as in Tr., Part I, §2, to compare

indicatrices. The indicatrix of Tr.,No. 7, is now so chosen that^4o^4i ■ • • Aq,

q = p+h—n, be on Ch • Mp, AqAi ■ ■ ■ AqAh+i ■ ■ • AT, r=p+q—n, be

on Mp and that multiplied respectively by aq, aP, they constitute indi-

catrices of their complexes. Let also alA0Ai ■ • ■ At be an indicatrix of

(Ch'Mp)'Ck when the intersection is  taken on Mp.    Then the relations

(1.1) tXhCCkCtian  —  CtkCtpOCflln  =   aatXkOClCtp  =   1

define the orientations of Ci = Ch'Ck and Ch'Mn taken on Mn, and that of

(Ch'Mp)'Ck taken on Mp. Since the a's are all ±1, from (1.1) follows at

once

(1.2) akai = apaq — c*hctn = a*uz,

therefore

(1.3) ai -ai.

The cells of the complexes to be compared are the same, and by (1.3) similarly

oriented.   Therefore

(1.4) Ch-Ck = (Ch-Mp)-Ck,

as we wished to prove. As we know from Tr., No. 8, when 1 = 0, we merely

have a Kronecker index to consider and then

(1.5) (Ch'Cn-k) = ((Ch-Mp)'Cn.h),

which may also be established directly as above by comparison of indicatrices.

Of particular interest is the case when the C's are cycles. The passage

through suitable approximations, as in Tr., Part I, §4, will enable us to

drop all restrictions as to them provided their intersection does not meet

the boundary of Mv. For the latter being polyhedral, the approximations

can always be so carried out that C¡ remains on it.

2. In the applications that we have especially in view, p = n — l,k = n — h,

so that we deal with a Kronecker index. Furthermore Mn-i will there be

a subcomplex of the defining C„ of Mn and the preceding result does not

apply outright. The extension is, however, easy on this basis: Cn and

C„-h are assumed as general as possible and hence their intersections are

isolated points, of which any one, say A, is on an A-i of C„. As far as the

contribution of A to the index is concerned, only the two «-cells En, En'

of Cn incident with 22„-i are involved. The situation is then the same as if

Mn were reduced to £„+£„' +their boundaries. But this system is obviously
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homeomorphic with preservation of structure* to a similar one in Sn.

Practically this means that we may assume that Mn is an Sn- On the latter,

however, we can always choose a defining C„ with A on an w-cell of it. Then

Mp will not be a subcomplex of it, or rather its cells through A will not be

cells of C„. Therefore we are back to the case already considered and the

conclusion is the same.

3. On the Kronecker index. Until further notice we assume that Mn

is without boundary. In an important paper^Veblen has had occasion to

define so-called intersection numbers for associated complexes of special

type on Af„.f Since we have applied some of his results it is important to

show that his numbers are merely the Kronecker indices of the complexes.

We begin with Poincaré congruences

(3.1) Ck s Tk-l, Cn-k+l —  Tn-k,

where the cycles have no common points. They give rise as in Tr., No. 18,

to the relation

(3 . 2) (Ck • Tn-k)   =   (-   1) »(IV, 'Cn-k+l) ,

valid without any other restrictions than the one just stated concerning the

cycles. That follows at once by passing to polyhedral approximations

for which (3.2) holds. Since the indices are defined in each case by means of

the approximations the relation is valid for the initial complexes.

* Two sets of simplicial cells, {e}, \e'}, are said to have the same structure, whenever to each

e there corresponds one and only one e' of same dimensionality and conversely, and when furthermore

the incidence relations between any two e's and the corresponding e"s are the same.

t These Transactions, vol. 25 (1923), pp. 540-550. Substantially the same results, derived in

similar fashion, were also obtained simultaneously but independently by Hermann Weyl, Revista

de Matemática Hispano Americana, 1923. Regarding the index, I recently received a communication

from Weyl in which he points out that, unknown to me, he had proved its independence from the

defining C„: (a) for » = 2 in Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 25 (1916),

p. 225, also Note to the second edition of Die Idee der Riemannschen Flächen; (b) for (I^ r„_i) and

any n in the Revista paper. In the same paper he also points out that for n = \n even, it may not

be possible to have a canonical set whose matrix of indices is the identity. The bearing on the co-

incidence formulas in Tr. is that one must have two associated sets as when ß^n/2, with T operating

on one and V on the other. Let these sets be 7*, 7'*', with 7'*~Zg,-,7'. All matrices g corresponding

to such a pair of associated sets are of the form pgp', where p is an arbitrary square matrix of order

Rn/2 with \p\ = ± 1. The properties of the whole class of such matrices are invariants of Mn, another

form of a remark made by Weyl, loc. cit.

In a letter received in early December, Weyl communicated to me substantially the same deriva-

tion as mine of the matrix formulas (10.3) and (39.1) of this paper from those of Tr., Part II (see

also the note in the Proceedings of the National Academy of Sciences, for December, 1926). He

has thus confirmed my results, at an important point.
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4. Let us now adopt the notations of Tr., No. 23. We designate further-

more by C„ the dual of C„, whose cells are subcomplexes of Cn' also. Any one

£n_fc is a sum of cells of C„' of type (k, pi, • - • , pi), with a common vertex

Ah, and the p's all>¿. The (» — ¿)-cells of the sum are of type (k, k + 1,

•••,»). A similar statement holds for the cell A of C„ that carries Ak,

except that now the types are (qif • • • , q,, k), qi<k (Coll. Lect.,* p. 89).

Let Ak~1 be any vertex on a cell A-i of the boundary of Ek. It is on

a cell £n_fc+i of C„, which as before is the sum of certain cells of C„' with

At_1 for vertex. We assume A-i positively related to A, hence a positive

cell of its boundary Tk-i, and A-m-i so sensed that A-* is a positive cell of

its boundary Tn-k. Now the two cycles have no common points, since these

would have to be vertices of Cn', while the vertices they carry are of the

incompatible types Ak+i, Ak~\ i^O. Hence (3.2) is applicable here and

(4.1) (A-f„-*) = (- l)*(IVi•£„_*+!).

A and r„_* meet at A *, and nowhere else. For all cells of C„' of which the

cycle is made up are of type (k, pi, • - - , pr), p*>k. Therefore (Tr., No. 23),

they are on cells of k dimensions of C„, unless they are merely vertices and

of the same type as A *. In that case they are on ¿-cells with one and only

one such vertex on each ¿-cell. Hence the ¿-cell Ek of C„ can only meet

r„_fc at a single point which can only be Ak.  Therefore

(4.2) (A-r„-*) = (A-A-*).

Due to the symmetrical relation of C„' to the dual complexes, it is not

necessary to repeat the discussion for the second index in (4.1) and we infer

at once

(4.3) (IV! •£„_*+!)   =  (A-!- In-*+l).

Therefore in place of (2.1)

(4.4) (A•£„_*) = (- l)*(A-i-Ä_*+i).

Now this is precisely the relation proved by Veblen for his intersection

numbers in §4 of his paper. Therefore in proving that they are merely

Kronecker indices, say for a given k, the latter may be increased or decreased

by one unit. Hence we may assume k = ». But for this special value Veblen's

definition reduces essentially to ours. Therefore his numbers are Kronecker

indices for every k.

* Analysis Situs, by Oswald Veblen (The Cambridge Colloquium, Part II), will be referred to

as Coll. Lect. throughout the present paper.
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5. We are then justified in taking over Veblen's theorems bodily. Of

particular significance are these two:

I. In order that 7„«0 on Mn without boundary (i.e., that it be a zero-

divisor or bounding cycle) it is necessary and sufficient that (7M*7n-M)=0

whatever yn-ß.

II. Let y¿, yj-ß run respectively through the elements of two fundamental

sets for their dimensions.   Then the rank of

(5.1) i (V y¿->) II

is Rß, and its invariant factors are all unity.

These propositions are proved by Veblen only when in each pair one

cycle is a subcomplex of C„, the other one of the dual C„. As every cycle is

homologous to a subcomplex of Cn (Tr., No. 27, Remark), and as the index

is invariant with respect to homology, the two propositions are true without

restrictions.

In our previous paper we actually made use only of the first part of II,

that is, of the fact that (5.1) is of rank R?, and proved the other part directly.

Of I also, the necessary condition alone was needed and established directly

in Part I. The only question that could have been raised is then as to whether

the R's in the formulas are the connectivity numbers and not merely the

ranks of the matrices (5.1) and we have just answered it in the negative.

