ON A GENERALIZATION OF THE ASSOCIATIVE LAW*

BY

ANTON SUSCHKEWITSCH

1. In my investigations in group theory, I have observed that Lagrange’s theorem (that the order of a group is divisible by the order of any subgroup) does not use for its proof the Associative Law in its whole extent; this law can be replaced by a more general postulate, “Postulate A”, as I shall call it.

We shall represent our elements by capital italic letters; the operation upon them may be represented by a star \(\star \), so that \(A \star B \) signifies the result of this operation performed upon \(A \) and \(B \). A set of elements closed under any operation \(\star \) may be called “a group”; this word is thus used in a more general sense than is usual, since the operation \(\star \) is arbitrary. The ordinary groups with a special well known operation may be called “classic” to distinguish them from our generalised groups. Sets and groups will be denoted by capital German letters.

Postulate A. In the equation

\[
(1) \quad (X \star A) \star B = X \star C,
\]

the element \(C \) depends upon the elements \(A \) and \(B \) only and not upon \(X \). (We suppose here that \(X \) can be an arbitrary element of a finite group to which \(A, B \) and \(C \) belong also.)

The Associative Law is obviously a special case of this Postulate A, viz. if \(C = A \star B \).

I have investigated the finite groups that are obtained by replacing the Associative Law in the system of postulates of Frobenius* by Postulate A. I have found the following properties of these groups.

I. Besides our operation \(\star \) every group \(\mathfrak{G} \) of our type has another operation that will be denoted by a little circle \(\circ \) and defined as follows: the equation \((1) \) being given, we write

\[
(2) \quad C = A \circ B.
\]

* Presented to the Society, October 27, 1928; received by the editors in July, 1927.

† Frobenius (Über endliche Gruppen, Berliner Sitzungsberichte, 1895) defines the classic finite groups by the four following postulates: 1. The operation that will be considered is uniform (eindeutig) and applicable to any two elements. 2. This operation is uniformly reversible (eindeutig umkehrbar), i.e. from \(AB = AC \) or \(BA = CA \) it follows that \(B = C \). 3. The Associative Law is true for it. 4. The operation is “limited in its effect” (begrenzt in ihrer Wirkung); that signifies the possibility of forming finite groups of our elements.
A GENERALIZATION OF THE ASSOCIATIVE LAW

It is easy to see, that \(\mathfrak{G} \) is also a group relative to the operation \(\circ \); we express this fact by writing \(\mathfrak{G}(\circ) \); (analogously, \(\mathfrak{G}(\ast) \)). I shall prove that \(\mathfrak{G}(\circ) \) is classic.

II. The group \(\mathfrak{G}(\ast) \) has always a right unit (the same for all its elements).

III. If the group \(\mathfrak{G}(\ast) \) has also a single left unit for all its elements (that must necessarily coincide with the right unit), then the Associative Law is true for \(\mathfrak{G}(\ast) \); in this case \(\mathfrak{G}(\ast) \) is classic and the operations \(\ast \) and \(\circ \) are identical.

It follows that in the systems of postulates of Moore\(^*\) and Dickson\(^\dagger\) for the definition of classic groups the Associative Law can be replaced by Postulate A (or its left analogue).

IV. We associate with every element \(A \) of our group \(\mathfrak{G} \) a substitution

\[
\overline{A} = \begin{pmatrix} X \\ X \ast A \end{pmatrix}.
\]

whereby \(X \) runs over all elements of \(\mathfrak{G} \). I prove that all those substitutions \(\overline{A} \) (corresponding to each element \(A \) of \(\mathfrak{G} \)) form a substitution group \(\overline{\mathfrak{G}} \) which is obviously classic and simply isomorphic with \(\mathfrak{G}(\circ) \). Conversely, all such substitutions \(\overline{A} \) form a group only if the Postulate A is true for \(\mathfrak{G}(\ast) \).

V. All groups of our type will be obtained from classic groups by making any substitution in the head-line of Cayley’s table of a classic group. Moreover, it is sufficient to make only such substitutions as do not alter the unit of the classic group. Such a substitution may be denoted by \(\alpha \).

