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I. DIFFERENTIABLE FUNCTIONS IN CLOSED SETS

1. Introduction. Let A be a closed set, bounded or unbounded, in eu-

cUdean «-space E, and let f(x) be a function defined and continuous in A.

It is well known that this function can be extended so as to be continuous

throughout -E-Î If ^4 satisfies certain conditions, the solution of the Dirichlet

problem is a function harmonic in E—A and taking on the given boundary-

values in A. Two questions which arise are the following: Is there always a

function differentiable, or perhaps analytic, in E—A, and taking on the given

values in A ? If the given function f(x) is in some sense differentiable in A,

can the extension F(x) be made differentiable to the same order through-

out E?

These questions are answered in the affirmative in Theorem I. We use a

definition of the derivatives of a function in a general set which arises nat-

urally from a consideration of Taylor's formula. In Part II, a differentiable

extension of f(x) is found, whether f(x) is differentiable to finite or infinite

order. Part III is devoted to some general approximation theorems. It is weU

known that a continuous function in a bounded closed set can be approxi-

mated uniformly (together with any finite number of derivatives) by poly-

nomials; we show that functions defined in open sets may be approximated

(together with derivatives) by analytic functions, the approximation being

closer and closer as we approach the boundary of the set. This theorem, to-

gether with the results of Part II, furnish an immediate proof of Theorem I.

In Part IV we give some extensions of Theorem I; in particular, we show that

* Presented to the Society, December 29, 1932; received by the editors March 29, 1933, and,

after revision, May 2, 1933.

t National Research Fellow.

X See references in a paper by P. Urysohn, Mathematische Annalen, vol. 94 (1925), p. 293,

footnote 51.

A continuous extension the author has not seen in the literature may be given as follows; we

assume for simplicity that A is bounded. Let h(r) (räO) be a continuous and monotone increasing

function such that A(0)=0, and if x and y are any two points of A whose distance apart is rxv, then

\f(x) —f(y) \úh(rxv). For any points x of E and y of A, set B(x, y)=f(y)—h(rxi); then if x is in .4,

B(x,y)^f(x). The continuous extension of f(x) is,F(x), which at each point x of £ equals the maxi-

mum of H(x, y) as y varies over A.
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the extension of /(*) may be made analytic at the isolated points of A. The-

orem III includes all preceding results but Lemma 7.

2. Notations. We shall write all equations involving n variables as if

there were but a single variable present. For instance, we write

fo(x)     for /o...o(*i, ■ • ■ , *»),

Dkf(x') for —-f—/(*/, • • • ,*»'),

OO-O-
etc. For any «-fold subscript k, we put

Ck = ki + • • • + kn.

Note that ak+i = o-k+ai. rxy will always denote the distance between * and y

(unless * and y are complex). As an example, (3.1) below is short for

fkf-kÁXi, ••-,*„')

=        £ /Wl,...,t„+i„(«i, •■-,*„) w _ ^        w _ ^
íl+-.. + ¡n il! •   •   •  i„!

+ Rkl...kn(xí, •••,*„';*!,•••, *„).

3. Differentiable functions in subsets of £. Let /(*) be defined in the set

A, and let m be an integer ^0. We say/(*) =/o(*) is of class O in A in terms

of the functions fk(x) (<rk-£m) if thé functions fk(x) are defined in A for all

«-fold subscripts k with ak ̂  m, and

(3.1) /*(*') =     £    ^p^ (*'-*)' + **(*'; *)

for each/)t(*) (a* g m), where Rk(x ' ; x) has the following property. Given any

point x° of A and any e >0, there is a ô >0 such that if * and *' are any two

points of A with rxx, < 5 and rx,x, < 8, then

(3.2) | Rk(x';x) | ^r7x'\.

One might define the derivatives of a function at the points of a set B,

when the function is defined in a larger set A. We shall not do this here.

If w = 0, (3.1) and (3.2) state merely that/(*) is continuous. Note that

the conditions are satisfied automatically at all isolated points of A, no mat-

ter how the/i(*) are defined there.
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It is easily seen that the fk(x) are continuous in a neighborhood of each

point of A, and are thus bounded there. From this we prove that if f(x) is of

class Cm in A in terms of the fk(x) (a hum), then it is of class Cm' in A (m' < m)

in terms of the/i(x) (11^»').