6. Let us return to the fundamental set y£, y¡t, • • ■ , yuR" relative to

the operation « as considered in Tr., p. 37. It has the property that any

Y„ of Mn is a combination of the cycles of the set plus a zero-divisor. Hence

a fundamental set as to ~ is obtained by merely adding zero-divisors to

the 7's. For example, the set in Coll. Lect., p. 117, is of this very nature, and

so are the canonical sets of our first paper, but we need not limit ourselves to

these.

Let Tn-x, y2-n, ■ ■ ■ ,yn-ß correspond in analogous fashion to the

dimensionality n—fi. As is well known the number of the cycles is again

R„ (Poincaré). Complete the two sets by zero-divisors so as to have funda-

mental sets for ~, then form (5.1). By §3, the matrix will merely consist of

the square array

(6.1) Lu = || (y/-7¿„)II (i,j = 1,2, • • • , *„)

bordered with rows and columns of zeros. Hence the determinant \L„\ = ±1,

for in absolute value it is the product of the invariant factors of Lu, all equal

to one.
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7. Continuous transformations. First observation of very general

nature: All of Tr. Part I, goes through whether the cells of C„ are simplicial

or merely convex (i.e., corresponding to convex polyhedral regions on the

representative polyhedron IIn). The bearing of this becomes clear when we

remember that even when the cells of Cp, CQ are simplicial, those of CpXCq

are merely convex. Hence it is proper to apply to a product manifold all

the approximation work (loc. cit.). Of course the more general type of

C„, practically the same as Veblen's, possesses a regular subdivision of the

restricted type (Coll. Lect., p. 85).

This important point settled let us return to the situation of Tr., Part II,

§2, particularly as regards the definition of Tyli = yl¡. It is obtained by means

of an approximation T„ to rn, defining cycle of the transformation T. The

question arises, however, whether Tyu is unique. To show that such is the

case let a second defining complex C„° lead to r„°, y?, yf!. We do not exclude

the possibility that C„° coincides with C„. Then by Tr., Part I, §6, if the

approximations are sufficiently close,

(7.1) rn° -7m° X Ml ~r.-y, X Mi (mod Mn XMl).

Let the difference of the two sides bound C„+i. When the point A XB

describes it, B describes on Mi a singular image Ci+i of the complex, and

when A XB describes the boundary of C^+i, B describes 5„ — 5V0. Hence this

last cycle bounds on Mi, and 7,»—7,? therefore bounds on Mn, that is

7(1^7/? (mod Mn), which proves the uniqueness of Ty„.

8. Throughout our first paper we have assumed that an oriented zero-cell

is considered as a cycle of zero dimensions. (See in particular No. 63.)

This justifies, for example, the theorem of No. 52, our assertion as to the

Euler characteristic, No. 71, etc. Veblen in Coll. Lect., p. 110, does not

consider such cycles. The advantage of our procedure is readily perceived.

Two points similarly oriented on the same connected piece of a C„ constitute

homologous cycles, for their difference is the boundary of an obvious one-

cell. Hence R0 is the number of distinct connected pieces of C„, and if it

is an Mn without boundary, R0 = Rn, and Poincaré's duality formula holds

without exception. His formula for the Euler characteristic also takes the

simpler form, assumed in Tr., No. 71,

(8.1) E(-d{«<= Zi-iyRi-

The convention of Tr., No. 58, reduces to the following for p = 0: The trans-

form of 7o = A, point of Mn, is oto A, where a0 is as in Tr., No. 56.
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Incidentally the orientation of rn, defined (loc. cit.) by «o^O, is in-

determinate when «0 = 0. In that case we orient the cycle arbitrarily. This

has no great importance, as a change of orientation merely changes the

sign of certain Kronecker indices, whose absolute value, however, is alone

of interest.

What matters chiefly is to make sure that the fundamental formula

(59.1) holds without exception. The proof goes through in fact even for it = 0,

», but the direct verification for both cases is very simple. The case n = «

has already been considered in No. 63, but there is a simpler and more

direct verification, as we shall presently see.

Let first ju = 0. Denote again by 6, as in Tr., No. 61, the contribution of

a certain point A XB to a0. With the same notations as there used, except

that the cycle is rn, if it carries the cell En = AxB ■ ■ ■ AnXB„ then

6En is its indicatrix as cell of Tn. It follows a0 =2^> where the sum is ex-

tended to all points A XB of Tn corresponding to a fixed A. If T is the

transformation defined by r„, we may think of them as the points A XB

whose B is the image of some TA. The verification of (59.1) for ^ = 0 requires

that

(8.2) (IW X Mi) = (fn-A X M¿) = (TA-Mi) = a0(A'M¿) = a0,

which is in accordance with the formula in Tr., No. 56.

Let now p = n, and denote by e the same integer as in Tr., No. 61;

eB A • • • A is then the indicatrix of Ml at B and e has the sign of

|F„|. Hence as at the end of No. 61, AxB contributes ( —l)"eô to

(Tn'MnXB) and therefore

(8.3) (fn-MnX B) = (- 1)»2>.

Here the sum is extended to all points of T„ with a fixed B, or to all points

AxB oí the cycle such that among the points 2^4 there is one whose Mn'

image is B.

Now the image of TCn is a polyhedral yn on C„. We may so subdivide

C„, say into C„°, that TCn be a subcomplex of the subdivision. Then any

particular cell A of C„° will count say k' times positively and k" times

negatively among the cells of TCn, and we shall have from the above, if

B is on En,

(8.4) k' - k" =   J> = «n ;

(8.5) TMn  =  CXn'Mn-
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The verification of (8.2) for \x = n requires here that

(8.6) (fn'Mn XB)   =   (fn'Mn X B)   =   ( -   l)*(TMn'A)

= (- l)"an(Mn'A) = (- 1)»«,,

which comparison with (8.3) shows is correct.

9. Invariant form for coincidence and fixed point formulas. The for-

mulas given in Tr. are rather involved and furthermore depend upon a special

choice of fundamental sets. It so happens that by making use of matrices

there can be derived formulas independent of the particular fundamental

sets relative to the operation « that may be chosen. To begin with, the

first formula on p. 43, Tr., reads*

(9.1) (- \yi"*-»L&^L, = aßL„

where LM is as defined in §6 of the present paper. Since its determinant is

not zero, this gives at once

(9.2) (- 1)*««>I*_ = a„

and then

(9.3) tn-, = (- 1)"<»+»JLM-1«M.

This solves then the problem of expressing the e's in terms of the a's for

any choice of fundamental sets as to ~, and not merely for the canonical

sets. The explicit formulas of No. 64, Tr., for canonical sets follow from these

simply by replacing the L's by the form corresponding to each ju.

10. For the coincidence formula the starting point is as in Tr., No. 70,

the relation independent of the choice of sets

(10.1) (Tn'Ti) =   5>&*"(?£* X V• 7," X «¿J.

By applying Tr., (53.3), and then replacing afterwards the 5's by 7's,

this becomes

(10.2) (r. • r,' ) = £( - i) VUNt¿, • 7,Ä) M • y i-,)

=   ¿Z(- 1)" trace ti-^Ln-^uLi .

By (9.2) or (9.3) applied to both transformations, and recalling that

(ab)' =b'a', we have

(10.3) el-pLn-^Li = (L^aJ'ßn-tLi

* In that formula yi-ß must be replaced by yn-ß.
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Since transposed matrices have equal traces, (10.2) may be replaced by

(10.4) OVr.')-   £(- 1)" trace L^-JL^a,.

This is the final form that we need for the coincidence formula. It is mani-

festly more compact and clear than what is found in No. 70, Tr.,* and has

also the requisite invariant form most appropriate for manifolds with

boundary. For the fixed point formula we choose here the second trans-

formation as the identity. Then the ß's are all unit matrices and (10.4)

reduces to

(10.5) (iVrn°) =  XX- 1)" trace «„.

This is (71.1), Tr., with the two cycles interchanged. However, with the

situation chosen there, tx should be replaced by »— p in (71.1), or, what is

equivalent, the two cycles interchanged on the left. Here again, as in loc.

cit., for a transformation of the same class as the identity, or more

generally for one which merely adds zero-divisors to any cycle,

(10.6) (i\?.rn°) = Z(-i)"A,

the Euler characteristic.