VI. \(\mathfrak{G}(\ast) \) being any subgroup of \(\mathfrak{G}(\ast) \), \(\mathfrak{G}(\circ) \) is also a subgroup of \(\mathfrak{G}(\circ) \), i.e. relative to the operation \(\circ \). The converse is not true. Every subgroup \(\mathcal{G} \) of \(\mathfrak{G} \) relative to \(\circ \) is also a group relative to \(\ast \), if and only if the substitution \(\alpha \), which corresponds to \(\mathfrak{G}(\ast) \), has the following form:

\[
\alpha = \begin{pmatrix} X \\ X \ast \end{pmatrix},
\]

the numbers \(l \) being relatively prime to the orders of corresponding elements \(X \).

2. We shall prove now all the assertions of §1.

I. The group \(\mathfrak{G}(\circ) \) is obviously uniformly reversible. Again:

\[
[(X \ast A) \ast B] \ast C = [X \ast (A \circ B)] \ast C = X \ast [(A \circ B) \circ C];
\]

\(^*\) Moore, A definition of abstract groups, these Transactions, vol. 3 (1902).

\(^\dagger\) Dickson, Definition of a group and a field by independent postulates, these Transactions, vol. 6 (1905).

\(^\dagger\) The sign \(\simeq \) signifies that we denote a complicated expression more simply with a single letter.
and on the other hand
\[(X \star A) \star B] \star C = (X \star A) \star (B \circ C) = X \star [A \circ (B \circ C)];\]
and hence the Associative Law is true for \(\circ\) (o).

II. The classic group \(\circ\) (o) has always a unit \(E\); it is such that
\[(X \star E) \star A = X \star (E \circ A) = X \star A;\]
and therefore
\[X \star E = X\] for every \(X\);
\(E\) is thus the right unit for \(\circ\) (o).

III. Let \(E\) be a left unit of \(\circ\) (x); we have, then,
\[(E \star A) \star B = E \star (A \star B) = A \star B;\]
and hence by virtue of Postulate A for every element \(X\)
\[(X \star A) \star B = X \star (A \star B),\]
i.e. the Associative Law; hence \(\circ\) (x) is classic, and \(A \circ B = A \star B\).

IV. It follows from (1), by virtue of Postulate A, that \(\overline{AB} = C\); hence \(\overline{\circ}\) is a substitution group simply isomorphic with \(\circ\) (o) (see (2)).

Conversely, let \(\circ\) (x) be any finite uniformly reversible group and let \(\overline{\circ}\) be the set of corresponding substitutions, which form also a (classic) group. Let
\[\overline{AB} = C, \text{ or } \begin{pmatrix} X \\ X \star A \end{pmatrix} \begin{pmatrix} X \\ X \star B \end{pmatrix} = \begin{pmatrix} X \\ X \star C \end{pmatrix};\]

since
\[\begin{pmatrix} X \\ X \star B \end{pmatrix} = \begin{pmatrix} X \star A \\ (X \star A) \star B \end{pmatrix},\]
it follows that
\[(X \star A) \star B = X \star C\]
for each element \(X\) of \(\circ\) (x); hence Postulate A holds.

V. In the head-line of Cayley’s table of \(\circ\) (x) we make the following substitution:
\[\alpha = \begin{pmatrix} X \\ E \star X \end{pmatrix}\]
\((E\) being the right unit of \(\circ\) (x)). Let \(E \star X = X’\). We define the third operation \(\times\) as follows:
\[(3) \quad A \times B = A \star X’\].
The operation \times is uniformly reversible and also associative; in fact we have from (1) and (3):

$$\tag{4} (X \times A') \times B' = X \times C',$$

C' depending on A' and B' only but not on X; let $X = E$; then $(E \times A') \times B' = E \times C'$; but we have $E \times X' = E \times X = X'$; hence $C' = A' \times B'$, and (4) gives us the Associative Law for \times; thus $\mathfrak{S}(\times)$ is classic. Again it follows from (2) that α gives an isomorphism between $\mathfrak{S}(\circ)$ and $\mathfrak{S}(\times)$.

Conversely, let $\mathfrak{S}(\times)$ be now a given classic group; we make in the headline of Cayley's table of $\mathfrak{S}(\times)$ any substitution

$$\beta = \begin{pmatrix} X \\ X' \end{pmatrix}$$

and define a new operation $*$ as follows:

$$A \times B = A \star B.$$

The operation $*$ is obviously uniform and uniformly reversible; the Postulate A is also true for $*$; in fact, if

$$(X \times A) \star B = (X \times A) \times B = X \times (A \times B);$$

we have

$$(X \times A) \star B = X \times C;$$

and

$$X \star C = X \times C;$$

hence $A \times B = C$ and thus C depends upon A and B only.

