
ON INTERPOLATION AND APPROXIMATION BY
RATIONAL FUNCTIONS WITH

PREASSIGNED POLES*

BY

J. L. WALSH

1. Introduction. There has long been studied the problem of the approxi-

mation of analytic functions of a complex variable by polynomials, particu-

larly with reference to (1) possibility of approximating a given function by

polynomials with an arbitrarily small eiror, or of uniform expansion; (2) pos-

sibility of uniform expansion in a series of particular type, for instance poly-

nomials found by interpolation, or polynomials belonging to a region; (3) de-

gree of approximation, the study of the asymptotic behavior as n becomes in-

finite of such a measure of approximation as

(1.1) max [\f(z) - pn(z)\ ,zonC],

the measure of the approximation to the function f(z) on a point set C by the

polynomial pn(z) of degree n; (4) overconvergence, the phenomenon that a

sequence approximating a given function f(z) on a given point set C fre-

quently converges to the function f(z) (or its analytic extension) not merely

on C but on a larger point set containing C in its interior.

The problem of approximation of given functions not by polynomials but

by more general rational functions has been less studied, but is of interest,

not merely as a generalization of the problem of approximation by poly-

nomials, but as a problem involving larger resources than the other, and

whose study might be expected to be more fruitful. The properties of the se-

quences of rational functions depend largely on the positions of the poles of

those functions, and such position plays an important rôle in the sequel. A

judicious prescription of the position of the poles of the approximating ra-

tional functions or even lack of prescription of the poles may lead to more

favorable results in (l)-(4) than prescription that the poles should lie at

infinity.

The results of the present paper do not show, and are not intended to

show, the usefulness in approximation of rational functions as contrasted with

polynomials, namely in the problems mentioned.f Indeed, most of the new

* Presented to the Society, February 28, 1931; received by the editors May 28, 1931.

t Some results which bring out clearly this contrast are given by the present writer, Acta Mathe-

matica, vol. 57 (1931), pp. 411-435.
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material in the present paper which shows the advantage of rational func-

tions over polynomials in connection with these problems (l)-(4) can readily

be obtained from well known facts on approximation by polynomials by the

use of linear transformations of the complex variable. The present paper does

aim, however, to consider these problems (l)-(4) and to develop certain re-

sults on these topics which are common to very large classes of approximation

by rational functions. Our purpose, then, is not to show the superiority of

rational functions over polynomials for approximation, but rather to show

that in spite of the apparent diversity of certain possible approximations by

rational functions, these approximations still have many properties in com-

mon.

To be more explicit, we propose to study here interpolation and approxi-

mation to a given analytic function/(z) by means of rational functions of the

form

aanzn + ai„zn_1 + ■ ■ ■ + ann

fn(z) =-'
(z — ai„)(z — a2„) • • • (z — a„„)

where the a¿„ are prescribed and the ain remain to be disposed of. The specific

topics we discuss are the following. First we study approximation to the

function/(z) analytic for \z \ ̂  1 by the functions/„(z) where the ain have no

limit point of modulus unity or less. Approximation is here measured in the

sense of least squares, namely by the integral

(1.2) f     \f(z)-fn(z)\2\dz\.
•'1*1-1

It turns out that for each n the function f„(z) of best approximation is the

function found by interpolation in the origin and in the n points l/a¿„, the

inverses in the unit circle of the given points ain. The convergence of this se-

quence /„(z) can be studied with reference to degree of approximation and

overconvergence and yields some results on sequences of best approximation

as measured by other methods, such as (1.1), or the surface integral

ff \f(z)-fn(z)\*dS,      P>0,

or (1.2) where the exponent 2 is replaced by an arbitrary positive p. We next

study the sequences of rational functions obtained by interpolation at the

origin, at the nth. roots of unity, and at points arbitrarily chosen. We also

consider the specific case that the points a,„ are the points (An)1/n. Finally we

add some remarks relative to approximation of an analytic function not on

the unit circle but in an arbitrary Jordan region.
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Some of the methods we use are easy generalizations of the corresponding

methods used for polynomial approximation, but others differ substantially

from those previous methods.

The present study thus has connections with (1) the theory of the con-

vergence of sequences of rational functions of best approximation, where the

poles are preassigned, or are restricted to lie in certain given regions, or are

entirely unrestricted; (2) the study of functions which can be represented by

a series of the form ¿^An/(z —an)f (3) Taylor's series, for our present dis-

cussion contains several different generalizations of Taylor's series, f Arbi-

trary analytic functions are approximated by rational functions with poles

not necessarily at infinity, instead of by polynomials.

2. Approximation in the sense of least squares. We shall now prove the

following theorem, which, together with its consequences, is our principal re-

sult:

Theorem I. Let the function f(z) be analytic for \z | ¿ 1 and let the numbers

ctin, i — l, 2, • ■ ■ , n; n = l, 2, • ■ ■ , be preassigned and have no limit point

whose modulus is less than A >1. Denote by fn(z) the rational function of the

form
AXn A2n Ann

(2.1) L(z)=A0n +-+-+■■■+-
z — aXn      z — a2n z — ann

a0„zn + aXnzn~1 + ■ ■ ■ + ann

(z — aXn)(z — a2n) ■ ■ ■ (z — ann)

of best approximation to f(z) on C: \z\=l in the sense of least squares.t Then

the sequence {/„(z)} approaches the limit f(z) uniformly for \z \ :£ 1. Moreover,

if the function f(z) is analytic for \z\<T> I, the sequence {/„(z)} approaches

the limit f(z) for \z\<(A2T+T+2A)/(2AT+A2+l), uniformly for \z\<R
<(A2T+T+2A)/(2AT+A2+l).

For the present we assume that the numbers ain for a given n are all dis-

tinct; we shall later remove this restriction. We set z = eie on the unit circle,

so we are studying the best approximation to the given function f(z) in the

sense of least squares on the interval 0^d^2ir by the given functions 1,

* There is recent work by Wolff, Carleman, and Denjoy on this subject in continuation of the

older work by Poincaré and Borel. For detailed references see Denjoy, Palermo Rendiconti, vol. 50

(1926), pp. 1-95.
f Various generalizations of Taylor's series in the complex domain have recently been given,

particularly by Birkhoff, Widder, and the present writer. References are given by Widder, these

Transactions, vol. 31 (1929), pp. 43-52.
X The function of best approximation exists and is unique. See Walsh, these Transactions, vol.

33 (1931), pp. 668-689.
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l/(z—am), l/(z—a2n), • • • , l/(z—a„„). The general formula for the linear

combination of the linearly independent functions/i°(z),/2°(z), • • • , fm°(z)

which is the best approximation to f(z) is*

(/l°/i)        (/l°/2°)    ••(/i/n?) -/l°

win   (Jim •■■(jilrS)   ~ff

(2.2)

(fm°fl°)       (fm°fi°)

(/°/l°)       (f%°)

(fmjm )

■   (ffrS)

f IJ *

(/l°/l°) (/i/2°)

(mn (h°m

(fjfn   (frSji)

where we make use of the abbreviation

• (/i%°)

•   (fffrS)

(fmjm )

Win - frf?(z)f?(z)de.
Jo

By virtue of the relations z = eie, dz = izdd, we have

1 dB r      1

Je z — a z — a Je Z — a   1

dz

-¡(-1-Ï-
J C  Z — a 1

This expression is to be used only in case we have |a|, |a'|>l,t so by

Cauchy's integral formula the value of the integral is — 2ir/(l— aa). We

make the proper substitution in (2.2), setting /i°(z) = 1, /2°(z) = l/(z—o;i„),

f2°(z) = 1/(2—a2n), • • • , /„^.i(z) = l/(z—a„„). From each column of the de-

terminants in the numerator and denominator we take the factor 27r, and

then multiply the last row of the determinant in the numerator by 2ir, so we

obtain the following formula for the function of best approximation:

* Kowalewski, Determinantentheorie, Leipzig, 1909, p. 335.

f This inequality need not be satisfied by the a¿„ for all values of n, but is surely satisfied if « is

sufficiently large. In the present paper we frequently write formulas which are valid only if n is suffi-

ciently large without explicit mention of that fact.
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(2.3) fn(z)=~  i*/«
2lT Je
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-1

ay

1 -1

-1

a„

-1

OLX 1   —   OLXCXX       1   —   «1«2

-1      -1 -1

1 — axan    Z — atx

-1 -1

ot2      1  — a2ax     1  — a2a2 1 — a2ötn    z — a2

-I

an      1 — anáx     1 — anä2 1 — anän    Z — an

t  — ai t — a2 t —  ä„

-1

«ï

-1

-1

a2

1

-1

3*

-1

d».

ai  1 — axax     1 — aiâ2    1 — axan

-1    -1      -1 -1

a2  1 — a2ai  1 — a2a2 1 — a2ân

-1

a„  1 — a„âi  1 — a„â2    1 — anan

where integration is with respect to 0, and t = eie. Here we have for simplicity

omitted the second subscript (namely n) of the numbers «j. The denominator

in (2.3) is different from zero. In fact the vanishing of the denominator in

(2.2) is a necessary and sufficient condition that the functions/i°,/2°, ■ • • ,/m°

should be linearly dependent, and the functions/i°,/2°, • • • ,/m° used in (2.3)

are naturally linearly independent.

Let us here introduce Cauchy's formula

dti   r       dt
/(*)=— I f(t) —

licl Jc I —

i  r      tdd
= -    ft)-—

2ir Je        t — i

and let us replace the / in (2.3) by its value l/t, so that we have
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(2.4)/„(z)-/(z)=-î-  ff(t)
¿ir Je

1

«i

1

-1

Si

-1

-1

än

-1

-1

-1

ax    1 — axax   1 — axäi

-1        -1 -1

1 — axän z — ax

-1 -1

oíi   I — o-iâi  1 — a2a2 1 — a2a„ z — a2

-1

a„    1 — anai  1 — a„52 1 — a„an Z — an

t t t t

1 — ait    1 — ä2t 1 — ant    Z — t

1

«i

-1

«2

1 1 1

-1

a»

-l

«i    1 — aiai  1 — aiä2 1 — axan

-1       -1 -1 -1

a2   I — a2ax I ~ a2ä2 1 — a2an

-1       -1 -1 1

(2.5)
(t-Ctn)

-dO.

-de.

an   1 — anäi  1 — a„â2 1 — anan

We prove that (2.4) simplifies to the form

/»OO - /(z)
z(5iz—l)(a2Z—1) • • ■ (ànZ—l)(t — ax)(t — a2)

= —■   I J(t)-
2tt Jc       (z—ax)(z—a2) ■ ■ ■ (z—an)(z—t)(äxt—l)(äit—l) ■ ■ ■ (ä„t— 1)

Each determinant in (2.4) is to be evaluated by reducing each row

of each determinant to a common denominator. The result (quotient of the

original determinants) is a rational fraction whose denominator is the de-

nominator which appears in (2.5). The proper numerator of (2.5) considered

as a function of z and t is a polynomial in z and t which is seen by inspection

of (2.4) to vanish whenever z = 0 or 1/ä», and likewise to vanish whenever

t=cti. It remains to make sure that there is no other factor containing z or t,

and to evaluate the numerical factor.

The quotient in (2.4) is obviously of degree n + linz, hence can have no

factor containing z other than those in (2.5). The quotient in (2.4) is appar-
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ently of degree n+2 in t, but is in reality only of degree n+l. For the de-

nominator in (2.5) is of degree n+l in t, and when t becomes infinite the quo-

tient in (2.4) approaches zero, as is seen by inspection. There can therefore

be no other factor in (2.5) which contains z or /. Let us now take the iterated

limit in the fraction of (2.4) as z becomes infinite and then as t becomes in-

finite. The resulting expression is seen by inspection to have the value unity,

if the first row in the numerator is subtracted from the last row, so the equiva-

lence of (2.4) and (2.5) is completely proved. It will be noticed too that (2.5)

can be written

/.(«)-/(«)

(2.6)
1    r       *(

= — 1/(0,—
2m J0    (z—

z(äxz—l)(ä2Z—l) ■ ■ ■ (änz—l)(t — ax)(t — a2) ■ ■ ■ (t — an)

(z—a)(z—a2) ■ ■ ■ (z-an)(z-t)t(axt-l)(cx2t—l) ■ ■ ■ (a„/—1)
dt,

a form which involves the integral of an analytic function, so that the con-

tour of integration may be deformed under suitable restrictions.

3. Proof of Theorem I. We are now in a position to prove, under the hy-

pothesis of Theorem I, that the left-hand member of (2.6) approaches zero.

We take the integral in (2.6) not over the circle |i | = 1, but over the circle

C" : \t | = V, 1 < 7" < T, where f(z) is assumed analytic for \z \ < T. Equation

(2.6) is valid for \z\< \t | = 1, and hence is valid for \z \ < \t \ = V. Let A' be

an arbitrary number greater than unity and less than A. For t on C and for

« sufficiently large we have*

V + A'
(3.1)

/ — ak

äkt -  1
<

1 + A'T'

and for \z | =Z>1, Z<A', we have

ákZ — 1

z — a*
<

A'Z - 1
~A' -Z

The left-hand member of (2.6) is, for n sufficiently large, for Z<T', and for

suitable choice of M, uniformly less than

M
/T' + A' A'Z- iy

Vl+^T'  A' -Z) '

where M is independent of n, and this expression approaches zero provided

* This inequality and others which we shall use later are readily obtained by studying the trans-

formations involved, in the present case w=(t—ak)/(ätt— 1). In particular |/| = 1 implies for the

w as just defined, \w \ = 1.
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T' + A' A'Z- 1

that is to say, provided

(3.2) Z <

< 1,
1 +A'V A' -Z

A'2T' + T' + 2A'

2A'T' + A'2 + l'

this last quantity is less than T' and greater than unity. We have thus proved

(3.3) lim/.O) =/(z),
n—»<*>

uniformly for

A'2T' + T' + 2A'
è R <

2A'T' + A'2 + 1

The numbers A' <A and T' <T are arbitrary, so can be allowed to approach

the limiting values A and T respectively. If this is done, the right-hand mem-

ber of (3.2) increases, so (3.3) implies

(3.4) lim/„(z) =/(«),
»—.00

uniformly for
A2T + T + 2A

\z\g R <-
'    ' 2,47/ + A2 + 1

In particular if T=A, this last expression reduces to

A3 + 3A
(3.5)

3A2+ 1

If, on the other hand, the function/(z) is analytic at every finite point of the

plane, we can allow T' to become infinite, and the corresponding expression

in (3.4) becomes

A2+ 1
(3.6) -

U

If T is arbitrary, and if we allow A to become infinite, the expression in (3.4)

approaches T itself. Thus, if we have merely lim^«, ai„ = co uniformly, we

have convergence of/„(z) like that of Taylor's series, namely interior to an

arbitrary circle \z \ < T> 1 within which/(z) is analytic, uniform convergence

for \z\^T'<T. This gives us in reality a generalization of Taylor's series;

the various functions of the sequence are still rational functions not neces-
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sarily polynomials, but the character of their convergence both as to region

of convergence and degree of convergence is like that of Taylor's series.