11. While dealing with transformations, let us bring out the following

interesting property : The transform of a zero-divisor or cycle is also a zero-

divisor or cycle. In signs, if 7M«0, also %, = 7yM«0. For then 7MX5n-M is

also a zero-divisor or cycle for MnXMl, hence, by §3 and Tr. (59.1),

(11.1) 0 = (IVt, X 5„_„) = (- l)"(7,-7n-,)

for every yn-», from which at once yM »0.

II. Manifolds with a boundary

12. We propose to modify somewhat the definition of manifolds of our

earlier paper. The difference, however, pertains only to the boundary and

since it has played no direct part there, all results so far obtained will con-

tinue to hold. Let C„ be a complex. Consider the star of cells whose center

is a given A of Cn. Between its cells there take place the same incidence

relations as between the elements of a certain Cn-k-i: the A-cells of the

latter correspond to the (A+¿ + l)-cells of Cn incident with A, or the star

of cells of center Ek. NowC„ defines a manifold Mn when C„_t_i is homeo-

morphic

* In the first formula of No. 70 replace ~ by X •
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(a) with the boundary of an A-* (sphere of Sn-k);

or

(b) with an A-*-i plus its boundary.

A is an interior or a boundary cell of Mn according as (a) or (b) is fulfilled.

The set A_i of all boundary cells is the boundary of Mn-

Due to (b), the Cn-k-2 image of the star of A_i with center A assumed

on A-i is homeomorphic with the boundary of an 72„-*-i. Hence (a) holds

for every cell of A-i, which is thus, itself, an Mn-i without boundary.

The manifold conditions may be replaced by others equivalent and often

more convenient. Instead of considering the A-cells of the star of center

A as (h — k — l)-cells of a certain complex, let us think of them as (h—k)-

cells of a new system s„_¿ with a unique zero-cell corresponding to A.

Then in place of (a) and (b) we may obviously impose the following con-

ditions :

(a') when A is an interior cell, sn-k is homeomorphic with an A-*;

(b') when A is on the boundary, sn-k is homeomorphic with a star of

cells of £„-* that constitutes an A-* plus an A-*-i on its boundary, or what

is the same thing, with a hemispherical region of Sn-k plus its flat base.*

The conditions here imposed for an Mn are more stringent for the boun-

dary than Veblen's (Coll. Lect., p. 88). They are, however, in the nature of

a certain homogeneity requirement along the boundary and entirely similar

to what is imposed on the interior. It will also be observed that they do not

demand that the cells of Cn be simplicial, but merely that they be convex.

13. When Cn satisfies the manifold conditions so does any subdivision of it,

C„'. This is proved in outline as follows. With each flat A on C„ we associate

a system such as {e} of Tr., No. 3, where e represents a class of incident

(¿ + l)-cells on the same half A+i- The system \e) is the same for two flat

¿-cells with a ¿-subcell in common. The (h+k+ l)-cells incident with A may

be considered as A-cells made up with the similar (¿ + l)-cells as points, that

is with the e's as points. Hence when A is a cell of any particular subdivision

Ci of Cn, {e\ is homeomorphic with the C„_ib_i similar to Cn-k-i of §12.

It is then sufficient to show that when C„ behaves as desired, every \e)

obeys conditions (a), (b).

Let then A carry A-i, with a corresponding system \e'). When {e}

behaves as desired so does {e'\.   For to each e there corresponds a one-cell

* One is tempted to replace (b') by the simpler "s„_* is an £„_* plus an En-k-x on its boundary."

Unfortunately to show that this is equivalent to (b') we need the following theorem: Two A-cells

can be homeomorphically transformed into one another in such manner that two (A— l)-cells of

their boundaries are similarly transformed. For h = 2 this goes back to the Jordan curve theorem,

but beyond that there is no proof.
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of e"s with fixed end points (images of Ek itself). Hence the relation between

the two systems is like that between a sphere or hemisphere in Sn-k (a

sphere when Ek is an interior cell, a hemisphere otherwise) and its locus

when the space, immersed in an Sn-k+i, rotates through an angle tc around a

diameter. It follows that for our purpose \e) may replace {e'} and Ek

replace Ek-X. Ultimately, then, we shall merely have to consider some cell of

C„ itself; that is, as asserted, the correct behavior of \e) follows from that of

every C„-k-i attached to the cells of C».

14. From (a) and (b) as applied to (n — l)-cells it follows that every

interior (n — l)-cell of C„ separates two «-cells, and every boundary (« —1)-

cell is on a unique «-cell of C„; Fn-i is then the sum of all (» —l)-cells on a

unique «-cell of C„. We assume again that Mn is orientable. Then Fn-i will

also be orientable. For let us orient C„ and then sense each En~i of Fn-i

positively in relation to the En that it bounds. Between the «- and (» —1)-

cells incident with a given En-t of ,Fn_i we can write down the same Poincaré

congruences as for the one- and zero-cells of a polygonal line. Hence the

two end (« —l)-cells, which are those of En-i incident with En-t, are oppo-

sitely related to En-t, and Fn-i is oriented. Its orientation as thus fixed

shall be preserved throughout. It corresponds to the congruence Mn=Fn-X.

15. The auxiliary manifold F„. We assume henceforth that Mn has a

boundary Fn-X. Take, then, another copy Mn of the manifold and piece

the two together along corresponding boundary points. The new configura-

tion Vn so obtained is an Mn without boundary. (Any element of Mn corres-

ponding to a given one of Mn will be called its conjugate and designated

by the same letter barred.) If C„ is the basic defining complex of M„, we

use C„ for Mn and C„ + C„ for F„. Then if Ek is the cell of Mn in §12, when

it is not on Fn-i, the complex C„_*_i plays the same part for it relative to

F„ as to Mn. Hence it behaves then according to (a), and similarly for

Ek and C„_*_i. However, when Ek is on Fn_i, in place of Cn-k-i we have

C„_*_i+C„_jfc_i. As this set is composed of two (n — k — l)-cells pieced to-

gether along their boundaries, it is homeomorphic to the boundary of an

En-k. This is seen at once by referring to the piecing together of two hemi-

spheres in Sn-k into a sphere of that space. Hence En-k behaves again in

accordance with (a), which proves our assertion as to Fn.

If En is an «-cell of C„, Ei its indicatrix, we sense En of M„ by — £„',

hence Vn = Mn — Mn. The importance of Fn is due to the fact that the solu-

tion of the coincidence problem for pairs of transformations of M„ will be

reduced to the same problem for pairs of associated transformations of F„.*

* This or a similar procedure has been followed by other authors dealing with this question.

See, for example, Brouwer, Comptes Rendus, vol. 168 (1919), p. 1042; Alexander, these Transactions,

vol. 23 (1922), pp. 89-95.
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It is evident that its topological properties are really inherent properties

of Mn itself. We shall be particularly concerned with the study and dis-

position of its fundamental sets.

16. Fundamental sets for V„. As several distinct types of cycles will

have to be considered we shall avoid excess of indices by using not only

T, y but also G, A, D to designate them.

Let T,,1, • • • , T/ be a fundamental set for the tx cycles of Mn, and

consider all possible homologies

(16.1) £W* ~ a cycle of A-i (mod Mn).

By paraphrasing a well known process* we may readily establish that these

homologies are sums of multiples of a finite number of the same type which

constitute a fundamental set for them. The members of the fundamental

set and also the cycles can then be combined in such a fashion as to have a

new fundamental set of T's (for which we keep the same designation as

above) with fundamental homologies

(16.2) Oily«1-*-* ~ a cycle of Fn-i (mod M„) ( i = 1,2, • • • , p - r} ).

The operations referred to correspond to elementary transformations on the

matrix of the coefficients of the fundamental homologies. The first r}

cycles are not related by any homology such as (16.1) and in particular they

are entirely independent ; the remaining cycles have some non-zero multiple

homologous to a cycle on the boundary. Between the cycles r/i+i there may

exist homologies mod M„. Reducing those as above, we shall replace the

cycles by a new set Gj, j = l, 2, ■ ■ ■ , p — r}, whose first say rï elements

are independent while the others are «0. Of course r¿ +r? = A, the juth

connectivity index of Mn- The cycles Tj, i= 1, 2, • • • , r¿, Gj,j = l, 2, • ■ ■ ,

r?, constitute a fundamental set for M„ relative to the operation «.

It will be convenient to call a cycle symmetric when it is ~ mod

M„ to a cycle on A_i. Then the difference between the cycle and its conjugate

is « 0, mod F„.