E being the unit of $\mathfrak{S}(\times)$, E is the right unit for $\mathfrak{S}(\star)$; we have in fact

$$A \star E = A \times E = A.$$

I affirm that we can replace β by another substitution α, which does not alter E, and in this manner define a new operation, say \square, so that the group $\mathfrak{S} (\square)$ will be simply isomorphic with $\mathfrak{S}(\star)$ and have the right unit E. We take for α

$$\alpha \simeq \begin{pmatrix} X \\ X \end{pmatrix} \begin{pmatrix} E \star X \\ X \end{pmatrix} = \begin{pmatrix} X \\ X \end{pmatrix} \begin{pmatrix} E \star X \\ X \end{pmatrix} = \begin{pmatrix} X \\ X \end{pmatrix} \begin{pmatrix} E \times X \\ X \end{pmatrix};$$

let $E \times X' = X'$; we can write then

$$\alpha = \begin{pmatrix} X \\ X \end{pmatrix} \begin{pmatrix} X' \\ X' \end{pmatrix} = \begin{pmatrix} X' \end{pmatrix};$$

and so we define

$$A \times B = A \square B'.$$
We shall prove that the substitution

$$\alpha_1 = \left(\bar{X} \right)$$

gives an isomorphism between the groups $\mathfrak{G} (\star)$ and $\mathfrak{G} (\square)$. Let

(5)
$$\bar{A} \star \bar{B} = \bar{C} ;$$

we shall prove that we shall have also

(6)
$$A' \square B' = C'.$$

It follows from (5) that $\bar{A} \times \bar{B} = \bar{C}$; but $\bar{A} = \bar{E} \times A'$, $\bar{C} = \bar{E} \times C'$; hence $(\bar{E} \times A') \times B = \bar{E} \times C'$; and since $\mathfrak{G} (\times)$ is classic,

$$\bar{E} \times (A' \times B) = \bar{E} \times C' ;$$

hence $A' \times B = C'$, and so (6) is established.

VI. Let $\mathfrak{H} = P_1 + P_2 + P_3 + \cdots$, $\mathfrak{H} (\star)$ being a subgroup of $\mathfrak{G} (\star)$. Let

$$(X \star P_1) \star P_2 = X \star P_2 ;$$

the elements P_1 and P_2 of \mathfrak{H} being given, the element P_μ exists also in \mathfrak{H}; by virtue of Postulate A we have $P_\alpha P_\lambda = P_\mu$; hence $\mathfrak{H} (\circ)$ is also a group.

It follows, hence, that Lagrange's theorem is true for the groups $\mathfrak{G} (\star)$ of our type.

Let \mathfrak{H} be now a subgroup of \mathfrak{G} relative to \circ; we shall analyse the conditions by which \mathfrak{H} is also a group relative to \star. Let α be the same substitution as in V, and

$$\mathfrak{H}' = P_1' + P_2' + P_3' + \cdots .$$

(P_1', P_2', P_3', \cdots are elements in \mathfrak{G} corresponding to P_1, P_2, P_3, \cdots, by virtue of α.) Since α gives an isomorphism between $\mathfrak{G} (\circ)$ and $\mathfrak{G} (\times)$ (\times being the operation defined by (3)), $\mathfrak{H}' (\times)$ is also a group (relative to \times).

Let $\mathfrak{H} (\star)$ be also a group; then

$$P_\star P_\lambda = P_\star \times P_\lambda = P_\mu .$$

If P_μ runs over all elements of \mathfrak{H}', then P_μ runs over all elements of \mathfrak{H}, and conversely. Hence

$$P_\star \times \mathfrak{H}' = \mathfrak{H}$$

(for each P_\star of \mathfrak{H}). Consequently \mathfrak{H} is one of the partitions of $\mathfrak{G} (\times)$ relative to $\mathfrak{H}' (\times)$†. This condition is obviously also sufficient for $\mathfrak{H} (\star)$ to be a group.

* The sign $+$ signifies that the elements P_1, P_2, \cdots form a set \mathfrak{H}.

Since the substitution α does not alter the unit E of $\mathfrak{G}(\times)$, \mathfrak{H} and \mathfrak{H}' must be identically equal to each other, because both of them have a common element E.