4. New derivation of formulas. It may seem that the discussion we have

given is lacking in two respects: (1) the points ain for each given n have been

assumed all distinct, (2) the points ain have been assumed finite. We now

point out that those restrictions although necessary for the proofs as given

are not necessary for the validity of the final formulas and other results.

The discussion about to be given is a derivation of equation (2.6) which

is independent of the former derivation but which shows (2.6) to be valid even

if the numbers ain for a given n are not all distinct. The former derivation is

to be considered useful as showing the relation between our present work and

the classical formulas for approximation in the sense of least squares. We do

not repeat that derivation in the more general case now to be considered be-

cause the notation necessary would be too complicated.

The function/„(z) is uniquely characterized by the properties (1) of being

a rational function of degree n with the prescribed poles,* and (2) of being

such that the function/„(z) —f(z) is orthogonal on C to each of the given func-

tions 1, l/(z—ak) (k = 1, 2, • ■ • , n), where if p of the points ain (for a given n)

coalesce say at a, the function /„(z) —f(z) is orthogonal to each of the func-

tions

1 1 1
(4.1) -,->■••;-

z — a.     (z — a)2 (z — a)p

The first of these two properties is readily verified, for equation (2.6) may be

written

/»(Z)   =  ~   ff(t)\-^-
2-w% Jc      Lt — z

(4.2)
z(5iZ — l)(52z — 1) • • - (anz — l)(t — ax)(t — a2) ■ ■ ■  (t — «„)"]

-■—■-■-dt.
(z-a)(z-a2) ■ ■ ■ (z-an)(t-z)t(äxt-l)(ä2t-l) ■ ■ ■ (5„/-l)J

The two fractions in the bracket, when reduced to a common denominator,

admit the factor / — z in the numerator, for that numerator, considered as a

polynomial in t and z, vanishes for t = z. When the factor t — zis cancelled, the

new numerator is a polynomial in / and z of degree n at most in z. The denom-

inator is precisely (z — ai)(z — a2) • • • (z — an), so far as factors containing z

are concerned. Hence the right-hand member of (4.2) actually is a rational

function of the form prescribed in Theorem I. It remains to show that the

function defined by (2.6) is orthogonal to the function l/(z—ak).

* We intend to imply by this phraseology merely that/„(s) can be written in the form of the last

member of (2.1); we do not imply that the numerator and denominator have no common factor.
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Let us denote by C a circle whose center is the origin, which lies interior

to C: \z | = 1, and which contains within it all the points l/äk- We have

de r   r ,     dz
f lfn(z)   - f(z)]-   =   i    f     [/„(Z)   - f(z)]

Je Z — ak Jc

: r i/»«-/«]—dj— -^ r
Jc' OikZ —  1 ¿T Jc

akZ

dz

Jz(äxi
c      (z —

äkZ — 1       27T Je äkZ — 1

z(äiZ - l)(ä2z -!)••• (änz - l)(t — ax)(t — a2) ■ ■ ■ (t — an)

'c       (z - ax)(z — a2) • • • (z - an)(z — t)t(äxt — l)(ä2t — 1) •    • (äj — 1)

(/ - ax)(t - a2) ■ ■ ■ (t - an)

dt

i r      (t-
—   fHY-r—
27T Je      t(axt —

dt
t(äxt  -   l)(ä2t~   1)   •   •   •  (ânt  -   1)

z(äiZ — !)••• (äk-xz — l)(äk+xZ —!)■•• (änZ — 1)

c (z — ax)(z — a2) ■ ■ ■ (z — an)(z — t)
dz,

and this last expression vanishes, for the integral over C is zero by Cauchy's

integral theorem.

We have shown merely that the function /„(z) — f(z) defined by (2.6) is

orthogonal on C to the function l/(z—ak). It is entirely obvious that the

proof can be modified so as to show that in case p of the points ain (for a given

n) coalesce at a, the function/„(z) — f(z) defined by (2.6) is orthogonal to each

of the functions (4.1).

We leave to the reader the care of seeing that the function /„(z) —f(z) is

orthogonal on C to the function unity; the formulas already used require

little modification.

There is no essential difficulty in modifying (2.6) so as to allow infinite

values of the ain. Thus if «i= oo for example, the fractions (âxz— l)/(z — ax)

and (t—ctx)/(äxt— 1) are simply to be replaced by — z and — l/t respectively,

with these factors repeated if others of the a¡ are infinite. In this latter case

the functions (4.1) become z, z2, • • • , zp, and these functions are orthogonal

to the function/„(z)—/(z) defined by the modified (2.6).

All of the consequences, such as (3.4), which we have drawn from (2.-6)

are valid also in the new cases considered, namely that the points ain for a

given n are not necessarily all distinct, and that the point at infinity is ad-

missible as one or more of the a¡„.

5. Remarks on Theorem I. We add several other remarks in connection

with Theorem I. Best approximation to f(z) on C in the sense of least squares by

a rational function of the form (2.1) is equivalent to interpolation in the n+l

points 0, 1/äi, l/ä2, ■ ■ ■ , l/än interior to C, the inverses of the points oo, ax,
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a2, ■ ■ ■ , an with respect to C. For one sees by inspection that the right-hand

member of (2.6) vanishes at the n + l points enumerated, and the rational

function fn(z) of form (2.1) which takes on given values in n+l points is

known to be unique.* Coincidence of p of these poles ain in a means coinci-

dence of p of the points of interpolation in 1/a (p + l points if a= oo), which

means not merely equality of/„(1/a) and/(l/a) but also of various deriva-

tives of these two functions:

ii) - '({)• >-'(î)-'(í> - ■ *^(t) ■ /('~"Œ>-
Taylor's series is well known to be found both by interpolation in the

origin and by approximation on C in the sense of least squares; this agrees

with the result just found in the more general situation.

From (2.6) can be derived a result on the degree of convergence of the

sequence {/„(z)}. We are particularly interested in z on C, and for this

case we have \(äkZ — l)/(z—ak)\ = l, so (compare (3.1)) for an arbitrary

R>(T+A)/(l+AT) and for a suitable M' depending on R it follows that

|/»(«) -/(*)| ^ M'R", z on C.

If the given function f(z) is not assumed analytic on C, but merely an-

alytic interior to C and continuousf for \z | ¿ 1, our second derivation,of (2.6)

remains valid. In (2.6) we have |(/—ak)/(äkt — 1) | = 1, and for |z|=Z<l

we have
akz — 1

z — ak

AZ + 1
<- < 1.

A +Z

Hence we have lim,,_o0/„(z) =/(z) uniformly for \z \ ̂ Z<1.

The limit obtained in (3.4) is the best possible one; this means naturally best

limit which holds for all admissible choices of f(z) and the a,„. If all of the

points ain coincide at z=A, and if we approximate to the function f(z) =

l/(z+T), the approximating sequence/„(z) converges for

AiT + T + 2A
\Z\    <  --7 I1   '      2AT + A2 + Í

and converges throughout no concentric circle of larger radius.

* See for instance Walsh, these Transactions, vol. 33 (1931), pp. 668-689.

t Indeed it is sufficient if f(z) as denned on C is merely integrable together with its square. This

is independent of the consideration of f(z) as the boundary value of an analytic function. The limit

of the sequence/„(z) for \z \ < 1 is then defined by
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The functions/„(z) can be written down by inspection, from their form

(2.1) and from the fact that they coincide with/(z) in the origin and satisfy

the equations

Vk)(l/A) = /«»(IAO      (A - 0, 1, •••,»- 1).

We have

(T + AYz(Az - 1)»
(5.1) f(z) - fn(z) = -
V ;W T(AT+ l)»(z+ T)(z-AY

For the particular value z = (A2T+T+2A)/(2AT+A2+l), we have

(t + a)(Az-i) _     i

(AT+l)(z-A)       '   '

and hence the right-hand member of (5.1) approaches no limit.

6. The limit points of the a,-„ restricted to an arbitrary circular region.

The problem we have been considering, approximation to f(z) on C in the

sense of least squares, is, as we have seen, equivalent to interpolation in the

origin as well as in the points 1/a,-. We now show that the results on conver-

gence obtained in §3 are likewise valid if we choose an arbitrary point ß in-

terior to C but which may depend on n, and interpolate in ß instead of in the

origin, provided merely that 1 — \ß | remains greater than some positive

quantity as n becomes infinite. Let us denote by /„°(z) the approximating

function of degree n, with poles in the points a,-„, which coincides with f(z)

in the points ß, l/äx, l/a2, • • • , l/a„. We have

1     /•„.(«-«(»*- tt---(6U- D(< -«)-■■(<- a.)   .
=- I fit)-at,

2iriJc       (z-ax) ■ ■ ■ (z-an)(z-t)(t-ß)(äxt-l) • ■ ■ (äj-l)

for the function /»°(z) defined by (6.1) clearly coincides with/(z) in the pre-

scribed n+l points, and the function/„°(z) thus defined is related to/„(z) by

the equation (found from (2.6))

ttiwiM    /m      1    r^/(aiz - 1) • • • (a»z - l)(<-«i)- ■•«-«.)
(6.2) fS (z) - fn(z) = —:     f(t)-—

¿Tl Je (Z —
dt.

'c      (z-ax) • • • (z-an)t(t-ß)(äxt-l) ■ ■ ■ (aj-l)

The right-hand member of (6.2) is a rational function of degree n with poles

only in the prescribed n points, and hence/„°(z) is also such a function. More-

over it is clear by inspection of (6.1) and of the discussion in §3 that in (3.4)

we can replace/„(z) by/„°(z). Convergence of the sequence/„°(z) is proved

under the restrictions previously found for/„(z); the verification of this fact

is left to the reader.
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We use the term circular region to denote the closed interior or exterior

of a circle, or a (closed) half-plane, and we use the same notation for a circu-

lar region as for its boundary. We shall study a problem more general than

that of Theorem I, where now the points ain are assumed to have no limit

point exterior to an arbitrary circular region T which has no point in common

with C. Let us transform the circle T into a circle V concentric with C, by a

transformation of the form w = (z—ß)/( — l+ßz), which carries C and its in-

terior into C and its interior; it is sufficient to choose ß interior to C and one

of the two points mutually inverse in both C and V. Approximating f(z) on

C in the sense of least squares is equivalent to interpolation of f(z) in the

points z = 0, l/äk. A rational function of degree n in z is a rational function of

degree n in w, and if the former has its poles in the points ak, the latter has

its poles in the corresponding points w = (ak—ß)/( — 1+ßak). Interpolation in

the points w = 0 and in the points w = (ßäk — l)/(ük—ß) is equivalent to ap-

proximation to/(z) on C in the sense of least squares, for which we have ob-

tained the results of Theorem I, and if we replace w = 0 by the point w=ß

which corresponds to z = 0 we have equivalent results on convergence (as has

just been proved) valid then for our original problem in the z-plane. The

points w = (ßäk — l)/(äk — ß) are not only the inverses with respect to C of

the points w = (ak—ß)/(— l+ßak), but are also the transforms of the points

z = l/äk.

In order to interpret these results in the z-plane, we write the equation of

the circle T in the form

(6.3)
z-ß

ßz
= A > 1,

where, as we have said, ß is interior to C, and where ß and l/ß are mutually

inverse points with respect to both C and V. It is naturally possible to write

T in the form (6.3), for V belongs to the coaxial family of circles determined

by ß and l/ß as null-circles. We have therefore proved

Theorem II. Let the function f(z) be analytic for- \(z—ß)/(ßz — l) \ <T>1,

where \ß \ < 1, and let the points ain have no limit point zfor which \ (z—ß)/(ßz

— 1) | <A > 1. Then the sequence {fn(z)} of rational functions of respective de-

grees n with poles in the points aiB of best approximation tof(z) onC: \z | = 1 in

the sense of least squares converges to the function f(z) whenever we have

z-ß

ßz - 1

A2T + T +2A
<-

2AT + A2 + 1

uniformly whenever we have
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ßz - 1
<R<

A2T + T +2A

2AT + A2 + 1

The circular region

z-ß

ßz - 1
< R

is the interior of a circle, a half-plane, or the exterior of a circle according as

R is less than, equal to, or greater than 1/ \ß |.

It is a corollary of Theorem II that if lim„_00 ain = l/ß uniformly with re-

spect to i, then the sequence \fn(z) ] converges for | (z—ß)/(ßz — 1) | < T, uni-

formly for \(z—ß)/(ßz — 1) | <R< T. Theorem I is the special case of Theorem

II corresponding to ß = 0.

7. Points ain approaching C. We have hitherto assumed the points ain

to have no limit point on C. We shall now study the convergence of the se-

quence fn(z) of best approximation in the sense of least squares where this

restriction is removed; we naturally still require/(z) to be analytic on and

within C. If f(z) is analytic for \z | ^ 1, or is merely analytic for \z \ < 1 and

continuous for |z|^l, and if we have merely |a,n|^^4>l, the sequence

fn(z) converges to the value/(z) for |z|<l, uniformly for |z|^Z<l. This

follows directly by the method used in §3, where the integral in (2.6) is taken

over C, so that we have

ak

akt
1, t on C;

otkz 1

z - ak

AZ + 1
^- < 1,

A +Z
á2<l.