17. Of no less importance than the preceding are the skew-symmetric

cycles of V„. We so designate those of type C„—ü„, where C„ is on Mn. In

place of them it would be possible to consider the complexes whose boundary

is on A-i and their properties in regard to what might be called "quasi-

homologies" or relations:

(17.1) YaUC* + a complex of Fn-i ~ 0 (mod M»).

* Klein, Elliptische Modulfunclionen, vol. 2, p. 543.
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The theory resulting therefrom would be largely a paraphrase of the one to

be found here, with the mild advantage of being strictly confined to elements

of Mn itself.

Since Cp—Cf, is a cycle, the boundary of CM is on Fn-i- Furthermore we

can remove from it any /¿-cell on Fn-i without changing the cycle.

If p„ is the nth connectivity index of F„, any pM+l skew-symmetric

/i-cycles are dependent, so that Klein's reasoning applies and we find a

fundamental set A¿, A2, ■ ■ ■ , A/, for the type. It is reducible in similar

fashion to the above as regards homologies between the intersections with

the boundary:

(17.2) X>Aï 'F-i ~ 0 (mod Fn-i),

with a similar conclusion : The set can be replaced by a new one, for which

the same designation is preserved, with fundamental homologies for the

type (17.2):

(17.3) TAJ'Fn-i~0 (modiVi) 0' = 1,2, • • • , * = ?)•

In short the first s cycles of the new set intersect the boundary of Mn in

zero-divisors or bounding cycles of it, while the remaining q—s intersect it

in independent cycles of Fn-i- By Tr., No. 35, Theorem V, they are inde-

pendent for F„ as well. There may exist, however, homologies between the

first 5. Reducing again as regards these we finally obtain a fundamental

set consisting of the following :

(a) rj cycles A,,1, A,?, • • • , A/i, independent (mod F„), but meeting

F„_i in cycles «0 (mod Fn-i) ;

(b) r¿=q—s cycles D¿, D?, ■ ■ • , D/l, independent (mod F„) and

intersecting Fn-i in cycles independent (mod Fn-i) ;

(c) a set of at most q—rf—ri zero-divisors of F„.

Every skew-symmetric cycle is ~ to a sum of A's and D's (these nota-

tions are henceforth reserved for cycles (a) and (b)). Also there can be no

homology involving both D's and A's, as we see at once by reference to

their intersections with Fn-i. Since there is none involving each type alone,

they constitute rf+rf independent cycles of F„, and therefore a fundamental

set as regards ~ and skew-symmetric cycles.

Let 7M«AM+Z)M be a skew-symmetric cycle, A„ and D„ being sums of

cycles (a) or (b). Let 5„_„ be any cycle of F„-X. From §1 follows, with indices

computed as to Fn-X,

(17.4) ((y.-Fn-O'bn-,)   =   ((D^Fn-O'Sn-J.
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Hence, by §5 and the definition of the As, in order that y^A-i^O

(mod A_i) it is necessary and sufficient that yM « AM alone.

18. Let %,_i be a cycle of A-i not «0 on that manifold, but bounding

C„ on Mn. Then A — C„ is a skew-symmetric cycle of type D not «0 (mod

Vn), since its intersection y„ with A-i is not «0 (mod A-i). Hence to a

set of / independent /¿-cycles of A-i that bound on F„ correspond as many

independent skew-symmetric cycles of type D, and conversely. Therefore

r} is the number of distinct u cycles A-i that bound on Mn-

Another interesting property is the following: Every A has a multiple

which is the sum of a cycle on Mn and of a cycle on Mn. Let AM be the cycle,

A/ a polyhedral approximation of maximum generality intersecting A-i

in %_i.   By §17,

(18.1) Y„-i «0 (modA-0.

Since A/ is of maximum generality it has no /x-cells on A-i, hence we may

write

(18.2) K =C,-Cl,

where the first complex is on Mn, the second on Mn, and both have the

common boundary yM_i.    From (18.1) we infer that there exists on A-i

(18.3) A" =-ty?-i,       t* 0,

therefore

(18.4) ia„ ~ ¿a; = (t c„ - a") - (/ c; - a").

Each parenthesis at the right is a cycle, the first on Mn, the second on Mn,

which proves our assertion.

19. Theorems. I. Every cycle of Vn is the sum of a skew-symmetric

cycle and of one on Mn.

Let %, be the cycle. It may be assumed polyhedral and the sum of two

complexes C„ and C„', the first on Mn, the second on Mn.   But

(19.i) t, = (A + A') + (c; - c;).

The second parenthesis is a skew-symmetric cycle, the first a complex on

Mn, the difference of two cycles, hence also a cycle, and the theorem is

therefore proved.

II. A y„ of Mn not «0 (mod M„) cannot be skew-symmetric.
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For let it be « 8?, skew-symmetric. Then

(19.2) 5„ - 7, « 0 « S„ - yß « + í„ +7„ (mod F.),

Therefore

(19.3) t(yß + yß) ~ 0 (mod F„) ; * * 0.

Ftríí let 7M ¿>e symmetric, with tfy,, 0^0, homologous (mod A/"„) to y S on F„_i.

Then

(19.4) By, ~ efM ~ 7Í (mod F„),

and therefore by (19.3)

(19.5) 2/7„°~0 (modF,).

There exists then on F„ a

(19.6) CM+,s2/7,°.

Let CM'+i be the subcomplex of Cß+X that includes all its cells on Mn (logical

intersection of C„+i and Mn) and set CM+i — Ci+X = C/+i, complex made up

of all (p+1)-cells of CM+i interior to Mn plus their boundaries. Since the

boundary of CM+i can only be on Fn-i, it coincides with that of C/+x. Hence

(19.7) C;+i + C/+,-2*y»,

for C„+x has the same boundary as the complex at the left. But the latter

is on Mn, hence

(19.8) 0T, ~ 7m° « 0 ;   7, « 0 (mod Mn),

contrary to assumption.

Assume now that y„ is not symmetric. It is reducible to a polyhedral

cycle whose ju-cells are all interior to Mn- The first part of this double

assertion is established as in Coll. Lect., pp. 95, 118, the second as in Tr.

No. 24, (b). Furthermore a complete proof, independent of the present

discussion, is given below (§23). The left member of (19.3), polyhedral and

without p-cells on Fn_i, will also bound a polyhedral CM+i (Coll. Lect.,

p. 120). Let again the sum of its cells on Mn be called CM'+i. This last com-

plex has for total boundary tyß plus a cycle 7/ on Fn-X.  Therefore

(19.9) *7„-y i (modilfn),

and 7„ is a symmetric cycle, — a new contradiction, and II is proved.

In the second part of the discussion we have established that if (19.3)

holds then yß is symmetric. The identical reasoning holds for the more

general homology, in which yß is still on Mn,
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(19.10) tyß + 8yß ~ 0 (mod F„).

"which shows that

III. If 7„ of Mn is dependent upon its conjugate yß then it is a symmetric

cycle.

IV. When yß of Mn is not ~0, mod Mn, then it is also not «0, mod Vn.

This is a special case of II corresponding to 5M = 0.

20. From the preceding propositions follows at once the all important

Theorem. The cycles T°y, G?>, A?», D?> («¿ = 1, 2, • • • , r¡) constitute a

-fundamental set for Vn and the operation «. To obtain a fundamental set

for ~ it is only necessary to add zero-divisors of Mn and skew-symmetric zero-

divisors of V„.

From their definition we know that the T's and G's are independent,

and similarly for the A's and As. From II follows that the four sets are

independent in their totality. Then again from I and the fact that the

r's and G's constitute a fundamental set as to « and M„, and similarly

the A's and As for the skew-symmetric cycles and F„, the theorem foUows

in its completeness.

Corollary.    The nth connectivity index of V„ is pß=rß1+ ■ ■ ■ +rß*.

21. Our present object is to show that with a suitable choice of asso-

ciated sets for the dimensionalities ju and »— ju certain indices are, or can

be made to be, zero, which will naturally lead to the canonical sets.

22. Lemma. Let E„ be a cell, TM a cycle on A, both polyhedral. Then

there exists a polyhedral C„+i on A bounded by Tß.

Since r„ is on A, it has no points on the boundary of the cell. Hence

there exists a cell A' which together with its boundary lies on A, and also

carries r„. Let a be the least distance between points of the boundaries

of the cells. Cover A with a polyhedral complex whose cells are all of diam-

eter <a, and remove all its »-cells with a boundary point on the boundary

of En. The »-cells that are left together with their boundaries constitute

a Cn on En and carrying A'. The cycle r„ bounds on A', hence also on C„,

and on that complex it bounds a polyhedral CM+i (Coll. Lect., p. 120) which

proves the lemma.