We shall now analyse the conditions by which every subgroup $\mathfrak{H}(\circ)$ of $\mathfrak{G}(\circ)$ is also a group relative to \star. Then we must have $\mathfrak{H}' = \mathfrak{H}$ (our notation remains as above) for every subgroup $\mathfrak{H}(\circ)$. We take $\mathfrak{H}' = \mathfrak{H}(\times) = \{P\}$, a cyclic group, P being an arbitrary element of \mathfrak{G}. Since $\{P\}$ must be also a group relative to \star, we have

$$P^* \star P = P^* \times P^1,$$

consequently for each element X of \mathfrak{G} also,

$$X \star P = X \times P^1.$$

More generally,

$$X^k P^* = X \times P^k.$$

To every exponent k in (8) there corresponds one and only one exponent λ and vice versa. This must be true for each element P of \mathfrak{G}; if we take P^* instead of P, we obtain, in the same manner as in (8),

$$X^k P^{k \mu} = X \times P^{k \nu};$$

for every μ there is a definite ν and vice versa. Let m be the order of P, and d the greatest common divisor of k and m; then m/d is the order of P^* and each exponent $k \mu$ and $k \nu$ in (9) is divisible by d. Conversely, if one of the exponents k, λ in (8) is prime to m, the other is also prime to m. Consequently the exponent l in (7) or (7') must be prime to m. Thus α has in this case the following form:

$$\alpha = \left(\begin{array}{c} X \\ X' \end{array} \right),$$

where the numbers l are prime to the orders of corresponding elements X. This condition is not only necessary but also sufficient: if it holds, then every cyclic subgroup $\{P\}$ of $\mathfrak{G}(\times)$ is also a group relative to \star. But hence every subgroup $\mathfrak{H}(\times)$ of $\mathfrak{G}(\times)$ is also a group relative to \star. Q and P being any two elements of \mathfrak{H}, we have in fact $Q^* P = Q \times P^1$; thus $Q^* P$ belongs also to \mathfrak{H}.

We can take, in particular, a substitution α of the following form:

$$\alpha = \left(\begin{array}{c} X \\ X' \end{array} \right),$$

where r is the same for each element X and relatively prime to the order of our group \mathfrak{G}.
3. We shall consider now a special case of Postulate A, that is, however, more general than the Associative Law.

Postulate B. In the equation

\[(X \ast A) \ast B = X \ast (A \ast B_1),\]

the elements \(B\) and \(B_1\) depend only upon each other; every \(B\) is completely defined by the corresponding \(B_1\), and conversely.

This postulate can be expressed in another form as follows:

Postulate B'. If

\[A \ast B = C \ast D\]

and if \(K\) is an arbitrary element, then

\[A \ast (B \ast K) = C \ast (D \ast K)\].

We prove first that Postulate B' follows from Postulate B. Let \(R\) be an element such that

\[A \ast (B \ast K) = (A \ast B) \ast R ;\]

\(R\) depends upon \(K\) only (by Postulate B). Again it follows from (11) that

\[(A \ast B) \ast R = (C \ast D) \ast R ;\]

and by Postulate B it follows from (13) that

\[C \ast (D \ast K) = (C \ast D) \ast R ;\]

hence, from (11), (13), (14), (15) it follows that (12) holds.

Second, we prove that Postulate B follows also from the Postulate B'. For that purpose we shall prove the following lemma:

Lemma: If Postulate B' is true for a (uniformly reversible) group \(\mathcal{G}\) (\(*\)), there exists in \(\mathcal{G}\) (\(*\)) a right unit (for all elements of \(\mathcal{G}\) (\(*\))).

If \(B\) is a given element, there always exists in \(\mathcal{G}\) (\(*\)) an element \(E\) such that

\[B \ast E = B.\]

Let \(D\) be an arbitrary element of \(\mathcal{G}\) (\(*\)); if \(A\) is also a given element, there always exists an element \(C\), for which

\[A \ast B = C \ast D ;\]

by virtue of Postulate B' we have, then,

\[A \ast (B \ast E) = C \ast (D \ast E) ;\]
and by virtue of (16) and (11) it follows from (17) that E is the right unit for every element D.

Assume now that $A \star B = C = C \star E$; in the hypothesis of Postulate B' we have, K being an arbitrary element,

$$A \star (B \star K) = C \star (E \star K) = (A \star B) \star (E \star K);$$

and thus we have in (13) $E \star K = R$; this shows that Postulate B holds for our group.