Any function we shall say is of class C_1 in A. f(x) is of class C°° in A in

terms of the fk(x) (defined for all k) if it is of class Cm in A in terms of the

fk(x) (ffkúm) for each m.

Suppose /(*) is defined throughout the region R, and is of class Cm in

terms of the fk(x) (<rk-¿m). Then putting x = (xi, • • • , x„), x' = (xi, • • • ,

xh+Axh, • • • , x„), (3.1) gives

(3.3) /*!•■■*„(*') -/*,—*„(*)+/*,,— , kh+i,---,kn(x)Axk

+ Rkl...kn(x'; x)

(provided ak<m),where R-k?.. .¡^(x'; x)/AA—>0 as Ah—»0, which shows that

d
(3.4) —/*»-*.(*) -/*i.-••.*»+!.••■.*.(*) (<r*<m)

OXh

in R; thus in this case,/(x) is of class Cm in the ordinary sense, and the/*(x)

are the partial derivatives of /(x). The converse is true, by Taylor's Theorem.

4. The main theorem of the present paper is the following:

Theorem I. Let A be a closed subset of E, and letf(x) =/o(x) be of class Cm

(m finite or infinite) in A in terms of thefk(x) (<rk^m). Then there is a function

F(x) of class Cm in E in the ordinary sense, such that

(1) F(x)=f(x)inA,

(2) DkF(x)=fk(x) in A (<Tk<,m),

(3) F(x) is analytic in E—A.\

Of course (2) includes (1).

No such theorem holds if we leave out the uniformity condition on

Rk(x' ; x), i.e. if we assume merely that for any x and e >0 there is a ô >0 such

that if rxx, <5, then | Rk(x'; x) \ <rxnx7°kt. The following example shows this.

Let A be the set of points (using one variable) x = 0, 1/2" and l/2*+l/22*

(«-1,2, • • • ).Set/(x)=0 at x = 0 and 1/2«, and/(x) = 1/22' at the remaining

points. Set/i(x)=0 in A. The above condition is satisfied, but there is no

extension of f(x) which has a continuous first derivative.

5. The following lemma will be needed; its proof is elementary.

t It is seen from the proof in §16 that F(x) is analytic in a complex region with the following

property. If x is a point of E—A distant 3p from A, then the region contains all points within a dis-

tance p of x.
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Lemma 1. Let w(z) be a continuous function of one variable defined throughout

an interval containing z0, let A* be a closed set in this interval, and let w¿ be a

fixed number. Suppose that for every e>0 there is a 5>0 such that

(1) if z is in A* and | z—z<¡ | <5, then

| w(z) — w(z0)/(z — za) — w0' | < e;

(2) if z is not in A* and | z—z01 <5, then the derivative w'(z) exists and

| w'(z) — w0' | < €.

Then w(z) has a derivative at z0, and w'(z0) —w¿.

II. DlFFERENTIABLE EXTENSIONS

6. The functions ^k(x'; x). We shall make use of functions defined as

follows for * in A and *' in E (m finite) :

(6.1) **(*';*)=     E    ~^- (x'-xY (<r*á»)í
fjím- ff. *•

\¡/k(x'; x) is the value at *' of the polynomial of degree at most m—crk which

approximates the function/*(*) to the (m—crk)th order at *. Keeping * fixed,

it is a polynomial in *', given by Taylor's formula in terms of its value and

derivatives at *. In terms of these functions, (3.1) becomes

(6.2) /*(*') = Mx'; x) + Rk(x'; x) (ak ^ m).

The Ith. derivative of the function of *' $k(x'; x) at *' is \¡/k+i(x'; x) ; if we

express \j/k(x"; x) by Taylor's formula in terms of its value and derivatives

at *', we obtain
,_^ \¡/k+i(x'; x)

M*"; x) = E      „      (*" - *')'
i       t'.

(x^-xy     fk+l+i(x)

,        i\      V      j\

The definition of ipk(x"; x') in conjunction with this identity gives, for any

points * and *' in A and x" in E,

tk(x"; *') =  E       „      (*" - ¿Y
i í!

(6.3)

(*"-*')'[-     fk+t+i(x) , , -i
=  E-    E ——-(* - *)' + Rk+i(x'; x)

i H       L   i        jl J

„.  Rk+i(x'; x)
= M*"i x) + E        „       <x" - *> •

¡ il
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7. The function ©(x). Let R be the region given by the inequalities

| Xh I <1 (A = 1, •••,»), let R' be R minus the origin, and let R* be the

boundary of R. Define the functions 6, d', © as follows:

(7.1) e(x) = 2(1 - *i2) • • ■ (1 - *„2) - 1 in R',

6(x)
(7.2) 0'(x)-K—— in R',

1 - 92(x)

(7.3) 0(
( e6

Ho
'(*)

in R',

in E - R.