23. Let A be a complex on Mn with its boundary on A-i, and let us

follow step by step the approximation described in Tr., Part I, §4. We first

apply the Alexander-Veblen process, and obtain C„+i, polyhedral with an
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associated congruence

(23. i) cß+x = c„ - c; + C».

By reference to Coll. Lect., pp. 95, 118, we find that we may approximate

each vertex of the boundary of Cß by a vertex of the boundary of C„, that

is, by a point of Fn-X. Then C„° and the boundary of Ci will be on Fn-X.

Except for that, the rest of the work of approximation is directly applicable

here. However, No. 23, Tr., does not apply to non-boundary cells of Ci

on Fn-X, and necessitates a slight modification.

We take C„ such that Ci is now a subcomplex of it (Tr., No. 14, Lemma

II), and as a first move, reduce its boundary on Fn-X as described in Tr.,

No. 23. We thus obtain a polyhedral cycle r/_i of Fn-X whose (p—¿)-cells

are all on cells of no less than n—i dimensions of C„. Furthermore r,,_i — T,/-!

bounds a polyhedral Ci', and both new cycles and complex are as near

as we please to Ci, hence to Cß. It follows that in (23.1), Ci and CM°

may be replaced by Ci +CM" and Cß°+Ci', without altering the situation.

Therefore we may start with a complex Ci whose boundary is already

reduced as indicated. To extend then the reduction of Tr., No. 23, all we

need to do is to replace Ci by a complex whose non-boundary cells are

interior to Mn, since the reduction in question can be applied to these.

The reader will verify with ease that the situation pertaining to (23.1)

remains unaffected by any step to be taken presently. Furthermore, the

reduction will be more thorough than in Tr., No. 23, in that the new ele-

ments introduced first here, then by the process of Tr., No. 23, will be

throughout interior to Mn. Hence the complex as finally reduced will have

all non-boundary cells interior to the manifold.

Let first Eß be a simplicial cell of Ci on Fn-X and on the boundary of

the cell En of Cn- Draw rectilinear segments from a fixed point of E„ to all

points of Eß. The resulting simplicial cell has for boundary a Fß whose p-

cells other than Eß (which is one of them) are on En. There is a t^O such

that Ci — tTß'-^Ci is a complex which no longer includes Eß. The cell Eß

has then been replaced by cells on E„, or interior cells of Mn. Thus we can

reduce Ci to a similar complex whose ju-cells are interior to Mn. Assume

then that all cells of more than h dimensions, h<n, of Ci are interior cells.

I say that the reduction can be extended to the A-cells as well.

Let Eh of Ci be on F«_,. Introduce new interior vertices on Cn so chosen

that for the new complex Ci the star of cells of center En carries no boundary

cells of Ci on its own. Since the star attached to C„ carries no other boundary

cells of Ci than those on En or its boundary, the construction offers no
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difficulty. The related C„_j,_i of Tr., No. 3, which is merely the boundary

of the star, will then intersect C/ in a (p—h — l)-cycle on A-*-i. By our

lemma this cycle bounds a polyhedral A_a on A-t-i, having then no point

on A-i. Let Eh = AnAx • ■ ■ Ah, and let also Ah+i ■ • • A¡ be an ar-

bitrary cell of Cß-h', then denote by CM+i the complex sum of the cells

AnAi • - • Ai. It has in common with C„' all cells incident with A, and

except for these cells and their boundary points it is entirely interior to Mn-

Let us sense its boundary T¿ so that the indicatrix of any cell is obtained

by naming first the vertices of En, next those of the related cell on A-i-i

so that both sets be vertices of an indicatrix for their cell. Then C„' and

r„' will have the same cells incident with Eh each counted with the same

multiplicity for both complexes. Hence C¿ — T¿~C¿ will have lost A

without acquiring new cells on A-i- This shows that the reduction can

also be extended to h cells of C„', hence to its boundary cells.

Combining the whole discussion we have the important

Theorem. Let C„ be an assigned defining complex of Mn and Cß a complex

on the manifold, whose boundary is on A-i. Then there is a corresponding

congruence (23.1) with (a) A' polyhedral, as near as we please to C„, with

its boundary on A-i and as near as we please to that of A, also with its ¡i—i

cells on cells of no less than n—i dimensions of C„, the non-boundary cells being

interior to Mn; (b) Cß° on A-i and as near as desired to the boundary of Cß.

Corollary I. Every cycle of M„ is homologous to an interior cycle be-

having in accordance with the theorem.

Corollary II. Every skew-symmetric cycle is homologous to one of form

A' — C¿, where A behaves in accordance with the theorem.

For let yß = Cß—Cß. Reduce CM as above with the congruence (23.1).

Then also

(23.2) Cß+i = A - A' + CM° ;

therefore

(23.3) 7m ~(A' -C,')~0,

as was to be proved.

Unless otherwise stated we shall always assume the cycles of Mn and

the skew-symmetric cycles reduced as far as allowed by theorem and corol-

laries. Practically everywhere in the sequel, a cycle of one of these two types

may be replaced by one which is ~, mod Mn and F„ respectively, and then
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if it is not already reduced, we shall be at liberty to reduce it without further

discussion.

24. Theorems on indices.    I.   (r;: • GnLß) = (G¿ • GnLß) = 0.

There exists Gn-ß of F„-X, <~ t Gn3-ß, mod Mn, ty^O. If we replace GnLß

by Gn-ß we merely multiply the indices by t. Hence we need only show that

(24.1) (17 • Gn-ß) = (G¿ • C.tLß) - 0,

which is obvious since Tj and G¿ may be chosen interior to Mn and then

they will not meet Gn-ß.

Explicitly, and since (T-G)= ±(G-T), the indices (Y'G), (G'T), (G-G)

are all zero.

II. The index of two skew-symmetric cycles is zero.

Let 8ß = Cß — Cß, 8n-ß = C„-ß — Cn-ß be the two cycles in the reduced form

in position of maximum generality. Then for evident reasons of symmetry

the two indices (Cß'Cn-ß) and (C„ •£,_„) taken with Mn and Mn as the

carrying manifolds are equal. Hence, taken with Vn = Mn — ~Mn as the car-

rying manifold, they are opposite. But Cß does not meet Cn-* and Cn-* does

not meet Cß. Hence

(24.2) (8ß • 8n-ß) = (Cß - Cß) (Cn.ß - Cn-ß)

= (CM-C„_M) - (Cß-Cn-ß) = 0.

III. (G;-AnL,)=0.

In the proof G may be replaced by t G, i^O. Since there is a t G on Fn-i,

we may assume that G itself is on the boundary. Then (§ 18) there is an

5 5^0 such that

(24.3) iA~A' + ä",

where A' is a cycle on M„ and Ä ' a cycle on Mn. By I and since A' and A"

depend upon the G's and T's,

(24.4) (G-A') = (G-A") = - (G-Â") = 0 ;

therefore

(24.5) (G>A) = 0 = (A>G).

Conclusion. All indices (T-G), (A-G), (A«A), (A'D), and those ob-

tained by permuting the cycles, are zero.
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25.    The matrix Lß will then have the form

I n—it   **n—u   Xjn—ß    AJn—n

A =

A

H

0

M

B

0

0

0

o

o

o

N

c
o

F

O

where   the

G,

A
terms are all matrices; for example, 77 = ||(rM* • A„L^)||,

= 0, etc. We shall now study A and in particular show that

by proper choice of cycles in each group it can be reduced to a much simpler

form, with only one indeterminate matrix, namely A. As an incidental

result we shall obtain very interesting duality theorems regarding the

integers rß, theorems quite similar to Poincaré's relation for the connectivity

numbers of manifolds without boundary.

26. I. F and N are square. The permissible operations of adding

a multiple of a cycle of a fundamental set to another or permuting two of

them, applied to the groups Gß, A-« will amount to the noted elementary

transformations as applied to F. Hence F may be reduced to the well known

form

(26.1)

ei 0

«2

0 0 •   •    0

e,

0

0

0

Jlo.Oil
where the e's are the invariant factors of F and there are p rows and q

columns of zeros. Assume this done and continue to call the reduced matrix

F. We must show that p = q = 0. Evidently, p = 0, for otherwise Lß, as re-

duced, would have a whole row of zeros, whereas its determinant is ±1

(§ 6). Then if q^O there is a Dn-ß such that (GßDn-ß)=0 for every sym-

metrical cycle Gß and in particular for every one on A-i- Hence (§§5, 17),

Dn-ß is dependent upon the cycles An_M, which is untrue. Therefore q = 0,

F is square and so similarly is N. Their determinants are integers and factors

of | A | = ± 1, hence they are both ± 1.