The question of uniform convergence for |z|gl of /„(z) still remains,

when/(z) is analytic for |z|ál, and when the quantities \ain | are not

bounded from unity as n becomes infinite; this is the question we now discuss.

Our present hypothesis is \ain \ ̂ An> 1, and we employ again the method of

§3. The integral in (2.6) can be taken over a circle \t \ =T', 1 <T'<T. For

z on C we have

äkz — 1

z — ak

= 1.

so our proof that

(7.1) lim/„(z) = fz) uniformly for | z\ ^ 1

will be complete provided we have

IV + a„y
(7.2) lim   -) = 0.
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Theorem III. 2/ the function f(z) is analytic for \z\<T>\, and if we have

\din | ̂ -4„>1, the sequence of rational functions /„(z) of best approximation to

f(z) onC: \z\=linthe sense of least squares converges to the value f(z) uniformly

for \z | ̂  1 provided that

(7.3) lim n(An - 1) = oo .

We shall shortly identify condition (7.3) with condition (7.2). Condition

(7.3) is obviously not satisfied if we have

K

An = 1 H-, k independent of «.

In this case one finds

(T' + An\n= / T' + 1 + KJn \

\l+AnT')     \l + T' + KT'/n)

which approaches the value e,l<-1+T'i/etT'ni+I"K On the other hand, condition

(7.3) is obviously satisfied for every T' if we have

K

Anèî 1 H-, 0 < X < 1, k independent of «.

In Theorem III we are primarily concerned with the case that either the

numbers A „ or an infinite sequence of them approach the value unity. This

condition is, as a matter of fact, not essential for the truth of that theorem.

We shall find it convenient to assume in the sequel

lim An = 1,

but that is purely a matter of convenience.

We have

(T>   +   An\ , I" (T>   -   l)(An   -   1)1
(7-4)       n log (iTZW = n log L1-i-M.r     I'

and we compare this equation with

1 +
(1 + T')n

1 +
(1 + T')n



1932] INTERPOLATION AND APPROXIMATION 37

[1        x      x2 ~|— H-1-1-   , | *| < 1,

(7.5)                                                   2       3       4 J
(V - l)(An -1)

a; = - > 0.
1 + AnV

If (7.3) is satisfied, we see by inspection that the right-hand member of

(7.5) becomes negatively infinite, and hence (7.2) is fulfilled. On the other

hand, if n(An — 1) does not become infinite, n(An — I) is uniformly bounded

for a certain sequence nx, n2, ■ ■ ■ of indices n. For this same sequence of in-

dices the square bracket in (7.5) approaches the value 1/2, the expression nx2

approaches the value zero, and condition (7.2) fails to be satisfied. Thus (7.2)

and (7.3) are shown to be completely equivalent; condition (7.2) is independent

of T' > 1 ; in Theorem III we use the fact that (7.3) implies (7.2); and Theorem

III is now completely proved.

Condition (7.3) (or condition (7.2)) might seem artificial, and it might

be supposed that this condition were merely a convenient sufficient condition

for the conclusion of Theorem III. But we can show that condition (7.3) can

be replaced by no weaker condition and still imply the conclusion of Theorem

III for all functions/(z) which satisfy the hypothesis. We show this by means

of the example

1
/(«) = —T"=» «•■» = An;T> 1, An > 1.

z + T

We can write down by inspection a rational function /„(z) with all of its

poles in the point A „, which agrees with the function f(z) at the origin, and

which together with its first n — 1 derivatives agrees with f(z) and its first

n-— 1 derivatives at the point z = l/^4„. This function/„(z) is uniquely deter-

mined by these conditions, and is known to be the admissible function of

best approximation to/(z) on C in the sense of least squares. We have

(T + An)»z(Anz - 1)"
ffz) _ f(z) =-v y   v-,
yW T(AnT + \)»(z + T)(z - An)»

as the reader may verify. For z on C, it appears that

T + A
(7.6) | fiz) - U(z) | =

T\z + T\ l+AnT

so that for the particular function/(z) = l/(z+T), equation (7.2) or (7.3) is a

necessary and sufficient condition that /„(z) should approach f(z) at even a

single point of C.

Theorem III is concerned with the uniform convergence on C of a particu-
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lar sequence of functions, namely the best approximation to f(z) on C in the

sense of least squares. One might ask whether some other sequence Fn(z) oí

functions (of respective degrees n and with the prescribed poles) can converge

to/(z) uniformly for \z\ =1 even when condition (7.3) is not fulfilled. It is

still true that condition (7.3) can be replaced by no weaker condition which im-

plies lim«..«, Fn(z) =/(z) uniformly on C for all functions f(z) which satisfy the

hypothesis of Theorem III. If we had

lim Fn(z) = f(z), uniformly for z on C,

for the particular function/(z) = l/(z+T) already considered, we should have

also

. l2Uzl = 0.
'c

lim    f\f(z)-Fn(z)

This contradicts the inequality

f | /(«)   - fn(z) \2\dz\    ̂        f\ f(Z)   - Fn(z) \2\  d\Z,
Jc J c

found from the definition of the/„(z) (i.e. functions of best approximation in

the sense of least squares), and the inequality

X, f(z) - fn(z) \2\ dz\ ^ -
T + An

1 +A„T

derived from (7.6).

Indeed, the material just given proves that limJt<00Fni(z) =/(z) uniformly

for z on C for/(z) = l/(z+T) is impossible unless the condition (7.3) or (7.2)

is satisfied for this particular sequence w*.

Condition (7.3) is derived on the assumption \ain | — An, and our remarks

on the generality of that condition are based on the maintaining of that as-

sumption. There can naturally be derived a more general although slightly

less simple condition involving the precise quantities |a,„ | =^4,„, where the

above assumption is allowed to fall.

Iff(z) andfn(z) have the same meaning as in Theorem III, a necessary and

sufficient condition that we have

lim/„(z) = f(z), uniformly for \z\ ^ 1,
«—»oo

for every choice of the function f(z) analytic for \z\<T>l, and for every choice

of ain, |a<„| =Ain, is
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(7.7) lim    ¿(iíL^)-w.
»->«>       ¿_1    \      Ain      /

From the integral formula for /„(z) —f(z) it is seen as before that the

condition
»    t' -+■ A-

(7.8) lim    TI ,-0
»->»    i=x 1 ~r AinT

is sufficient. This condition is also necessary, as the reader will verify by the

choice <Xi„=Ain,f(z) = l/(z+r) ; the formulas are almost identical with those

already used. Condition (7.8) is, as will appear, independent of the choice

of r.
Let us prove that conditions (7.7) and (7.8) are completely equivalent. Con-

dition (7.7) is equivalent to the condition

r     ̂    (r -  D(^ -  *)
(7.9) hmX) -= °°,

n->oo j_i 1   + AinT

for we have by A ¿„ > 1

(T - l)(Ain - 1)

T-Í              1 + AinT             T - 1-<-<-.
T+ 1 Ajn   -    1 T

Ain

For 0 <x ^ X < 1 the condition

wo; < log (1 — x) < Mx,  m < 0,   Äf < 0,

is satisfied for suitable values of m and M. The quantity (T—l)(Ain — l)/(l

+lAinT) is positive and less than (T — l)/T, so condition (7.9) is equivalent to

¡5 Slog 0 -(r "i TZt 1})= Jr. Slog(f¿e)=-°°j
and this condition, being independent of T, is equivalent to (7.8). The proof

is now complete.

Condition (7.3) obviously implies (7.7), if Ain^An, for we need consider

only the case lim„,M ̂ 4„ = l.Ifyln<2we have

Ain          1         An          1        An  —   1
-  ^ -   > -,

A %n Jin ¿

2±(^fA>n(An-l).
i=l   \      Ain      /

If the latter quantity becomes infinite, so also does the former.
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Condition (7.3) can also be written in the form

(7.10) limAnn = oo.
n—»oo

It is sufficient to consider the case lim„..00 .¡4„ = 1. An inequality

mx < log (1 + x) < Mx,     m,  M > 0,

is valid for suitably chosen m and M for sufficiently small positive x. Hence

condition (7.3) is the same as

«log[l + 04n- 1)]-»»,

which is another form for (7.10).

Condition (7.7) can also be written in a simpler form, namely,

n

lim  Y,(Ain - 1) = oo
B->°0     <_1

provided that the numbers Ain are uniformly limited, Ain^A'.

8. Other measures of approximation. There are interesting measures of

approximation other than least squares, for instance (1) that of Tchebycheff

(already described in connection with (1.1)) taken on C: |z| = l, (2) least

weighted pih powers on the circumference C, (3) least weighted pth powers

measured over the area |z|^l. We shall treat these cases separately, and

shall prove in each case

Theorem IV. If the numbers ain have no limit point whose modulus is less

than A > 1, and if the function f(z) is analytic for \ z | < T > 1, then the sequence

\Fn(z)} of rational functions of respective degrees n with poles ain of best ap-

proximation to f(z) converges to the limit f(z) for

A2T + T +2A .    . A2T + T + 2A
z   <-> uniformly for   z   ^ R <-•

'   '     2AT + A2 + I        J '   ' 2AT + a2 + i

Let us first treat case (1) ; the sequence of rational functions of best ap-

proximation exists and is unique.* If R is arbitrary, but greater than

(T+A)/(l+AT), the inequality

(8.1) | f(z) - fiz) | Ú M'R", z on C,

is proved in §5, where the functions/„(z) are the rational functions studied in

* Walsh, these Transactions, vol. 33 (1931), pp. 668-689.

Case (1) is equivalent to approximation on \z | á 1 in the sense of Tchebycheff. These two cases

may also be extended to include approximation in the sense of Tchebycheff with a norm function;

the modifications are left to the reader.
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Theorem I. Inequality (8.1), holding for the functions/„(z), must also hold

for the functions Fn(z) of best approximation in the sense of Tchebycheff :

(8.2) | Fn(z) - f(z) | á M'R", z on C.

By combining (8.1) and (8.2) we obtain

(8.3) | fn(z) - Fn(z) | è 2M'R», z on C;

the function whose absolute value appears here is a rational function of de-

gree n.

We now make use of the following lemma:*

Lemma I. If P(z) is a rational function of degree n whose poles lie on or ex-

terior to the circle \z | =Xp >X, and if we have

\P(z)\ ÚL, for \z\ =X,
then we have

. /pRx - 1\B
(8.4) |P(8)| g¿   -) ,for\z\ =\Rx, 1 < Rx < P.

\p — Rx/

Under the present circumstances, we have, by (8.3) and (8.4),

| fn(z) - Fn(z) | ^ 2M'R"(ÄRl~   V, I z | = Rx < A' < A.
\A' — Rx/

That is to say, the sequence {/»(z)— Fn(z)} converges for \z\ ^Rx provided

A' + R,(A'Rl~l\

\A'-RxJ
Rl—-—   < 1, or Rx<

1 + A'R

The number R is here arbitrary, greater than (T+A)/(l +AT), and A' is

arbitrary less than A, so the sequence {/„(z) — Fn(z)} converges for

AT2+T+2A AT2+T+2A
\z\<-, uniformly for  z   ^ Rx <-•
1    '       2AT + A2+l '   ' 2^r + ^2-|-l

The sequence {/„(z)} converges (Theorem I) under these restrictions on z,

hence the sequence {Fn(z)} does also, and Theorem IV is proved in case (1).

In case (2) we are dealing with the sequence {Fn(z)} of best approxima-

tion to f(z) on C in the sense of least weighted pth powers as measured on C,

that is, with the sequence of rational functions Fn(z) of respective degrees n

and having their poles in the prescribed points such that

f|*.(«)-/(*)|liM|(k|,P>0,
Jn

Walsh, these Transactions, vol. 30 (1928), pp. 838-847; p. 842.
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is not greater than the corresponding integral for any other rational function

of degree n whose poles lie in the prescribed points. The norm function n(z)

is supposed to be positive and continuous on C, and under these circum-

stances the function of best approximation always exists, and is unique if

p>l.

Denote by n' and n" two numbers such that we have

0 < n' < n(z) < n", z on C.

For the functions/„(z) of Theorem I we have by (8.1)

f\ fniz) - fiz) |»»(«) | dz I g 2irn"(M'Rn)",
Jc

which implies the inequality

f\ Fniz) - fz) \'n(z) I dz | g 2irn"iM'R")p,
Jc

for the functions Fn(z) of best approximation, and this in turn implies

(8.5) I Fniz) - fz) \> | dz | g 2x— (M'R")".
Jc n'

We shall have occasion to apply the following lemma :*

Lemma II. // each of the functions </>„(z), n = 1, 2, • • -, is analytic on and

within the circle C, and if we set

fUn(z)
Jc

r\dz\ =«„,/>> 0,

then we have for z on an arbitrary closed point set C interior to C

(8.6) \d>n(z) | á Q¿'P,

where Q depends on C but not on c/>„(z).

If we restrict z so that we have \z \ ̂ Z<1, then we have by (8.5) and

(8.6) for suitable choice of M (independent of n)

I Fniz) - fz) | g MR".

By the use of (8.1) we find, for suitable Mx,

_ | fniz) - Fn(z) | ^ MiR", | z I ^ Z < 1,

* Walsh, these Transactions, vol. 33 (1931), pp. 370-388.
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and by Lemma I we have

. . (A'Rx - l\n       ,   ,
(8.7)   \fn(z)-Fn(z)\ úMxRn[—-) , f or | z | g ZRx, 1 < Rx < A' <A.

\A' - Rx/

Inequality (8.7) is valid for every Z<1 and for every R>(T+A)/(l+AT)

and for every ^4'<^4. It follows, precisely as in case (1), that the sequence

Fn(z) converges for

A*T + T + 2A , A2T + T + 2A
z   <-, uniformly for  z   g R{ <->

1    '       2AT + A2+l '   ' 2AT + A2+l

and Theorem IV is proved in case (2).