It is seen that —1 <0(x) <+l, 0(x)—>+l as x-^0, and 0(x)—>• — 1 as x—>i?*;

hence 0'(x)—>+oo as x—>0 and 0'(x) —*— <x> as x—>i?*. Consequently

@(x)—>+°° to infinite order as x—>0 and @(x)—>0 to infinite order as x—>R*;

also @(x) is of class C°° for x^O. If @'(x) = l/©(x) in R' and ©'(*) =0 for

x = 0, then 0'(x) is of class C°° in R.

8. The subdivision of E—A. Divide E into «-cubes of side 1, and let Ko

be the set of all these cubes whose distances from A are at least 6w1/2 (if

there are any). In general, having constructed the cubes of K,-i, divide each

cube which is now present but is not in K0+ ■ ■ ■ +K,-i into 2" cubes of

side 1/2% and let K, be the set of all these cubes whose distances from A

are at least 6»1/2/2* (if there are any).

The distance from any cube C of K, to A is < 18«1/2/2" (s ̂  1) ; for it Ues

in a cube C" of the previous subdivision which does not belong to K,-i, and

whose distance from A is therefore <6»1/2/2i-1.

Any cube C of K, is separated from any cube C of K,+2 by at least four

cubes of K,+i. For the distance from C to A is ^12«1/2/2'+1, the distance

from any point of C" to A is <9«1/2/2>+1, and the diameter of any cube of

K.+i is «1'2/2«+1.

9. The functions 4>,(x). We introduce the following definitions:

y1, y2, ■ • • is the set of all vertices of cubes of K0+K1+ ■ ■ ■ , arranged

in a sequence.

r„ is the distance from y, to A (v= 1, 2, • • • ).

x" is a fixed point of A whose distance from y is r,.

b, is the length of side of the largest cube of Ko-\-Ki-\- ■ • • with y" as a

vertex.

/„ is the set of points x for which | xk—y»" | g b, (h= 1, ■ • • , «) ; B, is its

boundary.
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y;

B,.

I      O, x = y(p^v).

Suppose y* is a given point of E—A, distant Ô* from A (or from a given

point *° of A), and suppose y* lies in the cube C of Kt. Then if /„, with center

y", has points in common with C, and y is distant d, from A (or from *°),

(9.1) hj2^d, < 25*.

To prove this, say C is a largest cube with y as a vertex, and C" is in Kt;

then *£$—1. The diameter of C is m1/2/2'; hence y is distant at most »1/2/2'

g2«l/2/2' from any point of /„. As the diameter of C is »1/2/2s, y is distant

at most 3«1/2/2s from y*. But S* ̂  6nll2/2', and the inequalities follow.

Each function 7r„(*) is >0 in I,—B,—y and only there; it approaches oo

and 0 to infinite order as * approaches y and B„ respectively. Each point *

of E—A is interior to some cube I„ hence ir,(x) >0 for some v, and E*"* 0*0 >0

in E—A, justifying the definition of 4>,(x). Note that <py(x) is 7*0 in I,—B,

and only there ; also

(9.2) 2>,(*)-l    in   E-A.

We shall show that <p,(x) is of class C in E — A. This is obvious at points

Xyéy. Consider a small neighborhood U\ of y-, \^v. irí (x) is of class C°° in

U\; hence the same is true of 4>v = ir\ 7r,/(l+7rx'Ei<*x7,v) in U\. Similarly

0,= l/(l+7r/Ec^^) is of class C°° in a small neighborhood U, of y; the

statement follows.