In the canonical form the e's for both matrices will be +1. When

117a 2», they may both be separately reduced to that form. Denoting generic-

ally by Ik the unit matrix of order ¿, we have, when the reduction is carried
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out, F = I,t, N = Ir*. When p = \n, we have at once, by Tr., No. 8,

N = ( — l)nl2F'. The reduction of F brings about that of N. For J» even,

the final form is as above ; for \n odd, it is F = Ir* = —N.

As an important result proved incidentally we have r? = r„4_„ or

II. (First duality theorem.) The number of distinct symmetric

p cycles is equal to the number of independent n—p cycles of FH-X that bound

on Mn.

Since F is a unit matrix and since a T — G is also a T, we can subtract from

every Tß of the fundamental set a Gß cycle so chosen as to reduce the corre-

sponding row of C to zero. This means that we can so select the set of Tß's

as to have C = 0. If p^\n, we may operate similarly on the r„_„'s and re-

duce M to zero, while when p = \n, we shall have M = ± C = 0.   Hence

III. The fundamental sets can be so selected as to give Lß one of the two

forms
¿BOO        ,4500

#000        ¿7000

0   0   0 1,     0   0   0 1,

0   0    10        0   0-10

according as p is not or is \n and odd. To simplify we have merely indi-

cated the unit matrices by 1.

IV. A is a square matrix. It may be reduced to the type (26.1) by the

two operations of the beginning of this section applied to I"s alone. As-

reduced to that type we shall show again that p = q = 0. For evident reasons-

of symmetry it is sufficient to show that q = 0. For every Tß we have:

(r„-rBsi^) =0.   Then if 8n-ß = T'„±ß-T:±l we have, for every Gß,

(26.2) (Gß-8n-ß) = (G^T'„t\) ~ (G.-f^) - 0,

for the last two indices are equal in absolute value and the first is zero

(§ 24, Theorem I). Also, as we may assume Tß interior to Mn and r'jt^

interior to Mn, and hence that the two are without common points,

(26.3) (iva„_„) = - (IVO = 0.

And finally, since 8n-ß is skew-symmetric,

(26.4) (A, • 0„_„) = (Dß • on_„) = 0.

In short, (yß,8n-ß)=0 for every p cycle of the fundamental set, therefore

for every p cycle of F„. Hence 8n-ß~0. There exists, then, a t¿¿0 such

that trjL^tfltl.  Hence (§ 19, Theorem III), r£J, is a symmetric cycle,
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contrary to assumptions.  There exists then no r„_„ whose upper index >i,

which means that q = 0 and proves IV.

Since A is square, r¿ = r}-» and therefore

V. (Second duality theorem.) The number of cycles of Mn of which

no combination is a cycle of A-i is the same for the dimensions p and n—p.

VI. B and B are square matrices and their determinants are ±1. We

reduce again say B to the form (26.1) and show that p = q = 0. If qn^O

there exists a An_^ such that (yß • An-ß) = 0 whatever yß, hence A„_M is a

zero-divisor contrary to assumptions, and a = 0. Assume now p5¿0. Then

the number of distinct A„_,,'s is <rM1 = r„1_M, the order of A. Consider, how-

ever, the cycles I\A,—TJ-p. Since the T's may be taken interior to Mn,

these skew-symmetric cycles do not intersect A-i and therefore are de-

pendent upon the A's. On the other hand they are independent, or there

would exist a Yn-ß~Tn-ß, and hence symmetric (§ 19, Theorem III) in

contradiction to the assumptions on the V type. Hence there are at least

r„ distinct An_M's and ^> = 0. Therefore B is a square matrix and so is 27.

Here again their determinants are integers and factors of \Lß\ = ±1, there-

fore also = ± 1.

From VI it follows that r^ — r¿-i¡=r¿=r¿-p.   Hence

VII. (Third duality theorem.) The number of distinct skew-symmetric

cycles that intersect A-i in zero-divisors or bounding cycles is the same for

the dimensions p and n — p and equal to the number of distinct cycles of Mn

of p or n —p dimensions that are independent of the cycles of A-i-

27. It follows from the above that for p¿¿\n we can reduce both B

and 27 to Irx. For p = \n, E = ( — l)nB and the reduction of B will bring

about that of 27.

For the computation to follow it is advisable to select fundamental sets

thus: when p<\n the four groups of cycles are taken in the order T, A,

A G; when p^n in the order T, A, G, A  Then

\\A   1|

1
P*-n, A =

(27.1)

1   0
0

p = —»,   a

l

0
A 1

(_ i)«/i.i     o
0

0 1

(_l)»/*.l     0
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where the 1 stands in each case for a unit matrix whose order is not essential

(see Remark below). What matters chiefly is that for the dimensions p

and n—p those in the same places are of the same orders. In the upper left

corner they are both of order rßx, in the right corner of orders r} and r„*.

Concerning A we have no available information, but fortunately it dis-

appears entirely from our formulas and therefore need not concern us further.

Remark.  Consider for a moment two matrices written in the form

(27.2) «- II ««II.       0-lft/l,

with elements a¿,-, /?<,- themselves matrices. The ordinary multiplication

rule

(27.3) aß = ||  2>.-*/3*íll

is directly applicable (taking care not to interchange factors in aik ßkl)

provided that (a) the number of columns in a is the same as the number of

rows in ß ; (b) the sequence of the number of columns for the elements in a

row of a is the same for all rows and also the same as for ß '. These two con-

ditions are fulfilled if a and ß are square with their diagonal elements

ota, ßu also square and of equal order for the same i. In that case not only

aß but also ßa may be obtained by the usual rule. This is the precise situa-

tion that we shall face throughout, where we shall find products of matrices

all of the same structure as Lß.

Let us recall incidentally that, for example, a' = ||a,-,' ||, that is, the

transposed of a is obtained by interchanging rows and columns and re-

placing each individual term by its transposed. All this goes back to the

rule for matrix multiplication.

III.  Continuous transformations or manifolds with a boundary

28. Just as in the no-boundary case the definition of a continuous trans-

formation is best given by reference to M„XMl, where Mi is a copy of Mn.

However, before discussing the transformations we shall show that the

product is also a manifold. The Mi image of any Mn configuration will be

denoted throughout by the same letter accented.

Let then Eh be any cell of C„, defining complex of M„, sn-h the cor-

responding system such as appears in § 12 in connection with conditions

(a'), (b'). We have

(28.1) Sn-h = £„-* + /£„-a-i,
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where t = 0 or 1 according as Eh is or is not an interior cell of C„. To any

cell Ek of Ci will similarly correspond

(28.2) *„_* = £„_* + t'En-k-i,

where all terms have an obvious meaning. But referring to the definition

of the s's we find that Sn-hXsn-k corresponds in a similar manner to E\XEk

as a cell of C„ X Ci.   Now

i„_A X Sn-k =  En-H X En-k + tEn-K-l X £„-*

(28.3)
+ t En-h X En-k-l + tt En-K-1 X En-k-1 •

Each term represents a cell whose dimensions are the sum of those of the

factors. Now EnXEk is a boundary cell only when one of the t's is not

zero. When both are zero, (a') is manifestly satisfied, and when, say,

t=l, t' = 0, (b') is satisfied, as they should be. Let, then, t = t' = l. We must

show that En-h-iXEn-k+En-hXEn-k-X+En-h-iXEn-k-i is homeomorphic

to a 2(« — h — k — l)-cell. It will be remembered that, by condition (b'), -En-*

is homeomorphic to the interior of a hemisphere in Sn-k with En-k-i as the

flat base of the hemisphere. It follows that the first term is of the same type

for an Sin-h-k-i and similarly for the second with the third as the common

flat base. The sum is then homeomorphic to the interior of a sphere in the

same space, that is to a cell, which completes the proof.

Remarks.  I.  The same proof holds for a product MPXM„, p^q.

II. Since the factors are orientable this is also true for the product

(Tr., No. 49).
29. We now define a continuous transformation T of M„ as in Tr.,

No. 56, by the condition that the set {AxB\ =Kn be a Cn of M„XMi with

its boundary on that of the product. Let T' be another transformation,

Ki its complex. The problem is again to determine (K„'Ki) (number of

signed coincidences) in terms of the transformations induced by T, T' on

the cycles, or of similar data (i. e., information naturally at hand when T,

T' are known).