Since the groups with Postulate B form a special case of groups with Postulate A, they can be obtained in the same manner as groups with Postulate A ($\S 1, V$). We must now examine what must be the substitution α ($\S 1, V$), in order that we may obtain a group $\mathfrak{G} (\star)$ with Postulate B. The answer is given by the following theorem:

Theorem. If the group $\mathfrak{G} (\star)$ is obtained from the classic group $\mathfrak{G} (\times)$ by means of the substitution α, Postulate B is true for $\mathfrak{G} (\star)$ if and only if α is an automorphism of the group $\mathfrak{G} (\times)$. In this case α is also an automorphism for $\mathfrak{G} (\star)$, and the operations \circ and \times coincide with each other.

Let $\mathfrak{G} (\star)$ be a group with Postulate B. The equation (10) gives a dependence of B and B_1 upon each other; this dependence is given by a substitution, that we denote symbolically by (\star). Let $A = E$ (the right unit of $\mathfrak{G} (\star)$) in (10); then

$$X \star B = X \star (E \star B_1);$$

and hence

(18)

$$B = E \star B_1.$$

Let

$$\alpha = \left(\begin{array}{c} X \\ X' \end{array} \right);$$

we have then

$$B = E \star B_1 = E \times (B_1)' = (B_1)' ;$$

and hence

$$\alpha = \left(\begin{array}{c} X_1 \\ X \end{array} \right) = \left(\begin{array}{c} X \\ X_1 \end{array} \right)^{-1}.$$

Moreover it follows from (10), if we use the notation $A \star B_1 \simeq C$, that

$$C = A \circ B = A \star B_1 = A \times (B_1)' = A \times B;$$

thus the operations \circ and \times coincide.
Conversely, suppose that the operations \circ and \times coincide. Let

$$\alpha = \begin{pmatrix} X \\ X' \end{pmatrix} = \begin{pmatrix} X_1 \\ X \end{pmatrix};$$

we have then

$$X\alpha A = X \times A';$$

and

$$(X\alpha A)\alpha B = X\alpha(A \times B) = X\alpha(A\alpha B_1),$$

and that is Postulate B, because B and B_1 depend only on each other. Again, by (19),

$$(X\alpha A)\alpha B = X\alpha C = (X \times A') \times B' = X \times C';$$

and hence

$$A \times B = C, \quad A' \times B' = C';$$

this shows us that α is an automorphism of $\mathfrak{G}(X)$. Conversely, let α be an automorphism of $\mathfrak{G}(X)$; then

$$(X\alpha A)\alpha B = (X \times A') \times B' = X \times (A' \times B')$$

$$= X \times (A' \times B') = X\alpha(A \times B) = X\alpha(A\alpha B_1);$$

and thus Postulate B holds.

It remains to prove that α is in this case an automorphism of $\mathfrak{G}(\ast)$ also. We have in fact

$$(A\ast B)' = (A' \times B')' = A' \times (B')' = A'\ast B'.$$

4. In the theory of uniformly reversible groups we can consider the operations inverse to the operation of a given group. Since the operation of our group is performed upon two elements (viz. $X\ast Y$), two inverse operations exist according as the left or the right of these two elements is unknown to us.

If the commutative law is true for our group, such a group has only one inverse operation and only one “inverse group” (i.e. the group relative to the inverse operation). But although a general classic group has two “inverse groups,” it has only one inverse operation (abstractly considered), because the properties of the operation of a classic group are “symmetric,” i.e. the same on both sides; two “inverse groups” of a classic group are simply isomorphic to each other (if our notations are conveniently chosen); this follows from the fact that a classic group is always “anti-isomorphic” to itself, i.e. there always exists such a substitution $\frac{\lambda}{\lambda}$ of elements of a classic group, that if A, B correspond respectively to $\overline{A}, \overline{B}$, then AB corresponds to \overline{BA}; we can take, for example, $\overline{X} = X^{-1}$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
The operation of a finite classic group \mathcal{G} may be denoted by \times, the two inverse operations by \triangle and \triangledown; more precisely,

if $A \times B = C$, then $C \triangle B = A$, $C \triangledown A = B$.

Both inverse groups $\mathcal{G} (\triangle)$, $\mathcal{G} (\triangledown)$ are finite and uniformly reversible but not associative. Let us consider what influence the associative law of the operation \times makes on the operations \triangle and \triangledown. Let $(A \times B) \times C = A \times (B \times C) \cong R$; $A \times B \equiv P$; $B \times C \equiv Q$; then $P \times C = A \times Q = R$. Hence $P \triangle B = A$, $Q \triangle C = B$, $R \triangle C = P$, $R \triangle Q = A$; consequently

$$(R \triangle C) \triangle B = R \triangle Q, \quad \text{and} \quad B \times C = Q.$$

[Or $P \triangledown A = B$, $Q \triangledown B = C$, $R \triangledown P = C$, $R \triangledown A = Q$, $(R \triangledown A) \triangledown B = R \triangledown P$, and $P = A \times B$.] This is Postulate A, that is true for the operation \triangle (and for \triangledown). But the operations \triangle and \triangledown are subject to still another postulate, viz.:

Postulate J. Every element X satisfies the equation

$$X \triangle X = E \quad (\text{or} \quad X \triangledown X = E),$$

where E is a determined element (the unit of the direct operation \times).