10. The derivatives of the (p„(x). Consider two (closed) cubes C and C" of

K0+K1+ ■ ■ ■ , and let / and /' be those sets /„ with points in C and C" re-

spectively. We shall say C and C are of the same type if the sets in J' can be

brought into coincidence with the sets in / by a translation and stretching

of the axes, that is, if the structure of the subdivision about C is the same

as that about C. There are but a finite number, say d, of possible types of

cubes, and for some number c, there are at most c sets I, with points in any

given cube C.

in    £ -
I   ̂  *(*-Z2i Xn-Jn\

,W = @(^...,^V)    in    J.-
\   0, 0,   /

[ T,(x)

4>,(x) =
Ex Tx(*)

1.

in    E — A, x ¿¿ y1, y2, •

x = y,
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Take a fixed cube C of K0 and a fixed k. As each 4>,(x) is of class C°°,

Dk<j>v(x) is bounded in C; there are only a finite number of these functions ¿¿0

in C, and hence they are uniformly bounded :

| Dk<t>,(x) | < Nk(C)    in   C (* = 1, 2, • • • ).

Consider now any cube C" of any 2£„, and let C be a (perhaps hypothetical)

cube of Ko of the same type as C. If I\%>, • • • , ht> are the sets I\ with points

in C, let Jx„ • • • , I\t be the corresponding sets with points in C; the latter

set of sets is carried into the former by a translation of the axes and a stretch-

ing by a factor 1/2". Each function <p\a corresponding to hg goes thereby into

the function

(/>v(*) = <j>\,[y\ + 2>(x - y\')]

corresponding to I\ >. Therefore, differentiating ak times with respect to x,

Dk<b\A%) = 2""Dk^q[y^ + 2«(* - yV)]

for x in C, and hence

| Dk<j>v(x) | < 2>°tNk(C)    in   C (v = 1, 2, • • • ),

as <pr(x) = 0 in C" for V5¿\{, • • • , X/. Now the constants iVt(C) take on at

most ¿ distinct values for a fixed A; if we let Nk be the largest of these, we can

state: Given any n-fold set of numbers k, there is a number Nk such that if C is

any cube of K„ then

(10.1) | £>*<*>,(*) | < 2">Nu   in   C (v = 1, 2, • • • ).

11. A differentiable extension of/(x), m finite. We are now in a position to

prove, for m finite,

Lemma 2. Under the conditions of Theorem I, there is a function g(x) of class

C° in E—A, having the properties (1) and (2) of Theorem I.

For each v(v=\,2, ■ ■ •) there are functions <pv(x) and ^(x; x") = ^o(x; x") ;

we put

j   !>»(*)*(*;*')   in   £-4,
(11.1) g(x) = <     „

'   /(*) in   A.

As the <j>r(x) and ^(x; x") are of class CK in E—A, the same is true of g(x).

The function g(x)=f(x) is of class Cm at all inner points of A, by §3. It re-

mains to show that Dkg(x) exists, equals fk(x), and is continuous, at all

boundary points of A, for <rk^m.
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Take a fixed boundary point x° of A, and any e, 0<e<l. Take

r, < e/{2c[(m + 2)!]"(108«1/2)miV}  and y < e/6,

where N is the largest of the numbers Nk for <rk^m. Take M>\fk(x) \

(ak g m, x in A and rxxo ̂  1), and take

Ô < e/{6(m + \)nM] and 5 < 1

so small that (3.2) holds at the point x° with e replaced by i\. Take now any

point y* of E—A within a distance 5/4 of x°; we shaU show that

(11.2) | Dkg(y*) - /,(*») | < e (o-kúm).

Say the distance from y* to A is ô*/4 (then 5* <ô), and let x* be a point of

A distant ô*/4 from y*. Consider the sum in (6.1) with x' and x replaced by

x* and x° respectively; as each h is ¿«i, it contains at most (m+i)n terms.

If we take the term with h= ■ • • =ln=0 to the other side, there is in each

remaining term a factor (xh* —xk°)'h with h>0. As each | xA* —Xj,01 is <5 <1,

we find

| tk(x*; x°) - fk(x°) | < (m + 1)»M5 < e/6.

But also |i?it(x*; x°) | <r¡<e/6; hence, using (6.2),

I/*(«*)-A(*0) I <«/3.

Similarly we see that \^k(y*; x*) —/*(«*) | < e/6; therefore

(11.3) | My*; x*) - /*(*•) | < e/2 (<r4 ̂  w).

Say y* Ues in the cube C of if,, and let 7x„ ■ ■ ■ , htbe those sets 7\ with

points in C. Each corresponding point yx« is distant <ô/2 from x°, by (9.1),

and hence each corresponding point xx« is distant < 5 from x°. As the same is

true of x*, (3.2) gives

(11.4) | Rk(x'; **) | = rZ?*n (v = Xi, • ■ • , X,).