No result of any generality is to be expected unless Kn and Ki are so

restricted that the boundaries of suitably defined approximations do not

intersect. Indeed, unless this is so, (Kn'Ki) ceases to be an invariant of

classes of transformations. We assume of course throughout that Mn is

connected, but Fn-i need not be so. Let Fi-i, • • • , Fnv-i be its connected

parts. By Tr., (49.2), the boundary of M„XMi is the sum of the products

Fi-iXMi, (-l)nMnXF'i-X, each of which is  a manifold (§28).     The
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boundary of each K consists of subcomplexes distributed among some or

all of these 2 p manifolds. The least that we can exact is that none carry

boundary points of both K's in its interior. However, this is still beyond

the reach of the method to be used here, at least in this general form. We

shall therefore restrict our discussion to pairs of transformations such that the

boundary of one K is on Fn-iXMñ, while that of the other is on M„XA-i,

one of the boundaries being actually interior to the carrying manifold. This

will greatly simplify matters, sufficiently indeed to compensate amply

for whatever may be lost in generality. In § 32 we shall give a topological

interpretation of these types of transformations by means of certain ap-

proximating transformations.

30. We shall reduce the coincidence and fixed points problems for M„

to similar problems for certain associated transformations of Fn that we

now define.

Case I: T is of the first type, that is with the boundary r„_i of Kn on

Fn-iXMl. According to § 23, Corollary I, it is homologous thereon to

r„'_i interior to A-iXM„' and satisfying in all respects the conditions

there stated. If beyond this point we apply the same reductions as before

(loc. cit.) to Kn itself, we shall reduce it to a complex En bounded by Tn'-i

with its non-boundary cells all interior to MnXMn' and behaving in every

respect in accordance with the theorem of § 23. If C„ of Mn has its boundary

on A-i we first reduce it as in § 23 ; then its transform TCß is determined

as in Tr., No. 58, with Cß in place of y„ and 77„ in place of T» (loc cit.).

As a special case C„ may be a yß; then it is first reduced to the interior of

Mn and TV,, is then determined in the same way.

Since VnXVn' = MnXVn'-MnXVl, it may be derived from MBXF„' as

Vn from Mn- The two parts of the manifold are now matched along their

common boundary A-iXF„', and their points associated in conjugate

pairs A XB and AxB. To Kn and E„ there correspond in this fashion as-

sociated skew-symmetric cycles Kn — Kn~En — Hn = Tn, and the latter will

serve to define the transformation A of F„ associated with T.

Since the B points describe on F„' the images of the transforms of the

loci of the A points, we have, by Tr., No. 58,

(30.1) TxCß = TiCß = TCß ;        Ti(Cß - Cß) = 0.

Furthermore, Txyß = Tyß since Kñ alone comes into play in determining

the two transforms. Hence A transforms cycles of Mn into cycles of Mn and

skew-symmetric cycles into bounding cycles.
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Let the transformation matrix for the cycles Tß, Gß of the fundamental

sets be

r«    G„

g;

It is the transformation matrix for the cycles of Mn and T, the transformed

cycles being given as « to a combination of the initial cycles. The similar

matrix for F„ is

T     ADG T     AG     D

PÍ, o Pu o r

0     0 0     0  A.

P« 0 Pit 0 G

0     0 0     0  2?

31. Case II : T is of the second type, or with its boundary on MnXFi-x.

In this case H„ will have its boundary interior to Af„XP»-i. Then since

VnXVl = VnXMl — VnXMl, the left side is to be considered as obtained

by matching the two manifolds at the right whose common boundary is

VnXFi-X, and AxB, AXB constitute the conjugate pairs. Again Kn — Kn

~Hn—Hn = Tn, cycle which serves to define Tx.

We find now that Tx Cß consists of Ci = TCß and — Ci, the second com-

plex having a minus sign because its orientation is determined by means of

—Ki. Also no cell on M„ has any transform. It follows that every cycle of

F„ is transformed into a skew-symmetric cycle by Tx. More explicitly, let

the cycle first polyhedrally approximated be yß = Ci + Ci', where the first

complex is on Mn, the second on Mn.  Then Tx yß = TCi~(TCi).

The transformation matrix is given below:

T   A      D      G

0 Rxx RX2 o r

0 <?n Qit 0 A

0 Q\x Qn 0 D'

0 Rti R¡2 0 G

P> =
Pf,
p;,

P>12

p < —n, aß =

Pu 0 0 Pu

0 0 0 0

0 0 0 0

P21 0 0 Pii

A ; /i = —», a»

D

p < —n,  aß =
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r  A D

0

0

0

0

On

Rsi

Qsi

o

0

0

0

Rl2

Qis

Rss

<?22

r

A

G'

D

The matrix Q = ||Aj|| is the transformation matrix for skew-symmetric

cycles, and alone will appear in the final formulas.

32. The complex 27„ defines for both types an approximation T to

the given T such that (a) when T is of the first type, TM„ is wholly interior

to Mn; (b) when T is of the second type, TFn-i does not exist, i.e., the

boundary belongs to the set of points that have no T transform. This may

be considered as a geometric characterisation of the two types.

33. Let us now assume that T is of type I, T' of type II and represent the

cycle and complexes attached to T' by the same letters as for T with primes.

We are explicitly assuming (§ 29) that K and K' intersect only in interior

points of Mn X Mn . Hence (Kn • Kn' ) is perfectly determined and by definition

equal to (27„'27„') (Tr., No. 35).  Therefore, at once,

(33.1)      (r„ • r„' ) = ((A - 77„) • (A' - Ä' )) = ( A • A' ) = (A • A' ),

for when a term of a pair 27, 27' is barred the two complexes do not meet.

Hence the coincidence problem for T, T' is reduced to the same problem for

Ti, Ti.

IV. Coincidence and fixed points formulas

34. We have just shown that these formulas are the same for Mn as

for the associated transformations of F„. We apply then (10.4), taking for

Tx the transformation corresponding to the a's, for Ti that corresponding

to the d's, and we have

(34.1) (A-A') = dVr„') -   Ya(~ 1)'trace ¿A'-mA1«,

We now assume the fundamental sets in the canonical form of § 27 and carry

out the computation. The matrices in the product have the same structure,

with four square submatrices in the principal diagonal in the same order.

Lßl for pj±\n odd, is like A except that

A   1

1    0
is replaced by

0    1

1-A
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For ju = \n odd,

(34.2) •i-n/2  —

-   1

A

0

By way of illustration, we examine the computation for p<$n.

dropping the indices p and «—p for the present,

Lß' =

Then,

(34.3)

(34.4)

0

Pu

0

P2i

0

Plü

o

Hence

(34.5) Lß'L^a =

<?nPii + Q21P21

QuPii + Q22P22

where the terms not in the main diagonal are omitted and need not be

computed, as unnecessary for the trace. It follows that

(34.6) trace Lßßi-ßLß~1aß= trace ¿2Qiin~"Pi'ij = trace Qi-ßPß,
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therefore

(34.7) (A-A') =   Z(- 1)" trace Qn'_,PM

is the desired coincidence formula. Its similarity to (10.4) for the non-boundary

case is very striking.

35. The preceding formula corresponds to highly specialized fundamental

sets. Let us consider the more general case where they are merely composed

of the same four types T, A, G, D, in the same order as before for each p,

but no further specialized than is demanded by the condition that all

indices (T-D), (AT) be zero. This amounts to requiring that C = M = 0,

where the two matrices are as in § 25. The passage from a canonical set

to the more general type is by means of transformations operating separately

on each of the four types. Then

L = (p < §»),

(35.1)

(m = *«),

where all terms have the subscript p omitted for the sake of simplicity.  It

turns out that the only terms needed are

(35.2) A = II (iy • AnL„) ||,     A - II (A* -GnLß) ||.

Then, either by computing directly as before or else from (34.7), we derive

the equivalent invariant form :

(A-A') «   £(- 1)" trace (AOn-^M-'Ai

(35.3) , , ,+ BQsiF-lPsi + FQi2B-lPis + FQssF~lPss),

where the dimensionality indices, the same for all four terms at the right,

are written only for the first.   This is the desired generalization of (34.7).
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36. We pass now to the derivation of the fixed point formulas. We

assume the fundamental sets general in the sense of § 35.