Theorem 1. A finite uniformly reversible group $\mathcal{G} (\ast)$ is an “inverse” to a classic group, if and only if it is subject to the postulates A and J.

Only one part of this theorem remains for us to prove. Let $\mathcal{G} (\ast)$ be subject to the postulates A and J. We use the same notation as before; if $A \ast B = C$, then $C \triangle B = A$. We must prove that $\mathcal{G} (\triangle)$ is classic. Obviously the operation \triangle is uniform and uniformly reversible. Again, we have $(X \ast A) \ast B = X \ast C = Z$; C depends upon A and B only; let $X \ast A = Y$; then $Y \ast B = X \ast C = Z$; $Z \triangle C = X$, $Z \triangle B = Y$, $Y \triangle A = X$; thus

$$(Z \triangle B) \triangle A = Z \triangle C,$$

which is Postulate A for the operation \triangle. It follows from Postulate J, that the group $\mathcal{G} (\triangle)$ has a left unit E; and hence (see §1, III) $\mathcal{G} (\triangle)$ is classic.

We consider a special case, when our classic group is abelian. We obtain then

Theorem 2. A finite uniformly reversible group $\mathcal{G} (\ast)$ is an “inverse” to an abelian group, if and only if it is subject to the postulates B and J.

Let $\mathcal{G} (\ast)$ be subject to the postulates B and J; by the preceding theorem the inverse group $\mathcal{G} (\triangle)$ is classic; it remains for us to show that $\mathcal{G} (\triangle)$ is commutative. We have

$$(X \ast A) \ast B = X \ast (A \ast B),$$

(10)
B and B_i depending only upon each other. Let $A \star B_i = C$; then (as in the preceding theorem) $B \triangle A = C$, $C \triangle B_i = A$; hence

\[(20) \quad B \triangle A \triangle B_i = A.\]

We write this without brackets, because the Associative Law is true for \triangle; (20) is true for each element A; we take $A = E$ (unit); then $B \triangle B_i = E$; $B_i = B^{-1}$; and thus from (20) it follows that $A \triangle B = B \triangle A$; i.e., the Commutative Law holds for \triangle.

Conversely, let $\otimes (\triangle)$ be an abelian group; we must prove that B and B_i in (10) depend only upon each other. But (20) gives $A \star B^{-1} = B \triangle A = C$; hence $B_i = B^{-1}$ in (10), and Postulate B holds for \star.

The postulates B and J are characteristic for the operation of division. Thus it is possible, for example, to construct an abstract theory of proportions.

Supplement

Example I. A group with Postulate A but not classic (see Table 1). This group is obtained from the symmetric group of 6th order by making in the head-line of Cayley's table of this group (see Table 2) the following substitution:

\[
\begin{pmatrix}
E & A & B & C & D & F \\
E & C & D & A & F & B
\end{pmatrix}.
\]

Example II. A group with Postulate B but not classic (see Table 3). This group is obtained from the same symmetric group by making in the head-line of Table 2 the following substitution:

\[
\begin{pmatrix}
E & A & B & C & D & F \\
E & B & A & C & F & D
\end{pmatrix}.
\]

This substitution gives an automorphism of the symmetric group of 6th order.

<table>
<thead>
<tr>
<th>E</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>E</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>F</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>E</td>
<td>A</td>
<td>F</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>A</td>
<td>E</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>E</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>E</td>
<td>F</td>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>D</td>
<td>F</td>
<td>E</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>F</td>
<td>D</td>
<td>E</td>
<td>B</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>E</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>E</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>F</td>
<td>E</td>
<td>D</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>E</td>
<td>D</td>
<td>F</td>
<td>C</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>D</td>
<td>F</td>
<td>E</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>E</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>A</td>
<td>C</td>
<td>B</td>
<td>D</td>
</tr>
</tbody>
</table>

Table 1 Table 2 Table 3