Set

f,;t(x) = ^*(x; *') — ̂ *(*; **) (v = Xi, • • • , X();

then as rx'x* <5* and | xh—xh" \ <5* for x in C, | (x—x')1 \ <S*', and (6.3) and

(11.4) give

(11.5) | f„.*(*) | < (m + l)"5*m-"r, in C       (i> = Xj, • • • , Xt).

Using (9.2), we see that

t
(11.6) g(x) = t(x; **) +  E <Px.(*)fx.;o(x) in C.

«=i
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As Dk}J/(x; x") = 4/k(x; x") and therefore Z>*f,;o(*) = f..;*(*)>

Dkg(x) - Mx; x*) + E   EÍ . Vi*x.(*)fx.jt-i(*) in C.
<-i     i \ l /

(10.1) and (11.5) give, as ige (see §10)- and

(11.7) I Dkg(x) - 4rt(x; **) | <  T,c[(m + l)\]»2'"N8*m--">+<'ir, in C.
i

Now the distance from C to A is >ô*/6; also, as C is in K„ this distance is

<18»I/2/2«. Hence 18»1/2/2,>ô*/6, or, 2'<108«1/2/5+. This gives, as<r^«

and ¿>*<1,

(11.8) | Dkg(x) - tk(x; **) | <c[(m + 2)!]"(108»l'2)"WÔ*m-'*7/ < e/2

in C, and in particular, at y*. This inequality together with (11.3) gives

(11.2), as required.

The proof can now be completed with the aid of Lemma 1. (11.2) with

k=0 shows that g(x) is continuous throughout E. Take any number

k=(ki, • • • , kn) with ak<m, and put k'=(ki, ■ ■ ■ , kh+i, • • • , kn). As-

suming that Dkg(x) is continuous in E, we shall show that Dk>g(x) exists and

is continuous in E. Take any boundary point *°= (*i°, • • • , *n°) and put

Zo=*a°, w(z) = w(xh) = Dkg(xi°, • • • , xh, • • ■ , xn°), wó=fk'(x°). Let 4* be

the set of points of A for which xp=xp° (p-¿h). (3.3) with *=*° and A*A

= Xh—Xh°, and (11.2) with k replaced by k', show that the conditions of the

lemma are fulfilled; hence dw(z0)/dxh=Dk>g(x°) exists and equals /*-(*°).

(11.2) shows that Dk>g(x°) is continuous at *°. Therefore g(x) is of class Cm

inE.

12. A differentiable extension of/(*), m infinite. We now prove Lemma 2

for the case m= °o. For any given m, let \¡/m;k(x'; x) (ak^m) be the function

given by the right hand side of (6.1). Choose the axes so that the origin falls

on a point of A. Let Sp be the set of all points of E whose distances from the

origin are £2*, p = l,2, ■ ■ -, . Let Mp be the maximum of ]/*(*) | for ak^p

and * in A ■ Sp, and let iV(p) be the maximum of Nk for ak^p. Choose for each

positive integer p a number 8P such that

5, < i/{22^c[(p + 2)l]-(36n"2)"N^Mp+1},8p < 8p^/2.

The extension g(x)(x) of/(*) is determined as follows. Given any number

v, determine the number y, so that ôT(,+i g r» < 5T|, (see §9); set 7, = 0 if r,>5i.
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Put

(   Z*.(*)K;o(«; *")  in E-A,
(12.1) g™(x) = <     "

{ fix) mA.

Given any fixed k, we shall find an inequality similar to (11.2) for

Dkgix)(x). Let g(m)(x) be the extension of f(x) of class Cm given by Lemma 2

(m = l, 2, ■ ■ ■). Given any boundary point x° of A and any e>0, choose

p^ak-\-2 so that x° lies in Sp and so that 1/2»<e. Take 5<5„ so that (11.2)

with g replaced by g("*> will hold for our given k and any y* of E—A within

Ô of x°; we show next that for any such y*,

(12.2) | Dkg^(y*) - Dkg^(y*) | < e.