We take up now the remaining case (3) of Theorem IV. Let F„(z) now

denote the rational function of degree n with the prescribed poles of best

approximation to/(z) over the area 5: \z \ g 1 in the sense of least weighted

pth powers, that is, the admissible function such that

ff\Fn(z)-f(z)\»n(z)dS,  p>0,

is not greater than the corresponding integral for any other admissible func-

tion. The function n(z) is supposed positive and continuous on S, and under

these conditions a function F„(z) of best approximation always exists, and is

unique if p>\.

Denote by n' and n" two numbers such that we have

0 < n' < n(z) < n",    z on S.

For the functions/„(z) of Theorem I we have by (8.1)

j f\ /-(«) - f(z) Vn(z)dS = im"(M'R")",

which implies the inequality

(8.8) f f\ Fn(z) - f(z) | "n(z)dS = x»"(M'22») ",

for the functions Fn(z) of best approximation, and this implies in turn

Jf | Fn(z) - f(z) \*dS = t n— (M'R*)*.

We are now ready to apply*

* Walsh, these Transactions, vol. 33 (1931), pp. 370-388.
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Lemma III. Let C be an arbitrary closed limited region. If each of the func-

tions 4>„(z), n = l, 2, • • • , is analytic in C, and if we set

ff|*.(*)|,,<ö,= en,  P >0,
'c

then for z on any closed point set C" interior to C we have

\<ßniz)\>£  OV",

where Q depends on C but not on <p„(z).

If we restrict z, |z | gZ < 1, the inequality

\Fniz) -f(z)\û MR",

where M depends on Z but not on n, thus holds. The proof used in case (2)

can now be followed directly, as the reader will verify, and this completes the

proof of Theorem IV in all the cases mentioned.

In Theorem IV we have assumed the points a,„ to have no limit point in-

terior to the circle \z \ =A > 1. It is naturally possible to use here an arbitrary

circular region exterior to \z \ gl as the region to which the limit points of

the set a,„ are restricted, and even to prove still broader results. We state

the general theorem involved. The results are completely analogous to the

results of §6, and in fact include Theorem II as a special case. The proofs

here are left to the reader; they depend particularly on the fact that under a

linear transformation of the complex variable which transforms \z \ ̂ 1 into

itself, the integrals

f I /n(z) - fz) | >«(z) \dz | ,   f f     | fniz) - fz) I Pniz)dS, p > 0,
Je J *Mí|ái

are transformed into integrals of the same type with new (positive and con-

tinuous) norm functions n(z).

Theorem IVa. If the numbers ain have no limit point z such that

\(az+ß) / (yz+S) | <A >1, and if the function f(z) is analytic for |(az+^)/(7Z

+8)\<T>1, v>here \a/y\ >1, a8—ßy ¿¿0, then the sequence {Fn(z)\ of ra-

tional functions of respective degrees n with poles a,„ of best approximation to

f(z) on C: \(az+ß)/(yz+b) | =1 converges to the limit*f(z) for

OLZ+ ß

yz + ô

A2T + T + 2A
< -j uniformly for

2¿r + /i2 + i

az + ß

yz + ô

A2T + T + 2A
^R<-

2AT + A2+ 1

The measures of approximation contemplated here are naturally (1), (2),

(3), and the restriction \a/y \ >l is made simply to avoid an improper in-
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tegral if (3) is the measure of approximation, taken over \(az+ß)/(yz

+ 8) | £1. If (1) or (2) is used, this restriction may be omitted, and it may

even be omitted in case (3) if suitably modified restrictions on the norm func-

tion are imposed for the case that \(az+ß)/(yz+8) | ig 1 is an infinite region.

It will be noticed that throughout §8 we have not explicitly used the fact

that we were dealing with sequences of rational functions of best approxima-

tion. It is in every case sufficient if we have sequences which converge (as

measured by any one of the several measures of approximation) like the

sequence of best approximation, in the sense of geometric inequalities as used.

We remark that inequality (8.1), holding for z on C for an arbitrary

R>(T+A)/(l+AT), cannot be proved to hold, for an arbitrary choice of

the ctin and for an arbitrary function/(z) analytic for \z | < T, for an arbitrary

R>R'<(T+A)/(l+AT). This follows from the specific example given in

§5. From (5.1) we have for z on C

1 /T+A\n

Overconvergence, in the form in which we have proved it in cases (1),

(2), (3), and so far as the present methods are concerned, is not a consequence of

the inequalities (8.2), (8.5), (8.8) alone, but is a consequence of those in-

equalities together with our knowledge of the-fact that/(z) is analytic for

\z | < T. If we know merely that for some function/(z) defined for \z \ g 1, one

of the inequalities (8.2), (8.5), (8.8) holds, then we can prove only that the se-

quence/„(z) converges and that/(z) is analytic for \z | < (A +Ril2)/(l +AR112).

We have from (8.2), for instance,

| Fn(z) - F„+x(z) | g M'(l + R)R», z on C

where R is an arbitrary number less than unity. By Lemma I this yieli

since the function on the left is a rational function of degree 2»+l,

(A'Rx — 1VB+1
| Fn(z) - Fn+i(z) I g M'(l + R)R» (A,_R)      ,     ! z | = 2?i > 1,    A'<A.

Thus the sequence Fn(z) converges for Rx < (A +R1'2)/(l +AR1'2), that is, for

\z\ <(A+R1i2)/(l+AR1'2), uniformly for \z\ ^Z<(A+Rll2)/(l+ARU2).

9. Interpolation at the origin. As a matter of interest, we study the ra-

tional functions (2.1) of respective degrees n with poles in the prescribed

points a,„ which are defined from the given analytic function f(z) by inter-

polation in the origin, and we shall investigate the convergence of the se-

quence so determined. That is to say, the present functions/„(2) shall have

the property
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(9.1) j»\0)-f\0) (*-0,1, •■•,»),

where/(z) is the given function analytic for \z \ < T. The conditions (9.1) de-

termine fn(z). completely. Under the present circumstances we have the

formula

Zn+1(t - ax)(t - a2) ■ ■ ■ (t - an)

(9.2) /(z)-/n(z)=-1- f fit)
¿TI Jcic        (z — a)(z — ce2) ■ ■ ■ (z - a„)(t — z)tn+1

let us verify the correctness of this formula. The function

dt;

(9.3) fn(z) --f[2-KiJcV

Zn+1(t - a) it - a2)

(z — a)(z — a2) ■ • • (z — an)tn+1J       t

0 - oJT/(()_ «

is a rational function of degree n; indeed, if the quantities in the square

bracket are reduced to a common denominator and added, the new numera-

tor considered as a function of z and t vanishes for t = z and hence is divisible

by t—z. The function/„(z) defined by (9.3) is of degree n and has (formally)

the prescribed poles. Moreover, the right-hand member of (9.2) vanishes

together with its first n derivatives for z = 0, so the verification is complete.

We shall prove

Theorem Va. Let the function f(z) be analytic for \z \ <T and let the num-

bers ain, i = l, 2, • • • , n; n = l, 2, • • • , be preassigned and have no limit

point whose modulus is less than A. Denote by fn(z) the rational function of the

form (2.1) which satisfies (9.1). Then the sequence {/„(z)} approaches the limit

f(z)for \z\<ATI (A+2T), uniformly for \z \ <R<AT/(A+2T).

For |i|=r'<rand \z\ =Z<A', we have for \a\^A'<A

t

\z — a

Under the same restrictions we have

z(t — ak)

t(z — ak)

so if we integrate over C": \t\

proaches zero provided we have

Z(V + A')

V + A'

A' - Z

Z(V + A')

V(A' - Z)

T', the right-hand  member of (9.2) ap-

V(A' - Z)
< 1, or Z <

A'V

A' + 2V

Since T'<T and A'<A are arbitrary, we have convergence for Z<AT/(A

+2T), uniform convergence for Z<R<AT/(A +2T). In particular UA=T,
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we have convergence for \z\ <A/3. If the function/(z) is analytic at every

finite point of the plane, we may allow T' to become infinite; the quantity

AT/(A+2T) approaches A/2. If we have lim„,w ûu„=ço uniformly, then

we may allow A to become infinite; the limit of AT/(A +2T) is T.

The significance of the case that A is infinite deserves further discussion.

Throughout our work on interpolation as well as on approximation any or all

of the points a¡„ may naturally be the point at infinity. If the points ain have

no limit point except at infinity, then the sequence/„(z) converges to f(z) uni-

formly for \z\^Z<T. The case a,„ = 00 is included here, which corresponds

of course to the expansion of f(z) in Taylor's series. Theorem Va, like most of

the other results of the present paper, thus deals with a generalization of Tay-

lor's series.

The limit A T/(A +2T) that we have derived can be replaced by no larger

limit, as we now point out. Take f(z) = l/(z+T),so that we have for a<„=A,

/.(«) =

Tn+Kz - A)n + (T + AYz^1

Tn+\z + T)(z - A)n
Mz) - f(z) =

(T + AYz^1

Tn+l(z+ T)(z - AY'

the reader can readily verify these formulas. The equation

lim fn(z) = f(z)
«-♦00

is valid whenever \(T+A)z/(T(z—A)) |<1, and cannot hold if we have

\(T+A)z/(T(z —.4)) | >1. Indeed, we have divergence of the sequence

fn(x) if \z/(z—A)\>T/(T+A), and in particular we have divergence for

z=,427 04+27).
10. Interpolation at origin; continuation. In the present section we con-

tinue the study of the sequence fn(z) found by interpolation in the origin,

where now the limit points of the numbers a,-„ are restricted to lie in some

circular region V bounded by a circle whose center is not necessarily the

origin.

A sufficient condition for the equation lim«,«, /„(z) =/(z) is still

(10.1) <
t - a

for the numbers a involved, so we study this inequality in more detail. If

the region T is comparatively small, and does not contain the origin, the

locus of points z such that

(10.2) = k,
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where k is a given positive constant and a takes on all possible values in the

region T, is a portion of a plane bounded by a certain Cartesian oval.* The

Cartesian oval consists of two non-intersecting curves G and C2, each of

which separates the origin and the region T. Let G separate O and C2. Denote

by Ti and T2 the two open regions bounded by G and G respectively, which

are mutually exclusive and contain O and T respectively. The locus of points

z such that (10.2) is valid is the region between and bounded by G and Cs.

Thus for all points z of Tx we have

(10.3) < k,
\z — a\

no matter what the choice of a in T may be, and for all points t of T2 we have

t
(10.4)

t - a
> k,

no matter what the choice of a in T may be. The proofs of (10.3) and (10.4)

are practically obvious; for instance (10.3) is valid for z = 0 no matter what

a in T may be, and hence is valid for every other value of z of IV

If the given function f(z) is analytic in the closed region T2 complemen-

tary to r2, we may take the integral in (9.2) over a path interior to T2,t so

that (10.1) is satisfied for all points z of IV We have

lim/.W =/(z)

uniformly for z in IV // r2' is the largest region of the kind described (that is, we

use the largest possible value of k) within which f(z) is analytic, we have lim,,..«,

/»(z) =/(z) for z interior to the corresponding Tx, uniformly for z on any closed

point set interior to IV This condition is the precise analogue of the condition

found in §9. Indeed, that previous condition is included under the present

one.

The condition just considered has been established only under the assump-

tion that the given region T is sufficiently small. Let T be now any circular

region not containing the origin. If k starts at zero and becomes larger, the

curve G sweeps out the entire plane and eventually reduces to a point, later,

for still larger values of k, expanding again. But for these larger values of k

the curve G no longer has any significance in the study of the locus (10.2) ;

• Walsh, Quarterly Journal of Mathematics, vol. 50 (1924), pp. 154-165.
f This integration is valid even if the region IY contains in its interior the point at infinity, for

under such circumstances the function f(t) is analytic at infinity and the integrand in (9.2) has a

zero of order at least two at /= ».
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the locus (10.2) is bounded by the single oval G. The condition we have

developed above is valid, no matter what may be the circular region T not

containing the origin, provided that the locus (10.2) is bounded by two non-

intersecting curves G and C2; the value of k is thus uniquely determined. In

particular there is a limiting case in which C2 reduces to a point, and the only

singularity of f(z) lies at this point. The discussion is valid essentially as

given, also in this limiting case.

Another method of studying convergence in the case that the «,-„ have

no limit point exterior to a circular region T not containing 0, is to transform

by means of a linear transformation of the form w=z/(z—ß), where ß is the

inverse of O in the circle T. The origin z = 0 is transformed into the origin

ro = 0, and the circle T is transformed into a circle whose center is the origin.

The region T is transformed into the exterior of this new circle. A rational

function /„(z) of degree « with poles in the points ain which satisfies the

equations

fn\0) = /W(0) (ft - 0, 1, 2, •. . , f>)

is transformed into a rational function fn(ßw/(w—l)) of w of degree n with

poles in the transforms of the points ain which satisfies the equations

¿*      / ßw \      ¿*    / ßw \

dwk     \w—1/     dwk   \w—l)

for the particular value w = 0. The latter situation is treated in detail in §9,

so we may read off directly the results in the original situation in the z-plane.

If f(z) is analytic for \z/(z—ß) \ <T and if the numbers a,„ have no limit

point z such that \z/(z—ß)\<A, then the sequence /„(z) approaches f(z) for

\z/(z-ß)\<AT/(A+2T), uniformly for \z/(z-ß) \ <R<AT/(A+2T). In
particular if A = T, we have convergence for |z/(z—ß) \ <A/3, uniform con-

vergence for \z/(z—0) | <R<A/3. If f(z) is analytic at every point of the

plane except the point z=ß, we have limn~xfn(z) =f(z) for \z/(z—ß) | <A/2,

uniformly for \z/(z—ß) \ <R<A/2. If the only limit point of the a,„ is the

point ß,f(z) analytic for \z/(z—ß) \ < T, we have this equation for \z/(z—ß) \

<T, uniformly for \z/(z-ß) \ <R<T.