I. T is of the first type. Since the identity is of each of the two types, we

now assign it to the second type, approximate its K, say Kn°, by Hn° with

its boundary on MnXFl-X, and interpret the problem as the determination

of (Kn'Kn0). It is in fact exactly that when T actually reduces F„_i to

the interior of Mn.

We shall so sense if„° that the corresponding integer 0 of § 8, here the

same at every point of K$, is +1. Then it is immediately seen that the

corresponding Qß=I.

Whence

(36. d er = ç2v - o, qxx" = esr = i.
Therefore

(36.2) (Kn'KS) =   ¿Z(- D" trace Pß.

II. T is of the second type. The discussion is now the same, with the

identity ascribed to the first type. 27„° determines a deformation of M„ into

an interior part of itself, and (Kn° • Hn) is then the number of points where

T operates as that infinitesimal deformation. In this case

(36.3) P„ = 1   = Pi1 = P,22 ; P» = P» = 0.

Hence

(36.4) (K* • Ki) -  £(- 1)" trace (BJZT'B^ + FßQ£""P,"1).

But by well known properties of matrices,

(36.5) trace uv'u~l = traces' = trace».

This together with a change of p into n—p gives

(36.6) (K° -Ki) = (- l)n ¿Z(~ D" trace Qß.

37. A particularly interesting case of (36.2) corresponds to the fixed

points of a deformation T (infinitesimal or otherwise) of Mn into an interior

part of itself. Then the actual number of signed fixed points when finite

is given by

(37.1) (KlO'Kf) =  £(- l)"Rß,

where K'n corresponds to the deformation. Here R„ is the sum of the traces

of Pn and P22 when they both reduce to the identity, that is, the sum of their

orders. This is also the number of distinct T's and G's in the fundamental set
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for the dimension p ; hence Rß is the juth connectivity index of Mn itself, and

the sum in (37.1) is its Euler characteristic. This shows that (10.6) holds

for an Mn with a boundary also, of course with the As in place of the T's.

Therefore

Theorem. For every Mn, with or without boundary, the number of signed

fixed points of a deformation is the Euler characteristic.

It is understood of course that when M„ has a boundary the deformation

reduces Mn to part of itself. It is necessary to point out that instead of a

deformation we may equally well consider a T reducing Mn to an interior

part of itself and merely adding zero-divisors to the cycles of the manifold.

The question of the singular points of a vector distribution is equivalent

to the determination of the fixed points of an infinitesimal deformation. The

authors dealing with it, notably Brouwer, Birkhoff, and recently Hopf,* have

always restricted their manifolds more than in this paper. Hopf, for example,

assumes that at every vertex of the defining C„ of MH the incident cells

constitute a star with the same structure as some star embedded in an

Sn. Then, whatever the point A, there exists a region containing it wherein

any two points may be joined by a uniquely defined polygonal line, image

of a rectilinear segment in the Sn region. Until it is actually proved, as may

be done for » = 2, 3, that every star of cells which is an n-cell has the same

structure as some star in Sn, our manifolds must be considered as much more

general, and our results as having a notably wider range. On the other hand

it must be stated that all analytical manifolds are of the more restricted type,

so that for various applications the restriction may actually not be important.

38. The fixed point formulas derived from the general coincidence

formula may also be obtained directly and in a very simple manner. Indeed,

instead of associating with the identity the transformations of §§ 30, 31, we

may associate with it the identical transformation for F„ also. The corres-

ponding cycle r„° is on MnXMñ and MnXMñ, hence at once for type I,

(38.1) (Kn'KS) = (rn-r„°),

and for type II

(38.2) (A0-A') = (r„»-rn').

* Mathematische Annalen, vol. 96 (1926), pp. 225-250. He has derived (37.1) for a vector

distribution on the general M„ of the type that he considers. His seem to be the only investigations

on general manifolds along the line of this paper that are to be found in the literature. In Mathe-

matische Annalen, vol. 95 (1925), he has generalized in an interesting manner the well known topo-

logical property of the total Gaussian curvature.
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Then from (10.5) the desired results follow easily.

39. Transformation of one manifold into another. The transformations

of Mn into a new manifold Mi are treated exactly like those of Mn into

itself. First let both be without boundary and let Lß be the analogue of

Lß for Mi. The transformation of Mn into Mi will be denned by cycles

T», r„' on MnXMi and (59.2), Tr., will hold.

The expression for (r„'r„') will be again (10.4) with the first factor,

L, in each term replaced by L, and the others unchanged or*

(39.1) OVr»')«   ¿Z(- 1)" trace Lßi-J,^.

When there are boundaries, the types of transformations must again

be restricted as previously. If B, F correspond to L as B, F to L, we find

here the same coincidence formula (35.3) as before, except that B, F are

replaced by B, F, everything else (notably B~x, P_1) remaining unchanged.

It does not seem necessary to write the formula explicitly.

40. A different type of coincidence formula. In these Transactions,

vol. 25 (1923), Alexander has derived for 1-t transformations of surfaces

a formula of a different type from ours. The difference consists in the fact

that in place of the transformation matrices there appear everywhere the

Kronecker index matrices for the intersections of the n—p cycles with the

transforms of the p cycles. Let us show that such formulas can be derived

from those of the present paper.

Let first Mn be without boundary and introduce for T the matrix

(40.1) {„= || (Ty< -ynU)\\

with a similar matrix nß for T'.   The problem is to express the number of

signed coincidences in terms of the ¿'s and tj's.  We have

(40.2) (Ty<>ynLß) =     EAS^ )

¿¿aM   V7/i * 7n—¡i) ,

therefore

(40.3) {„ = a^ ;   rjß = ß,JLß.

From this and the readily verified relation

(40.4) £„'_„ = (- iyi»+»Lß,

* See footnote, §3.
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foUows in place of (10.6) the desired formula

(40.5) OVr.') =  £(-!)"* trace W-A-'Wi"1.

For the fixed points, assume the second transformation to be the identity.

Then directly from (10.5) or else from (40.5) and

(40.6) Vn-ß = Ln-ß = (- 1)«*+»L¿,

we find the number of signed fixed points

(40.7) dVI\?) = £(-1)* trace fcl,-».

Let » = 2 as in Alexander's paper. The terms corresponding to p = 0, 2 are

the same as in (10.6), namely a0+( —1)" o¡»=a0+a2. The term p = l alone

needs to be computed. When the fundamental set is canonical, A is the well

known matrix ||/,,|| (i,j = l, 2, ■ ■ ■ , 2p = Ri) with A-i, si=—hi, 2.-1 == 1

and all other terms zero. Let 71, • • • , 72p be the retrosections of the

Riemann surface. If we recall that for any two cycles 7, S on the surface,

(yh) = —(b'y), and observe that LI = —A, we find that (40.7) becomes,

with 7 = 77 as usual,

(40.8) (IVIY) = «o + «2 + Z(7"«-i*7k) + (ya-i-yu),

which generalizes Alexander's formula (4), loc. cit., and except for the

notation reduces to it when, as he does, we consider 1-r transformations

(a0 = l, a2 = r).

The treatment for manifolds with a boundary is along the same line.

We find

(Kn• K: ) =   £(- 1)»" trace (a ¿-"2^¿A"1
(40.9)

+ c'siN-^isB-1 + t/isB-^siN-1

+ a'ssN-^ssN-1),

where the sequence of dimensional indices is the same for all four terms

under the sum and therefore has been written down only for the first.

As for the various letters their meaning is as follows :

A = II 0V • a„l„) 11,   A = II (Gi - AA) II,
(40.10) ,•     „

x5 = || (TTi-ài-M ;
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7Ti2, 7T2i, ira are as wxx with the pair TA replaced by GA, YD and GD respec-

tively, while cr j, is derived from 7r,,-, by substituting for T and p, T' and n —p

and permuting the cycles of the corresponding pair.

For the fixed points of T of first type, we take T' = 1, and it turns out that

(40.7) holds also provided that £ and L correspond to Kronecker index

matrices for the fundamental sets of Mn alone, that is, for the intersections

of the r's and G's and their transforms. For fixed points of T' of second

type we take T = 1 and find

(40.11)       (Kn°-Ki) = (-iy¿Z(-iy trace (B^ií + N^ñ).

This completes the derivation of the formulas of Alexander's type from those

of this paper. The type to be used in any particular case will depend upon

the available data on the transformations.

Princeton University,

Princeton, N. J.