Choose q so that ô5+i g 5* < 5„ where S* is the distance from y*toA; then

çè/>. Define C, K„ 7x„ ■ ■ • , ht as in §11. Note that for v = any X*, 67y+l

^r,<2ô<2ôp<ôp_i, hence 7»+l>^ — 1, and thus y,>p — 2^.ak. Set

(12.3) £,(*) = ^;0(*; '*') - Hk;o(x; *") (» = Xi, • • ■ , X,);

using (12.1) and (11.1), we see that

t
(12.4) g<-)(x) - £<'*>(*) +  Z<px„(*)£xu(*) in C.

u-l

Now Z?;.^(x) =^-yp;,(a;; x") — fak-Áx> *')■ K we replace ¿ by/ in (6.1), then

those and only those terms in the sum with ai^m—o-j occur. Replacing m

by y, and <rk successively and subtracting, we have

"lv-°i fi+l(x')
(12.5) DM») =       E „       (* - *')' in C.

Now ry>8*/2, by (9.1), hence r,>ô5+2, and thus yy^q+l (v-Xi, • • • , X,);

there are therefore less than (q+2)n terms in the sum, and in each term,

■ffj+ffiiq+i. It follows that \fj+i(x") \ <Mq+i in each term. Also | xh—x»' |

<25*<253 and ai-crk—ffy+1 in each term; hence

I Drf»(«) I < (q + 2)»Ma+i2«+15*"-''Si

in C. This with (12.4) gives

| Dkg^(x) - Dkg^(x) | £   ¿   E( *) I ¿V^u(*) | | ¿Vxu(*)|

< c Z(  . J2»^*-^>A^^*>(^ + 2)"iW2+i2ä+V*-,''S<!
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in C. Now the distance from C to A is >S*/2 and is <18«l/2/2*; hence

2,<36»1/2/5*. Also ak<púq; therefore

,«„ «       I ötfw(*) - Dkg^(x) | < c[(? + 2)!]»(36»1/2)^(S)ifï+12'+15a
(12.6)

<l/2«<e

in C, and in particular, at y*, proving (12.2). Using (11.2), we find

I Dkg^x)(y*) —fk(x°) | <2e for any point y* of E—A within S of *°. Again we

can apply Lemma 1 and show that Dkgix)(x) exists and is continuous through-

out E. As this is true for every k, the proof is complete.

13. We prove next a combined extension and approximation theorem.

Lemma 3. Letf(x) be of class Cm (m finite) in E, with Dkf(x) =/*(*) (o-k^m)

there, and let fk(x) (m<ak^.m', m'>m finite or infinite) be defined in the

closed set A so that f(x) (considered now only in A) is of class Cm' there. Then

for an arbitrary e>0 there is a function g(x) which is of class Cm in E, of class

Cm' in a neighborhood of A, and equals f(x) outside another neighborhood of A,

such that

(13.1) Dkg(x) - fk(x) in A (ak g m'),

and

(13.2) | Dkg(x) - Dkf(x) | < « in E (<rk^m).

Let/'(*) be the extension of class Cm' of the values of/(*) in A given by

the last lemma, and put f(*) =/'(*) — /(*) ; then f(*) is of class Cm in E, and

DkÇ(x) = 0 in A (<rk^m).

Set 77 = e/{c[(i»+l)!]n(36»1/2)miV} (N = m&x ¿V* for ak^m). As f(*) is of

class Cm and DkÇ(x) vanishes in A (<rk^m), we can find an open set R con-

taining A so that if y is any point of R—A, at a distance 8 from A, then

I Dg(y)\ < r,8m~"> (o-t g m).

Let vi, v2, • ■ ■ be those numbers such that I,p lies wholly in R (p = 1, 2, • • • ).

We set

(13.3) g(x) = /(*) + f(*) E <t>,,(x) in E - A,
p=i

and g(x) =/(*) in A. As~%2<prp(x) = 1 in an open set surrounding A, g(x) =f'(x)

there. As E^»,/*) =0 in E—R, g(x) =/(*) there. The statements about the

class of g(x) are true. To show that (13.2) holds, let y be a point of R—A,

distant 8 from A ; then, defining C, K„ h„ ■ ■ ■ , ht as in the previous lemma,

we have
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I Dkg(y) - Dkf(y) ] g   ¿Z   Z( J ) | 2>i*,,(y) | | Dk^(y) \

< c ^2(mï)n2"riNÔm-""+'"v < € (er* îs m).

i

14. We close this section with a theorem concerning the isolated points

of A. Define ctp as foUows :

t m if m is finite
(14.1) a„=\

{ p if m is infinite (p = 1, 2, • • • ).