11. Interpolation at the roots of unity. Another method of approximat-

ing to a given analytic function by rational functions of the form (2.1) is sug-

gested by well known work of Runge* and Fejerf on approximation by poly-

nomials and consists in interpolating in the roots of unity. Let us establish

* Theorie und Praxis der Reihen, Leipzig, 1904, pp. 126-142.

t Göttinger Nachrichten, 1918, pp. 319-331.
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Theorem VI. Let the function f(z) be analytic for |z|<T>l and let the

numbers a,„, i = l, 2, • • • , n; n = l, 2, • • • , be preassigned and have no limit

point whose modulus is less than A >1. Denote by fn(z) the rational function of

the form (2.1) which coincides with f(z) in the (n+l)st roots of unity. Then the

sequence {/»(z)} approaches the limit fz) for \z\ < AT/(A+2T), uniformly

for \z\<R<AT/(A+2T) when AT/(A+2T)>1.

Let us write down the formula for/n(z) and then verify it. We have

(11 1) fi) -f(z)=—Ç fit)    (2"+1 - m - ai)(t -"«)•••«- «»)
; M 2ri Jc>       (z - a) (z - a2) ■ ■ • (z - an) (t - z) (t^1 - 1)   '

i   c     r       (z"+l -1)(< - «o(< - «2) • • • (t - a»)  "1
(11.2)   fiz)   = -   I     /(/)    1-—-—!— \dt.

JJKJ       2iriJc>        L (z-ai)(z-a2)--- (z - an)(/-z)^1-1)J

These integrals are to be taken over a circle C: \t\=T' <T, T'>1. Indeed,

if we reduce the two quantities in the square bracket in (11.2) to a common

denominator, the factor t—z cancels from numerator and denominator, for

the numerator vanishes (considered as a function'of t and z) for t=z. Thus

(11.2) defines/»(z) as a rational function of z of degree n with the proper de-

nominator. It appears from (11.1) that the function/n(z) as so defined coin-

cides with/(z) in the points z for which zn+1 = l; these properties define/„(z)

uniquely.

The integral in (11.1) approaches zero with l/n for \z \ =Z ^ 1, Z <A' pro-

vided we have
Z(V + A')

(11.3) —--<1,V       ; (A'-Z)V

where A' is an arbitrary number less than A. Condition (11.3) is equivalent

to Z<A'T'/(A'+2T). Thus, by the arbitrariness of A'<A and T'<T, if

AT/(A+2T)>1, we have

AT AT
(11.4) lim/„(z) = fz) for I z\ <-, uniformly for | z\ ^ R <

A + 2T A + 2T

If we do not have AT/(A+2T)>1, we can still study convergence in-

terior to the unit circle. The integral in (11.1) approaches zero with l/n, for

|z| ^Zgl, provided we have (T'+A')/((A'-Z)T') <l, that is, provided we

have Z<(A'T'-T'-A')/T'. Again we use the arbitrariness of A'<A and

of V < T; it follows that we have

(11.5)   lim/„(z) = fz) for I z I < (AT - A - T)/T,

uniformly for | z\ ^ R <(AT - A - T)/T
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when (AT-A-T)/T^l, and uniformly for |*|gl when (AT-A-T)/T

>l. It will be noticed that the quantity (AT—A — T)/T may be negative or

zero, in which case we draw no conclusion regarding convergence for \z | ^ 1.

The two conditions ^r/(^+2r)>l and (AT-A-T)/T>\ are the same.

If this condition is satisfied, we use (11.4), and if this condition is not satisfied

we use (11.5).

Let us choose a specific example to show that the limits obtained in (11.4)

and (11.5) are not artificial, but cannot be replaced (for the general function

f(z) and for arbitrary a<„) by any larger limits. We set/(z) = l/(z+r), T>1,

ctin = A > 1, and it is a simple matter of verification to show that the function

f„(z) yields

(T + ^)"(z"+1 - 1)

/n(2) " /(Z) = [(-IY+T^](z+T)(z-AY

1

/T + A     z   y

' \    T      z-A)

(11.6) (T + A "(- D»
l-

\FF+'\+ T\(z+T)

A necessary and sufficient condition for the approach of this quantity to zero

with l/n, in the case \z | >1, is

T + A

-A
<1,

and this condition fails even for z = ,47704+22"). For \z | <1, we can write

(11.6) in the form

T + Al" 1 - zB+1F T + A 1" 1

[^-]
+ T\(z + T)

and a necessary and sufficient condition for the approach of this quantity to

zero with l/n is

T+A <>.

T\z- A

This condition fails even for z = (AT—A — T)/T.

Condition (11.4) is just the condition found in §9, so we refer to that

place for a discussion of the cases A = T, A = <*>, T—a>. Moreover, the con-

dition
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<
Z - « 1/ - a

is studied in some detail in §10, where the numbers a lie or more generally

have no limit point in a circular region not necessarily concentric with the

origin, and this yields results in the present case on convergence of the se-

quence {/„(z)}, provided |z|>l.

If the points a,„ have no limit point exterior to the circular region T

(exterior to C), our condition for convergence for \z | <1 is

\t - a

t
<   z- a

Again the path of integration C in (11.2) can be chosen so that on it we have

t - a
> k,

where this inequality holds uniformly for all / on the path of integration and

for all a in T, and provided that/(z) is analytic in the closed region bounded

by C" and containing C: \z \ = 1. Then* we have \imn^fn(z) =/(z) uniformly

for \z—a | ̂  l/k. This latter condition is the requirement that z should lie in

a certain infinite circular region concentric with Y, and is naturally to be

taken in conjunction with \z | <1.

It is instructive to compare the difference f(z) —f%(z) for interpolation in

the origin with the difference/(z)—/„(z) for interpolation in the (n+l)st

roots of unity. The difference between these two differences is

/n°(z)-/n(z)

(11-7)      i  r„,   (t1   r       (t a)(t — a2) • :■ (t — an)dt

(z — a)(z — a2) ■ • ■ (z — an)(t — z)

rzn+l       zn+l _   n

[/n+l tn+l   _    J'

the square bracket reduces to

(ti+i _ zn+l

tn+lltn+X _   !)

The integral is to be taken over a circle whose radius J" is greater than unity,

for otherwise we cannot be sure of interpolation in the (w-f-l)st roots of unity.

We consider \z\=Z<A' <A. There are two cases according as Z ^ T' < T or

Z>T'; the integrand in (11.7) has no singularity for t = z, so the equation is

valid even UZ>T.

A sufficient condition for the convergence to zero of the integral in (11.7)

is in these respective cases



1932] INTERPOLATION AND APPROXIMATION 53

t — ctk      1

/      z — ak

t — ak      z

t2      z — ak

T +A'       1                         A'T -T - A'
<P<1,   -;---< 1, Z<-;

r    a' -z r

T' + A'   Z A'T'2
<P<1,-< 1,       Z<-

A' - Z T'2 T'2 + V + A'

The conditions (AT-T-A)/T>T, AT2/(T2+T+A)>T, and (AT-T

-A)/T>AT2/(T2+T+A) are precisely the same. Thus f„(z)-fn(z) ap-

proaches zero for \z\ <(AT-T-A)/T, uniformly for \z\<R<(AT-T

—A)/T, provided that this last quantity is less than or equal to T, and

f„(z)-fn(z) approaches zero for \z\ <AT2/(T2+T+A), uniformly for

|2[ <2t<-4r2/(r2+r+.4) provided this last expression is greater than T.

Thus we may have lim„H.00[/£1(2)—fn(z)] =0 uniformly in a region which con-

tains a singularity off(z), and in any case this limit that we have found if greater

than unity is greater than the common limit found in the two cases, for the con-

ditions lim„^xJl(z)=f(z), limB^00/B(z)=/'(z). Indeed, the condition (AT—T

-A)/T>AT/(A+2T) is equivalent to the condition (A + T)(AT-A-2T)

>0, which is precisely the condition that (AT-T-A)/T or AT/(A+2T)

should be greater than unity.

It is instructive to verify the fact just proved, for the particular function

/(Z) = i/(z+r).
There are cases where the points of interpolation are on |z | = 1 but not

exactly the points l1/(»+1>, where the results are likewise comparable to those

for interpolation in the origin. It would be of interest to determine precise

geometric conditions that this be true; algebraic conditions are readily ob-

tainable from the formulas we have used.

12. Interpolation in arbitrary points. We sketch rapidly some results

which include the main results of §9 as a special case, and which also throw

some light on the results of §11. We consider the rational function/„ (2) of

form (2.1) which takes on the values of the given function f(z) in n+l arbi-

trary points ßxn, ßin, • • • , ßn+x.n (the second subscript will frequently be

dropped for simplicity) and shall determine sufficient conditions for the ap-

proach of fn(z) to f(z) as n becomes infinite.

Theorem V. Let the function f(z) be analytic for \z \ <T and let the numbers

can have no limit point whose modulus is less than A, and the numbers ßin no

limit point whose modulus is greater than B<A, B<T. Then the sequence of

rational functions fn(z) of respective degrees n with poles in the points a,-„ which

coincide with the values of f(z) in the points )3¿„, approaches the limit f(z)

for \z\<(AT-BT-2AB) I (A-B+2T), uniformly for \z\ <R<(AT-BT
-2AB)/(A-B+2T), provided AT-BT-2AB>0.
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The rational function /„(z) is completely determined by the prescribed

conditions. The reader will verify the formula

(12.1) fz) -Mi)

(z - ß)iz - ß2) ■ ■ • (z - ßn+)(t - ax)(t - a2) • • • (t - an)

2iri Je'
dt,

(z - ax)(z - a2) ■ • ■ (z - an)(t -z)(t- ß)(t -ß2) ■■■ (t- ßn+x)

where we take the integral over a circle \t\ = T'<T, T'>B'>B. We con-

sider moreover \z\=Z<A to be fixed during the integration and choose an

arbitrary A' <A. The right-hand member of (12.1) approaches zero uniformly

in z as n becomes infinite provided we have for n sufficiently large

(12.2)

hence provided we have

t — at z — ßi

z — ai t — ßi
<1,

V + A' Z + B'
(12.3) -;-• < 1,V A' - Z  V - B'

A'V - B'V - 2A'B'
(12.4) Z<-— •v A' - B' + 2V

To be sure, in evaluating the right-hand member of (12.1), the second factor

in the left-hand member of (12.2) is to be considered raised to the power

n+l, and the first factor only to the power n. But by (12.3). itself, the second

factor is uniformly limited in absolute value, so in (12.2) we may take both

factors to the power ».

When we remember that A' <A, B' >B, T' < T are arbitrary, we see from

(12.4) that the proof of Theorem V is complete. If all the points ßi are not

distinct, Theorem V is interpreted to mean the coincidence of various deriva-

tives of /„(z) with those of fz) at multiple points ßi, and this condition is

fulfilled in (12.1). If B = 0, we have the situation of Theorem Va. If 4 = °°

(of which interpolation by polynomials is a special case), the limit in Theorem

V is to be taken as T — 2B ; if T = =o the limit is to be taken as (A — B)/2 ; and

if both A and T are infinite, this limit is to be taken as infinity. In particular,

the inequality

AT - BT - 2AB
-> B,

A - B + 2T

which allows the points ßi to be chosen arbitrarily with no limit point ex-

terior to |z|=5 and assures uniform convergence of/„(z) to the function

fz) for \z | = £, is equivalent to T > (3AB - B2) / (A -3B), provided A >3B.
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The general condition for convergence

AT - BT - 2AB
|.|<

A - B + 2T

of Theorem V can be replaced by no condition

AT - BT - 2AB
\z\ <R>

A - B + 2T

as we now show by an example. Take/(z) = l/(z+T), 0,= —B, on=A. Then

we find

(T + A)"(z + BY+1

U(Z) fW   -   {T _  B)n+X(z +  T){2 _ A)n

(12.5) (T + A z + B\n z + B
(T + A Z + 2A-
\T - B z-A/ (T-B)(z+T)

For the value z = (AT-BT-2AB)/(A -B+2T) we have

T+A  z+B

B z - A
= -1,

so the last member of (12.5) diverges as n becomes infinite.

If the numbers a<„ and ßin of Theorem V are independent of n, the func-

tion/„(z) is the sum of the first n+1 terms of a series of the form

Z-ßx (Z- ßx)(z - &) (2 - ßx)(z - ft)(2 - ß»)
öo + ax- + a2-- - + as- - - - + • • • ,

z — ax (z — otx)(z — a2) (z — ax)(z — a2)(z — a3)

where the given points a, are supposed distinct from the point at infinity. If

all of the a* coincide with the point at infinity, the function/»(2) is the sum of

the first n+1 terms of a series of the form

do + ai(z - 181) + (h(z - ßx)(z - ß2) + a3(z - ßx)(z - ß2)(z - ft) +

These two types of series have been widely studied. The special case here

that limn~xan and lim«..,^,, exist has recently been considered by Angelescu.*

Theorem V can be generalized as was Theorem Va, first making assump-

tions on the ai, ßi, and on the analyticity of f(z) in certain circular regions

bounded by circles of a coaxial family, then transforming these circles into §.

family of concentric circles.

* Bulletin, Académie Roumaine, vol. 9 (1925), pp. 164-168._
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Let the function fiz) be analytic for |(z — a) Hz — b) \ <T and let the numbers

ain have no limit point z such that \(z — a)/(z — b) | <A and the numbers /3in no

limit point z 'such that | (z — a)/(z — b) \ >B < A, T. Then the sequence of rational

functions fn(z) of respective degrees n with poles in the points ain which coincide

with the values of f(z) in the points ßin, approaches the limit f(z) for

- b
<

AT-BT-2AB

A - B + 2T
uniformly for

z - b
<R<

AT-BT-2AB

A - B + 2T

provided AT-BT-2AB>0.
It will be noticed that formula (12.1) is valid even for an infinite region

bounded by the curve C, provided that the points ßi lie interior to this region

and that/(z) is analytic in the closed region. This follows from the fact that

if/(z) is analytic at infinity, the integrand of (12.1) has a zero for / = oo of at

least the second order in t. The theorem just proved is naturally valid even if

any of the regions \(z — a)/(z — b) \<A, T, \(z — a)/(z — b) \ >B is the exterior

of a circle or even a half-plane.