Lemma 4. Consider the closed set A=A'+ai+a2+ • • • , wÄere fli, a2, • ■ •

are isolated points (then A' is closed), and let m be finite or infinite. Letfk(x) be

defined in A' for o-kèm and at each a, for all k, so that f(x) is of class Cm in A

in terms of thefk(x) (ak :S m). Then there is a function g'(x) of class C° in E—A'

and of .class Cm in E, such that

(14.2) Dkg'(x) = /*(*) in A' for vk%. m and at each a, for all k.

Let g(x) be the extension of f(x) of class Cm given by Lemma 2. Let

Ui, U2, • • • be neighborhoods of d, a2, ■ • • , chosen so that each is at a

positive distance from each other and from A'.11 m is finite, we alter g(x)

in U\, next in U2, etc., by means of the last lemmaf, so that the new function

g'(x) wiU take on the required derivatives at Oi+a2+ • • • , and so that

(14.3) | Dkg'(x) - Dkg(x) | < 1/p in Up  («r» á o„ p - 1, 2, • • • ).

(14.2) is an immediate consequence of this inequality and Lemma 1.

III. Approximation theorems

15. We prove first the following extension of the Weierstrass approxima-

tion theorem. %

Lemma 5. Let g(x) be of class Cm in E (m finite), and let S be a bounded

closed set in 2£.§ Then for each e>0 there exists a function G(x) analytic in E

and such that

(15.1) | DkG(x) - Dkg(x) | < e in S (<rk g m).

Let Ri be the set of points distant at most b from the origin (b^O). Con-

sider the «-tuple integral

t We use the last lemma with A replaced by a, and m' by °°.

t Compare de la Vallée Poussin, Cours d'Analyse, vol. II, 2d edition, 1912, pp. 126-137.

§ Itjis sufficient that g(x) be defined over S, for we can then extend its definition over E, by

Lemma 2.
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(15.2) *(6) = T f    e-^dy = T J   ■ ■ ■ J <-<*'+•••+*„ *uyi • ■ ■ dyn,

where T is chosen so that $(<») = 1 ; then 0 g $(í>) g 1 for all 6. If we replace

y by Ky and b by Kb, we see that

(15.3) $(kJ) = TV (   «-""'¿ay..

Let î)(*) be a function =1 in 5, =0 outside some neighborhood of 5, and of

class C°° in E, such that Dkv(x) = 0 in S for all ¿. (Such a function may be

found for instance by the aid of Lemma 2.) Put g'(x) =v(x)g(x), and

(15.4) G(x) = TV f  g'(y)«-',rí»áy,
•'s

where k will be chosen later; G(x) is analytic in E. As rxy is a function of y—x

alone, differentiating under the integral sign gives

DkG(x) = TV f g'(y)DkMe~''r¡vdy = (- 1)'*7V \ g'(y)Dk^e-'^''dy,
J b Je

where Dk(x) and PV»' denote differentiation with respect to * and y respec-

tively. Integrating by parts ak times gives

(15.5) DkG(x) = 7V (Dkg'(y)e-'Wdy.
JB

As <£(<») = 1, we see that

(15.6) DkG(x) - Dkg'(x) = TV f [Dkg'(y) - Dkg'(x)]er¿'!,dy.
J B

Take M so large that

(15.7) | Dkg'(x) | < M in E (o-k^m).

The functions Dkg'(x) are uniformly continuous in E; hence there is a 5>0

such that

(15.8) | Dkg'(y) - Dkg'(x) \ < e/2 (rxy < 8, ck g m).

Take k so large that

(15.9) 1 - Q(k8) < e/(4M).

For a given *, let ¿7 consist of all points within S of *; then if Ji and J2 are

formed by replacing the domain of integration on the right hand side of
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(15.6) by U and E—U respectively, we have, using (15.3),

| Ji | < TV f  — e-'*r*\ dy = — $(kô) < —,
Ju   2 2 2

\J2\ <Tk" (     2Me-'W dy = 2M[l - $(kS)] < —,
J B-U 2

and hence | DkG(x)—Dkg'(x) | <e in E(crk^m), which gives (15.1).

G(x) may of course be replaced by a polynomial if desired.

16. The above lemma can be generaUzed as follows.

Lemma 6. Let R be an open set and let Ri, R2, • • • be bounded open sets

(some of which may be void) whose sum is R, such that each Rp = Rp plus bound-

ary is in Rp+i. Then if g(x) is defined and of class Cm (m finite or infinite) in

R, and ei ̂  €2 ̂ • • • are given positive numbers, there is an analytic function

G(x) defined in R such that

(16.1) \DkG(x) -Dkg(x)\<ip in R-Rp       (crk é ap, p = 1, 2, • • • ).

ap is defined in (14.1). Note that, if JRi, • • • , Rt are void, then

(16.2) | DkG(x) - Dkg(x) 1 < e4 in R (ak ^ a9).