The entire problem of studying the rational function/„(z) of degree n with

preassigned poles a™ which coincides in n+l preassigned points /3,„ with a

given analytic function fz) is invariant under linear transformation of the

complex variable. That is to say, if all the points in the z-plane are trans-

formed by a linear transformation, the function fn(z) is transformed into a

rational function of degree n whose poles lie in the transforms of the points

a,„ and which coincides in the transforms of the points ßin with the analytic

function which is the transform of the function fz). We shall now formulate

the problem of the study of the convergence of the sequence/„(z) to the func-

tion f(z) in a way more general than that previously done ; the new formula-

tion is expressed in terms of cross ratios and brings out clearly this invariant

character.

Let Rx and R2 be arbitrary closed regions with no point in common. If the

points ain lie in Rx and the points /?,-„ in R2, what can be said of the con-

vergence to the function f(z) analytic in R2 of the sequence of rational func-

tions fn(z) of respective degrees n, whose poles lie in the prescribed points

ain, determined by interpolation in the points ßin?

If there exists a curve C bounding a region which contains R2 in its in-

terior but contains on or within it no singularity of/(z), such that we have

for every t on C" and for every z on R2

(12.6) |   (t, ain, Z, ßin) |   =

(t - ajn)(z - ß,n)

(Z - ain)(t - ßin)

<P  <   1,
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then we also have for n sufficiently large

(z - ßx)(z - ßi) ■ ■ ■ (z - ßn+x)(t - ax)(t - a2) ■ ■ ■ (t - an)        pn       ^

(z-ax)(z-a2) ■ ■ ■ (z-an)(t-z)(t-ßx)(t-ß2) ■ • ■ (t-ß„+x)

for (z—ßn+x)/((t — z)(t—ßn+x)) is uniformly bounded. It follows that/„(z) ap-

proaches f(z) uniformly for z in R2. Moreover, if (12.6) holds for every t on C

(bounding a closed region of analyticity of f(z) which contains R2), for every z in

an arbitrary closed region R3 and for every ain and ßin in Rx and R2 respectively,

then the sequence /„(z) converges uniformly to the function f(z) for z on R3. This

general result contains many of the various special theorems of the present

paper. The uniform boundedness of (z—ßn+i)/[(t—z)(t— ßn+x)] follows, it may

be mentioned, from the fact that R2 is interior to the region bounded by C",

and this uniform boundedness follows even if no restriction of finiteness is

made on the variables involved.

The general result just proved suggests the following problem :

Problem I. Let the closed regions R1} R2, R3 be given. Determine a curve C'

such that (12.6) is valid for t on C and for arbitrary points ain, ßin, z in the given

regions Rx, R2, R3 respectively.

It is to be noted that for convergence of/„(z) to/(z) we require analyticity

of f(z) in the closed region containing 2?2 and bounded by C, or more generally

analyticity of f(z) in the interior, continuity in the closed region.

Problem I is equivalent to

Problem II. Let the closed regions Rit R2, R3 be given. Find the locus L of

all points t where a<„, /?<„, z (varying independently) have Rx, R2, R3 as their

respective loci, and the relation

(12.8) \(t,ain,Z,ßin)\*tl

obtains.

The set L must of necessity contain 2?2 and R3, for if / and ßin coincide the

left-hand member of (12.8) is infinite, and if t and z coincide the left-hand

member of (12.8) is unity. The set L is necessarily closed, since 2?i, R2, R3 are

closed. If the function f(z) is analytic on the (closed) set L, and if L does not

contain the entire plane, then any curve C" in the complement of L on which

f(z) is analytic is such that for / on C and for ou„, /?,„, z arbitrary points in

Rx, 2?2, R3) inequalities (12.6) and (12.7) are valid uniformly. The uniformity

of (12.6) is an easy corollary of the closure of the sets C, Rx, R2, R3. Hence

if f(z) is analytic in the closed region bounded by C which contains L, the se-

quence fn(z) converges uniformly to f(z) for z on R¡.
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We have supposed for convenience that Rx, R2, R3 are closed regions. If

they are more general closed point sets, the remarks already made are valid

if properly modified and interpreted. If Rx, R2, R3 are connected, then L is

also connected, but if one or more of those sets is not connected, then L may

fail to be connected, and it may be necessary to take C as consisting of

several distinct curves.

We have also assumed that the points ain and /8<„ lie on the closed point

sets Rx and R2 respectively. It is, however, sufficient to assume that the

points ain have no limit point exterior to Rx and that the points ßin have no

limit point exterior to R2. For under the new hypothesis, there exist auxiliary

closed point sets R{ and R2 differing only slightly from but containing the

point sets Ri and R2 respectively in their interiors. If the point sets Rx and

R2 are suitably chosen, inequality (12.6) is still valid for suitable choice of P

for t on C and for ain, ßin, z chosen arbitrarily in Rx, R2, R3; and the points

otin, ßin lie in R{, R2' for n sufficiently large.

Indeed, it is not even necessary to suppose that all limit points of the a,„

and ßin lie in Ri and R2. Let the ain be divided into two classes, ain' and «,„",

where the former have all their limit points in Ri and where the latter are for

a given n distinct from the ßin and have no limit point in R3 but are otherwise

unrestricted as to location, and where the number of the ain" for a given n is

less than some N independent of n. Let the ßin be divided into two classes,

ßi„' and ßin', where the former have all their limit points in R2 and where the

latter have no limit point exterior to L, and where the number of the ßi" for

a given n is less than some N independent of n. It is still true that if fz) is

analytic in the closed region bounded by C" which contains L then the se-

quence/„(z) converges uniformly to/(z) for z in R3, for the expression

iz-ß")it-a")

iz-a")it-ß")

is uniformly bounded. The sets at" and ßi" may even be allowed to be un-

limited in number provided those points are suitably restricted, but the

sufficient conditions here are more complicated and are left to the reader.

The cases we have been considering are under the assumption that the

points ain and /3¿„ are subjected generally to no heavier restriction than that

of lying in Rx and R2 respectively or of having their limit points in those re-

gions. If some or all of those points are suitably restricted in their respective

regions, for instance so that at least n/2 of them are independent of i, it may

occur that our conclusion can be correspondingly broadened. But if those

points a in and ßin are unrestricted except as indicated, the determination of
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L as we have described it is the best determination of a region under the given

hypothesis within which/(z) must be analytic, for the sequence/„(z) to con-

verge in the given R3. For if f(z) need not be analytic in the closed region L,

the function f(z) can be chosen to have a singularity at a point f0 such that

I (to, ßin, Zo, ßin) \  è   1

for a particular choice of «<„, z0, /3»„ in 2?i, R3, R2 respectively. Choose all the

points ain and /3¡„ to coincide at these particular points and take for definite-

ness ain at infinity and /3,„ at the origin ; this latter choice involves no loss of

generality. Set/(z) = l/(z — t0). We have

(t0> ain, Zo, ßin) I   =
(to  —   CXin)(z0   —  ßin)

(Zo  —   ain) (h  —  ßin)
= 1,    | So| ^|*o|

The function /„(z) is the sum of the first n terms of the Taylor expansion of

f(z) about the origin, and the sequence/„(z) diverges for the value z = z0.

There are in reality four distinct problems connected with the regions

(or other point sets) Rx, R2, R3, L, according as any three of these regions are

given and the other is to be determined. We have mentioned in detail but a

single problem, that in which Rx, R2, R3 are given; the others can be readily

formulated and investigated by the reader. We shall consider more closely

some special problems of these other types.

For instance, let a = Rx be the point at infinity, so that (12.8) reduces to

z —
> 1.

If the locus of z is given as the closed interior of a circle R3 and the locus of t

is given as a circumference C which together with its interior has no point in

common with R3, then the locus of /3< determined by (12.8) is an infinite

closed region B bounded by a branch of a certain hyperbola whose foci are

the centers of R3 and C.* Denote by R2 the region complementary to B.

Then if all points /?,- lie in a closed region R2 interior to R2, we have for arbi-

trary points z, t of R3 and C respectively,

(12.9)
z-.

t-ßi
< P < I,

and it is readily shown that P can be chosen independently of /3<, but depends

on R2. This inequality is the equivalent of (12.6), from which it follows that

* We omit the details of the proof, but they are entirely similar to those given by Walsh, Ameri-

can Mathematical Monthly, vol. 29 (1922), pp. 112-114.
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if fz) is analytic in the closed infinite region bounded by C, if the points a,„

have no limit point other than the point at infinity, and if the points ßin have

no limit point exterior to R2, then the sequence /„(z) converges to f(z) uni-

formly for z in R3. We here use the fact mentioned above, that although (12.9)

may not involve the actual cross ratios (t, ain, z, ßin) of the points in (12.1),

for points au and /3,„ may lie exterior to Rx (the point at infinity) and R2,

nevertheless (12.9) implies an inequality for n sufficiently large of type (12.6)

for the variables t, ain, z, p\„ which actually do occur in (12.1). The result we

have just proved can be expressed in a form invariant under linear trans-

formation.

The situation is similar if ß = R2 is the point at infinity, so that (12.8)

reduces to \(t—a)/(z—a) | ^ 1. If the locus of z is given as the closed interior

of a circle R3 and if the locus of t is given as a circumference C which together

with its interior has no point in common with R3, the locus of a< determined

by (12.8) is an infinite closed region R bounded by a branch of a hyperbola

whose foci are the centers of R3 and C. Denote by R{ the region complemen-

tary to R. If all points a< lie in a closed region ¿?i interior to R{, we have for

arbitrary points z, t of Rx and C respectively

I z — a< I

and it is readily shown that P can be chosen independently of <*,, but de-

pends on Rx. It follows that if fz) is analytic in the closed infinite region

bounded by C", if the points ain have no limit point exterior to Rx, and if the

points ßin have no limit point other than the point at infinity, then the se-

quence fn(z) converges to/(z) uniformly for z in R3.

Problems I and II and the results connected with them are obviously

formulated in à manner independent of linear transformation. Theorem V

deals with the case that the regions Rx, R2, R3 are circular regions bounded

by concentric circles, and the theorem following it is the generalization to the

case that the circular regions Rx, R2, R3 are bounded by coaxial circles no two

of which have a common point. It would be interesting, and is apparently an

open problem, to solve Problem II for the case that Rx, R2, R3 axe arbitrary

circular regions. This problem has connections with some previous work by

the present writer and others.*

If Problem II is considered for arbitrary regions Rx, R2, R3, but is so

* Walsh, these Transactions, vol. 22 (1921), pp. 101-116; vol. 23 (1922), pp. 67-88; Palermo
Rendiconti, vol. 46 (1922). See also the reference given in §10 of the present paper.

Coble, Bulletin of the American Mathematical Society, vol. 27 (1921), pp. 434-437.

Marden. these Transactions, vol. 32 (1930), pp. 81-109.
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modified that the right-hand member of (12.8) is replaced by a quantity less

than unity, we are led to results on degree of convergence, and these are re-

lated to results on overconvergence.

The special case of Problems I and II where 2?i is the point at infinity,

which thus includes interpolation by polynomials, has long been studied ; in-

teresting results are particularly due to Hermite,* Runge, f Faber,f and

Jackson.§ All the work on interpolation in the present paper is obviously

related to Hermite's formula, which is (12.1) for the case ain = °o.

The special case in which 2?i is the point at infinity is quite simple; the

locus L consists of the closed interiors of all circles whose centers are points

of 2?2 and which pass through points of R3.^ If 2?i is the point at infinity and

R2 and R3 coincide, the situation is still simpler, and the locus L consists of

the interior of every circle any one of whose radii is a segment joining two

points of R2. In the latter case, if f(z) is analytic on the closed set L, then the

sequence /„(z) converges uniformly to f(z) for z on 2?2, where the points a<„

have no limit point except at infinity and the points ßin have no limit point

except on 2?2. In particular, if R2 is the interior of a circle, then L is the in-

terior of the concentric circle of three times the radius, as was proved by

Jackson (loc. cit.); this case corresponds to Theorem V for A = <», T = 3B.

If 2?2 is a line segment, then L is the interior of the two circles which have

this segment as radius. A corollary of this is the following theorem:

Let the points ßin be chosen arbitrarily in the interval a^z^b. If the function

f(z) is analytic for \z—a | ̂  \a—b \ and for \z—b | g \a — b |, then the sequence

of polynomials fn(z) of respective degrees n which coincide with f(z) in the re-

spective points ßin converges to the limit f(z) uniformly for a^z^b.

Indeed, the reader will notice that the sequence fn(z) converges uni-

formly to f(z) in some region containing the interval a^z^b in its interior.

13. Poles at points (A")lln. We have already considered interpolation in

the «th roots of unity. As an analogous problem, we now study interpolation

and approximation by rational functions whose poles are restricted to lie in

the points (An)1,n, where .4>1. Interpolation in the «th roots of unity is

quite similar, as we have seen, to interpolation in the origin, and we shall

* Crelle's Journal, vol. 84 (1878), pp. 70-79.
t Theorie und Praxis der Reihen, Leipzig, 1904, pp. 126-142.

j Crelle's Journal, vol. 150 (1920), pp. 79-106.
§ Bulletin of the American Mathematical Society, vol. 34 (1928), pp. 56-63. The present results

lead to a sharpening of the results of Jackson, even in the case of interpolation by rational functions

no more general than polynomials.

If In particular, if R¡ is the point at infinity, and Rt and Rs are respectively \z \ grj, \z | Srj, then

L is the region \z | ¿ri+r}. This case, for interpolation by polynomials, was considered by Méray,

Annales de l'Ecole Normale Supérieure, (3), vol. 1 (1884), pp. 165-176.
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find correspondingly that the properties of sequences of rational functions

with poles in the points (An)lln are similar to the properties of sequences of

polynomials. We shall not trouble to study explicitly rational functions whose

poles are required to lie in the points iA n)lln where A is negative or imaginary,

although such study involves only slight modifications of the formulas we use

and only obvious modifications in the results we obtain.

If the function f(z) is analytic for \z\<T>l, then the sequence f„(z) of ra-

tional functions of respective degrees n whose poles lie in the points (An)1,n, A > 1,

of best approximation to f(z) on C: |z | = 1 in the sense of least squares converges

to the limit f(z) for \z\<A, T, uniformly for \z\^Z<A, T.
The sequence /„(z) may, as we have already proved, be found by inter-

polation in the origin and in the points (An)~lln, and the convergence of the

sequence /„(z) to the function f(z) depends on the approach to zero of the

sequence

z(A"zn — 1)     tn — A"

zn — An     t(Antn - 1)

If \z\^Z<A, KZ, A<V, |i*| = r'<r, a sufficient condition for this ap-

proach to zero is

AZ   V
-< 1, or Z < A.
A   AT'

If \z | ̂ Z<A, 1 <Z, T^A, a sufficient condition is

AZ   A
-< 1, or Z < V.
A   AT'

The proof of the theorem is now complete.

The limit which we have found here, namely Z<A, T, can be replaced by

no larger limit, as is seen by the illustration f(z) = l/(z — T). We have

(An - Tn)z(A"zn - 1)

/»CO - fz) =
T(l - AnTn)(zn - An)(z- T)

If T>A, this right-hand member fails to approach zero for z=A. If T<A,

this right-hand member fails to approach zero for z = T. If T = A, all of the

functions/„(z) naturally coincide with/(z).

If f(z) is analytic for |z|<T>l and we consider the convergence for

|z | á 1 of the sequence of functions/„(z) of best approximation to/(z) on C

in the sense of least squares whose poles lie in the points (Af)11", where An

approaches unity as n becomes infinite, then we always have uniform con-
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vergence for |z | ál provided Af becomes infinite. The convergence of the

sequence/„(z) depends on the approach to zero of

z(A«zn - 1)     tn - A^ A^ + 1     T'n
--,   or of-,

zn - AS      t(Astn — 1) AS — 1  AsT'n

so that As—»°° is sufficient, as is known from §7. This condition cannot be

lightened in the present case ; we notice this by inspection of the illustration

already given.

Let us denote by <£„(z) the function of best approximation in the sense

of least squares for the case of polynomial approximation; we compare the

convergence of this sequence with the convergence of the sequence fJz)

previously considered, for best approximation in the sense of least squares

when the poles (An)lln are prescribed. It is a remarkable phenomenon that

if T<A the difference fn(z) — <j>n(z) approaches zero for \z | <(.4r)1/2, uniformly

for \z\^Z<(AT)112, even though the function f(z) may have singularities for

\z \ = T or for T < \z | < (A T)1'2. We can write

1    r   f(t)   Vz(Anzn - l)(tn - A")     zn+n
(13.1)    fn(z) - <t>n(z) =- I   -^--\dt,

J    J»\J      v„w       2TiJct-zl(z»-A»)(A»t»- l)t      f+U   '

where the integral is taken over C: \z\ — T'<T, and this expression ap-

proaches zero uniformly if that is true of the expression

z(Anzn - l)(tn — An)     zn+1     z(Antnzn + A" - tn — zn)(tn - zn)

(zn - An)(Antn - l)t     tn+1 (zn - An)tn+1(Antn - 1)

This last member approaches zero uniformly for \z\=Z if Z<(AT')112, so

the result is established.

It will be noted that (13.1) is valid even if \z\> T, for the integrand con-

sidered as a function of t has no singularity for t = z and so represents the same

analytic function (a rational function of z of degree n of form (2.1) plus a

polynomial in z of degree n) independently of the value of z.

It is not difficult to study the sequence/„(z) of rational functions of de-

gree n of best approximation to/(z) on C in the sense of least weighted pth

powers, whose poles lie in the points (An)lln, A>1, but for the sake of sim-

plicity we omit that discussion. Let us treat the question of interpolation in

the points ßin, where these points have no limit points of modulus greater

than B.

If the function f(z) is analytic for \z | < T, then the sequence fn(z) of rational

functions of respective degrees n with poles (A ")1/n found by interpolation in the

points ßn, converges to the limit f(z) uniformly for \z | ^Z<(AT—AB—BT)/T

ifT>A>B, and uniformly for \z\^Z <T-2B if B <T <A.
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A sufficient condition for the uniform convergence to zero of fn(z) —f(z)

is the uniform convergence to zero of

(z - ßx)jz - ß2) ■ ■ • (z - ßn+i)(tn - A»)

(z" - A»)(t - ß)(t -ß2)---(t- ßn+x)

In the case B <A < T, it is sufficient if we have

z + B      T AT - AB - BT
< 1,    Z <

A     T-B T

In the case B<T<A, it is sufficient if we have

Z + B      A

B
< 1, Z < T - 2B.

These limits which we have found are the best possible limits, as is seen

by considering the function/(z) = l/(z — T) and taking ßin = B. We have

(A* - T*)iz - B)*»
fn(z)  — fz)   = ->
*W     J (T - B)"+1(z" - A»)(z - T)

which fails to approach zero for z= — (AT — AB—BT)/T if T>A and for

z=-T+2BiiT<A.
The case 5 = 0 corresponds to interpolation in the origin or in points ap-

proaching the origin and is naturally not excluded in any of our discussion on

interpolation in points /3,„. If A >T, the sequence/„(z) —<pn(z), where/„(z) is

found by interpolation in the points /3,„ and has its poles in the points (A")lln

and <t>n(z) is the polynomial of interpolation in the points ßin, may converge

uniformly to the limit zero in a circle of radius larger than T. This phenome-

non surely occurs if B = 0 and also occurs for B > 0 if B is sufficiently small.

It is sufficient for/„(z) —c/>„(z) uniformly to approach zero if the quantity

(z - ß)(z - ß2) ■ ■ • (z - ßn+x)(tn - z")

(t - ßX)(t ~ß2)---(t- ßn+)(zn - A")

uniformly approaches zero, for which it is sufficient .that \z\^Z, \t \ — V < T,

A>Z>T>B,

Z + B   Z

V - B A
< 1,    Z <(AV - AB +B2/iyi2 - B/2.

This quantity is greater than T if V is sufficiently near to T, and if B is

sufficiently small. The condition

(AT - AB + 5V4)1'2 - B/2 > T
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can be written in the form

AT > T2 + BT + AB,

which is surely satisfied if B = 0 and further if B is small.

It is of secondary interest to study interpolation in the points (Bn)1/n by

rational functions with their poles in the points (.4n)1/n and to compare the

corresponding sequence of functions fn(z) with the sequence of functions

<f>n(z) with poles at infinity or in the points (An)1/n and found by interpolation

in the points (Bn)lln or in the origin. This comparison presents no difficulty

and is omitted. We remark however that if the two sequences/„(z) and 4>n(z)

are found by interpolation in the points (Bn)lln and if the poles are respec-

tively in the points (An)lln and at infinity, then under the assumption

B<T<A, the sequence/„(z) — 0„(z) approaches zero uniformly for |z|=Z

< (A T)1/2. We remark too that interpolation by rational functions with poles

in points on \z \ =A but not precisely the points (A")lln, or even with poles

in points near the points (An)lln but not on \z \ =A, leads also to sequences

of rational functions with properties similar to those of the corresponding se-

quence of polynomials; it would be of interest to determine the precise con-

ditions on the new poles ain that this should be true.

The following is also an interesting problem, a possible generalization of

the problem just suggested, and which can be solved at least in part by the

methods we have used. Let the ain and j3<„ be given. What are the algebraic

and geometric conditions on the ain' and ßin, such that the sequence /„(z)

of rational functions of respective degrees n whose poles lie in the points a,„

which is found by interpolation in the points ßin should converge like the se-

quence /„' (z) of rational functions of respective degrees n whose poles lie in

the points a/n which is found by interpolation in the points ßin, in the sense

that for an arbitrary function f(z) (satisfying certain restrictions) we have

under suitable conditions limn<00 [/„(z) —/„' (z)] =0 uniformly?

14. More general approximation. There are some results not yet men-

tioned which follow directly from Theorem I. As an illustration we state

Theorem VII. Let the function f(z) be analytic in the interior of a Jordan

region J, continuous in the corresponding closed region. If the region J lies in a

circular region C and if the points ain have no limit point in C, then there exists

a sequence of functions f„(z) of the prescribed form (2.1) such that we have

(14.1) lim fniz)-fz)
n-»w

uniformly in the closed region J.

Let C be a finite region; this assumption involves no loss of generality.
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Let fi (z) represent the admissible function of degree n of best approximation

to f(z) in (the closed region) / in the sense of Tchebycheff; this function

exists and is unique. If Theorem VII is not true, we have for some function

f(z), for some positive e, for some sequence nk of indices, and for some se-

quence of points zk belonging to the closed region /,

(14.2) | fik(zk) - /(**) I > «;

we shall show that this leads to a contradiction. There exists* a polynomial

p(z) such that we have

I/O) - p(z)\ <e/2,    2 in/.

By Theorem I there exists a sequence of admissible functions /„(z) such that

we have for nk sufficiently large

I P(z) - fnk(z) | < e/2,    z in C.

These two inequalities yield

I Uk(z) - f(z) | < «,   z in /,

in contradiction with (14.2), assumed to hold for the function fn¿ (z) of degree

nk of best approximation.

Perhaps it is worth while to state a more general theorem of wider applica-

bility, of which Theorem VII is a special case.

Theorem VIII. Let K' and K" be two classes of sequences of functions de-

noted generically by {/„' (z)} and {/„" (z)}, such that on a certain point set K

any function fí' (z) can be expressed as the limit of a uniformly convergent se-

quence \fi(z)\. If f(z) is an arbitrary function defined on K which can be ex-

pressed as the limit of a uniformly convergent sequence {/„" (z)}, then on K the

function f(z) can also be expressed as the limit of a uniformly convergent se-

quence {/„' (z)}.

Theorem VIII is obvious in the case which frequently occurs, that the

classes /„' (z) and /„" (z) are defined as linear combinations of n functions

<bi(z), <f>i'(z), where <pí (z) and <t>{'(z) do not depend on n, provided merely

i^n. In the more general case, the theorem is of interest, although the proof

is similar to that of Theorem VII. In Theorem VIII the sequences/«' (z) and

/„" (z) are assumed to be independent of the functions represented—not to be

found by interpolation or best approximation, or by any other requirement

involving the limit function, and each function of the sequence is supposed to

be independent of the others.

* Walsh, Mathematische Annalen, vol. 96 (1926), pp. 430-436.
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If Theorem VIII is not true, there exists some function/(z) defined on K

which can be expressed on K as the limit of a uniformly convergent sequence

/„" (z) but such that 5„ does not approach zero, where 5n is for each n the

greatest lower bound of the quantities

bound [ | fz) - /»' (z) | ,  z on K]

for all admissible functions/«' (z); the symbol bound indicates the least upper

bound of all the quantities which follow. We shall show that this assumption

leads to a contradiction.

Since the sequence 5„ does not approach zero, there exists a positive S such

that we have for an infinity of indices nk, 8nt > 5. There exist, then, a sequence

of indices nk such that we have

(14.3) bound [ | fz) - /„»' (z)\ ,  z on K] ^ Sn„ > ô

for all admissible functions/«/(z). There exists a function ft/'(z) such that

we have

\fz)-U'(z)\ <8/2,  zonK.

There exists a sequence of admissible functions/«' (z) such that we have for n

sufficiently large

|/iv"(z)-/n'(z)| <S/2,  zonK.

These two inequalities yield for n = nk

I /CO - /»*' («) I < «,  zonK,

which is in contradiction with (14.3).

Theorem VII is a simple application of Theorem VIII. There are many

other situations in which functions defined on more or less arbitrary point

sets can be uniformly approximated by polynomials.* Each of these situations

leads, by virtue of Theorem VIII, to a new result analogous to Theorem VII.

Theorem VII is not primarily concerned with the convergence to the func-

tion fz) of a particular set of functions/„(z), but if it is desired to have a

uniquely determined set of such functions, the functions/„(z) of best approxi-

mation in the sense of Tchebycheff naturally furnishes such a set. Equation

(14.1) is valid for this particular set, but we need not have the phenomenon

of overconvergence. Theorem VIII is independent of the existence and

uniqueness of functions/«' (z),/«" (z) of best approximation.

* Seç for instance Walsh, these Transactions, vol. 30 (1928), pp. 472-482; vol. 31 (1929), pp.

477-502. '

These results lead easily to non-uniform expansions of arbitrary functions by rational functions

of the form (2.1).
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The question may well be raised of the extension of Theorem I to an

arbitrary Jordan region C. We are not at present in a position to give a com-

plete extension of Theorem I, but we can generalize Theorem VII:

Theorem IX. 2/ C is an arbitrary Jordan region which contains no limit

point of the set ain, and if f(z) is an arbitrary function analytic interior to C and

continuous in the corresponding closed region, then f(z) can be expressed in the

closed region C as the limit of a uniformly convergent sequence of rational func-

tions fn(z) of the form (2.1).

The proof is indirect. Assume the theorem not true; we shall reach a con-

tradiction. There exists some function f(z) of the kind described such that

the sequence {/„(z)} of best approximation to f(z) on C in the sense of

Tchebycheff does not converge uniformly to f(z) on C. There exists some

e>0 and some infinite sequence of indices nk such that for points z„t in the

closed region C we have

(14.4) |/.»(«»*)-/(*»*) I >« (* = 1,2, •••).

Let us consider the points aink. There exists some point a, necessarily

exterior to C, with the following property. For each neighborhood v of a let

NJ? denote the number of points aink in v for that particular value of k. Then

a is so to be determined that for some sequence of values of k (say k = ki,

k2, ■ ■ ■) the number N¿ becomes infinite no matter what neighborhood v is

chosen; the subsequence ki is thus to be independent of v. The proof is by

subdivision of the plane, as in the proof of the Bolzano-Weierstrass theorem.

Divide the plane into two half-planes 2?x and R2. One or the other of these

(closed) regions is a neighborhood v such that for some subsequence

kl, k2, • • • of the numbers k, the corresponding numbers Nk" become infinite

as m becomes infinite. Subdivide that region Rx or 2?2 or one of the regions

Rx and R2 for which this fact holds. At least one of the new (closed) regions is

a neighborhood v such that for some subsequence k{', k", • • • of the num-

bers ki, the corresponding numbers Nk"\ become infinite as m becomes in-

finite. It is no loss of generality here to choose ki' =k[. We continue sub-

division of the plane in this way, so subdividing that the closed regions v all

contain some point a and that no point other than a is common to all the

closed regions v. The next sequence km" of the numbers ki' is to be chosen

so that N¡£- becomes infinite with m and also so that ki" =k", k{" =k" ;

similarly for the later sequences. Then by the diagonal process, choosing the

numbers ki, k", k3", • • • , we obtain a subsequence kx, k2, k3, • • ■ of num-

bers k having the property desired.

We assume a to be the point at infinity; this can be brought about by a
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linear transformation of the complex variable. Choose as a neighborhood v of

a the exterior of a circle y which lies exterior to C. There exists a sequence

Ai, X2, X3, • • • of the numbers kx, k2, k3, ■ ■ ■ such that N¿. à/, where v is now

the exterior of y. It follows from Theorem VII* that the sequence of functions

{/„(z)} of best approximation to/(z) on C in the sense of Tchebycheff for the

indices w^. approaches/(z) uniformly in the closed region C; the number n of

Theorem VII is the present number /, and of the corresponding points a»„

at least/ lie in v, but it is to be noted that a function/„(z) of form (2.1) with

j factors in the denominator is also a function/„(z) of form (2.1) with n%¡

factors in the denominator. Any increase in the number of possible factors

(say from/ to «x) in the denominator of a function/„(z) of the form (2.1)

with the corresponding increase in the degree of the function, can only de-

crease or at least not increase

max I fz) — fn(z) I , z on C,

for the admissible function/„(z) of best approximation in the sense of Tcheby-

cheff. The uniform convergence to/(z) in the closed region C of the functions

fn\,(z) of best approximation as just proved by means of Theorem VII is in

contradiction with (14.4), and the proof of Theorem IX is complete.

Theorem VIII now yields many new results on approximation when taken

in conjunction with Theorem IX; see the references to the literature already

given. For instance, if the function/(z) is continuous on a Jordan arc C and

if the points ain have no limit point on C, then there exists a sequence/„(z)

of form (2.1) such that we have limn<00/„(z) =/(z) uniformly for z on C.

The hypothesis in Theorem IX that the points ain have no limit point in

the closed region C cannot be replaced by the mere requirement that the

points ain lie exterior to C. We have already illustrated this fact by an example

in §7. //, however, we assume f(z) merely analytic interior to the open Jordan

region C and that all the limit points of the ain lie exterior to or on the boundary of

C, there exists a sequence {fn(z)} such that we have lim.n-.x fn(z) =f(z) for z in-

terior to C, uniformly for z on any closed point set interior to C. Let G, G, • ■ ■

be a set of closed Jordan regions all interior to C, each with its boundary in-

terior to its successor, and such that every point of C lies in some G. The

points ain have no limit point in the closed region Ck, so by Theorem IX

there exist sequences {fn (z)\(k = l, 2, ■ ■ ■) such that we have

tk)

lim   /„   (z) = fz),  uniformly f or z in Ck, k = 1, 2, • • •.
n-oo

Choose Nk such that we have

* Theorem VII is by no means indispensable here, nor is Theorem I itself. The problem is easily

reduced to one of approximation by polynomials.
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\fn\z) - f(z) | < l/k,  for  z  in  C*,   n > Nh,

where we choose also Nk>Nk-i- Then the sequence

fi(z),f2(z), ■ ■ ■ ,/iv'2(z),/iv2+i(z),/iv2+2(z), • • • ,/jv3(z),/jv3+i(z), • • • ,

f!fi(z),fNi+x(z), ■ ■ ■

has the required property.

We remark that a suitable modification of the method just used yields

direct proofs of Theorems VII and VIII.

It may be desired in Theorem IX (and similarly in other theorems) to

approximate the given function in C uniformly by rational functions /„(z)

not merely of the form (2.1) but by rational functions Fn(z) of the form (2.1)

which effectively have poles at all of the assigned points ain. This can naturally

be accomplished. If the function /„(z) does not effectively have the poles

«i„, a2n, ■ ■ ■ , akn, k^n (a point ain which is a /»-fold zero of/„(z) is here to

be enumerated p + l times), we may set

(z — aXn + r?i„)(z — a2„ + V2n) ■ ■ ■ (z — akn + Vkn)  , . x

Fn(z)   =-/„(Z),
(z — «i„)(z — a2n) ■ ■ ■ (z — akn)

where the numbers t?,-» are positive and chosen sufficiently small, let us say

so small that we have for z on C

| Fn(z)   - fn(z) |   < - •
n

Such a choice of the numbers ??<„ is always possible, for

Z —  ain + Vin
lim   —- = 1

i»„-*o        z — a,„

uniformly for z on C. The replacing of the functions /„(z) by the functions

Fn(z) does not alter the character of the convergence of the original sequence,

but it may naturally alter such minimum properties (for instance that of

being rational functions of best approximation in some sense) as are possessed

by the functions/„(z).

Theorem IX is equivalent to the statement that the sequence of rational

functions fn(z) of best approximation to f(z) on C in the sense of Tchebycheff

converges to the function f(z) uniformly in the closed region C. This formulation

can be generalized directly:
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Theorem X. Let C be an arbitrary Jordan region which contains no limit

point of the numbers a,„, and letfz) be an arbitrary function analytic interior to

C and continuous in the corresponding closed region. Then for the sequence

\fn(z)} of rational functions (2.1) of best approximation tof(z) on C, the measure

of approximation of fn(z) to fz) on C approaches zero with l/n. If {Fn(z)} is

any sequence of functions analytic interior to C, continuous in the closed region,

such that the measure of approximation of Fn(z) to f(z) on C approaches zero

with l/n, and hence in particular for the sequence {fn(z)}, we have

(14.5) lim Fn(z) -=fz),
M—»»

for z interior to C, uniformly for z on any closed point set interior to C.

The measure of approximation of Fn(z) to f(z) may here be taken as

(1) max [n(z) \Fn(z) —fz) |, z on C], where n(z) is continuous and positive on

C; in this case (14.5) is valid uniformly for z on C; (2) fn(z) \Fn(z)—fz) \v

\dz\, p>0, where the integral is taken over the boundary (assumed recti-

fiable) of C; the function n(z) is assumed continuous and positive on this

boundary; (3) //c«(z) \Fn(z)—f(z) \pdS, p>0, where n(z) is continuous and

positive on C; (4) fyn(w) \F„(z)—fz) \p\dw\, p>0, where the interior of C

is mapped conformally onto the interior of the circle y: \w \ = 1 ; the function

n(w) is assumed continuous and positive on y. The proof of the fact that

(14.5) is implied by the approach to zero of the measure of the approximation

of Fn(z) to fz), follows as in §8.* The fact that for some sequence of functions

/„(z) of form (2.1) the measure of approximation of/„(z) to f(z) on C ap-

proaches zero follows from Theorem IX, and this implies the approach to

zero of the corresponding measure of approximation for the sequence of ra-

tional functions/„(z) of best approximation.

15. Further remarks. There are a number of variations of the problems

already treated in detail, and some of these we shall mention.

1. It is natural to approximate the given function f(z) analytic for

|z | <T>1 by rational functions of type (2.1), and the approximation may

be measured in the sense of least squares, by interpolation in the origin, by

interpolation in certain roots of unity, together with the additional require-

ment of auxiliary conditions that we shall take as

(15.1) fn(ßk)=f(ßk) (*- 1,2, •••,»)

at m arbitrarily chosen points ßk interior to the circle \z | = T. The addition of

requirement (15.1) does not essentially alter the results we have already

* Compare in connection with (4) also Walsh, these Transactions, vol. 32 (1930), pp. 794-816,

and vol. 33 (1931), pp. 370-388.
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established, and involves only a slight modification in the proofs. The points

ßk are here considered limited in number, and may vary with n, although it

is convenient to require \ßk \<T'<T, where V does not depend on n. Equa-

tion (15.1) is considered to involve various derivatives of the functions/„(z)

and/(z) if the points ßk for a given n are not all distinct.

This problem is considerably more difficult if the points ßk are not limited

in number, and has then close connections with our §12. Interesting special

cases have been studied in detail by Dunham Jackson (loc. cit.).

2. Another variation of the problems treated is to impose the additional

requirement

(15.2) fn(ßk) = Bh (4-1, 2, •••,«),

for the approximating functions, where the points ßk and quantities Bk are

now considered not to depend on n and where the numbers Bk have no neces-

sary relation to the given function to be approximated. This new problem is

different according to the original requirement made, best approximation in

some sense or interpolation in some other given points. If we measure approx-

imation on C by the method of Tchebycheff, methods previously given by the

present writer* apply here directly, even if C is an arbitrary Jordan region,

provided the points ain have no limit point in the closed region. These

methods apply also, in the case that C is an arbitrary Jordan region and the

points ain have no limit point in the closed region, for approximation in the

sense of Tchebycheff to an arbitrary rational function with singularities in-

terior to C. Overconvergence may take place in both of these situations. If C

is á circle and if the approximating functions/„(z) are found, in addition to

(15.2), by interpolation at the origin, and if ßk^O, the sequence f„(z) ap-

proaches the function/(z) uniformly in some circle whose center is the origin.

If another approximating sequence is found by interpolation in the roots of

unity, in addition to (15.2), it would be an interesting problem, and not es-

pecially difficult, to determine the limit of the sequence {/„(z)}, even if the

given function has singularities interior to C: |z | = 1.

3. Still another problem, analogous to the main problem of this paper, is

to approximate a given function/(z) analytic for |z | < T > 1 by rational func-

tions/„(z) of respective degrees n whose zeros (instead of poles) are the pre-

scribed points ain, |a,„ | >A > 1. The function f(z) is to have no zero on or

within C: \z | = 1, for otherwise approximation on C with an arbitrarily small

error is impossible, by Hurwitz's theorem. We study the problem by taking

up a different problem, that of approximating l//(z) by the functions l//„(z),

* These Transactions, vol. 32 (1929), pp. 335-390.
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which we have already essentially considered. We have, if we measure ap-

proximation by least squares as in Theorem I,

/.(f)   - /(f)   = f(z)fn(z)\-^- - -i-1
L/(z)      /„(z)J

The square bracket approaches zero, the functions/„(z) are uniformly limited

for \z | g 1, so we have lim„^oo/„(z) =/(z) uniformly for ¡z | g 1. If f(z) has no

zero and is analytic for |z|<r, we have lim„J0O/„(z) =/(z) uniformly for

|z | <R<(AT2+T+2A)/(A2+2AT+l)..Further details may be worked out

by the reader; the results we have stated are only the most obvious ones.

4. We raise still another question suggested by Theorem IX : can Theorem

I including the result on overconvergence be extended to approximation in a

region bounded by an arbitrary rectifiable Jordan curve? It may be noticed

that in the various cases we have considered, interpolation in the points 0,

l/äk; in the origin; in the roots of unity; and in arbitrary points—our method

is essentially that of expanding the function l/(t — z) in a sequence of rational

functions of z and t found by the same conditions of interpolation as are pre-

scribed for/„(z). For instance, in connection with (2.6) we have

1 j    1   f        z(äxz - 1) ■■■ (änz - l) (t - ax) ■■■ (t - an)T\

t — z       «-.«o  (t — zL (z — ax) ■ ■ • (z — an)t(äxt — 1) • • • (ä„t — 1)J )

for suitable values of z and t; the square bracket vanishes for t = z. The rational

function whose limit is taken coincides with l/(t — z) for z = 0 and z = l/äk.

The only poles of these rational functions involving z are the prescribed points

ain, and the expansion is valid under certain restrictions on z and t. Term-

by-term integration of this sequence, when multiplied by the given function

f(t), over a suitably chosen path, yields a sequence of rational functions of z

converging to the limit function f(z) under the conditions we have already

determined. Presumably this same method, with suitable modifications, will

apply in the more general case that C is an arbitrary rectifiable Jordan curve.

Results on approximation in the sense of Tchebycheff should be obtainable

even if the Jordan curve is not rectifiable.

The study of analogous problems on approximation in multiply connected

regions, where the ain are suitably distributed in the plane, should also be

interesting.

5. We have considered in §§3, 8 the study of sequences of rational func-

tions of respective degrees n of best approximation whose poles are prescribed

points ain, having no limit point interior to the circle |z|=.4. Our results

yield at once new results on the sequences of rational functions of best ap-

proximation of respective degrees n where the poles a,„ are not preassigned
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but are subject merely to the restriction |ain \^A. These new results are with

reference to both degree of convergence and overconvergence. We remark in-

cidentally that these new results as found by application of our results of §§3,

8 are presumably not the most general results that can be obtained, but the

problem appears to be a difficult one.

Another open problem is the study of the convergence of sequences of ra-

tional functions of respective degrees n of best approximation where the poles

are entirely without restriction.

6. In connection with the problem of approximation by rational func-

tions, we remark that a particularly interesting case arises when the poles of

the approximating functions are required to lie in the singularities of the

function approximated.* It follows from the discussion of §13 that if a func-

tion/(z) is analytic interior to the circle \z | =A >l but has this circle as a

natural boundary, then the sequence of rational functions /„(z) of best ap-

proximation to/(z) on |z | = 1 in the sense of least squares, where the poles of

the functions/„(z) lie in the points (A")lln, converges to the function/(z)

uniformly for \z \ ̂ A'<A. A modification and amplification of that proof of

§13 shows that under the same hypothesis on/(z) and under the same restric-

tion of the poles of/„(z), the sequence/„(z) of rational functions of best ap-

proximation to f(z) on any circle interior to |z|=.4 in the sense of least

weighted pth powers, p>0, converges to the function f(z) uniformly for

\z\gA'<A.
7. The results of the present paper have almost immediate application to

the study of approximation of harmonic functions by harmonic rational func-

tions.

* Compare the paper by the writer in Acta Mathematica to which reference has already been

made.
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