Consider the closed set Rp_i+(Rp+i-Rp) + (E-Rp+2)=Qp' +QP+Qp" ;

if in Lemma 2 we replace A by this set and f(x) by a function = 1 in Qp and

=0 in Qp JrQP", we find a function up(x) for each p, of class C°° in E, such

that

(16.3) up(x) - I1     Q'' Dkup(x) = 0 in Q¿ + Q„ + Q¿'(ck > 0).
[ 0 in Q; + Q¿' ;

(If Rp+i is void, we put «p(x)'=0; if Rp+i is not void but Rp-i is void, we have

up(x) =0 in Qp" and = 1 in Rp+i.) Let Zp^i be such a number that

(16.4) | Dkup(x) | < Zp in E       fa *» «„ p - 1, 2,   • • ).

We define successively analytic functions Gi(x), G2(x), • • • , by the fol-

lowing formula:

(16.5) Gp(x) = Tkp» fup(y)[g(y) - {Gi(y) +■■■ + Gp-i(y)} >-AA dy.

(For p = i, the factor in brackets is simply g(y).) kp is chosen so that, if we set

(16.6) Hp(x) = up(x) [g(x) - {Gi(x) +•■■+ Gp-M} ],

then
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(16.7) I D,Pp(x) - DkHp(x) | < ßi = €p+1/{2"+2[(ap+1 + 1)!]BZP+,}

in Rp+i       (ck g a^i)

(see Lemma 5) ; we shall restrict kp further later. Remembering the definition

of up(x), we see that (16.7) with (16.6) gives

(16.8) | Dkg(x) - Dk{Gx(x) + • • ■ + Gp(x)) \ < ßP' < ep/2 mQp(<rk g ap¥l).

Differentiating Hp(x) and using (16.4) and (16.8) with p replaced by p — i,

we see that (compare the derivation of (11.7))

| DkHp(x) | < [(«, + 1)!]"Z^^/ = eP/2"+1 in &_, (<rk g a,).

As up(x) and its derivatives are 0 in Pp_i, this holds in P„_i also ; hence, using

(16.7), we have

(16.9) | DtQ^x) | < ep/2" in Rp (<rk a'«,).

We set now

(16.10) G(x) = Gi(x) + G2(x) H-;

this is the desired approximation to g(x). To prove this, we see first from

(16.9) that Dk[Gi(x)+ • ■ ■ +Gp(x)] converges uniformly in any bounded

closed subset of R (o-k g m) ; hence G(x) is defined in R, and

(16.11) D0(x) = flAW + £>*G2(*) + ■ ■ •   in R (<r* á *»).

Next (16.9) shows that

| DkGp+1(x) + DkG^x) +---|< ep+i/2"+i + 6p+2/2*+2 + • • •
(16.1z) _

g fp(í/22 + 1/23 +...) = (p/2 in ÄP4.1 (<rk g «,+■) ;

this with (16.8) gives | DkG(x) —Dkg(x) \ <ep in Qp(ak^ap), proving (16.1).

It remains to be shown that G(x) is analytic in P. To this end we extend

the definition of each Gp(x) to complex values of * = (xi +ix{', • • • ,

*„' +/*„"), using (16.5) still. Consider the analytic function of *

'*v2 = E(:v* - xh)2 = EtW -**') + Kyi' - xi')]2;

as yl' =0 in (16.5), the domain of integration being real,

&<?.})-> E[(y» - xi)2- xi'2].

Take any point *° of R and let U be the complex region of radius^p about x°,

where p is so small that the real points in the complex region of radius 3p

about *° lie in some Rq ; we take q so that 3p2 > 1/2«. Now if p > q, x is in U, and

y is in P—Pp_i, then^*'fc'2<p2 andE(y* — xi)2^4p2, and hence
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Also Hp(y) vanishes in Rq and in E—Rp+2 for p>q; therefore if Mp' is the

maximum of | Hp(y) | (note that Hp(y) is determined before we determine

Kf) and Vp is the volume of Rp (p = 1, 2, • • • ),

/«* ,« I G»(*' + ix,>) I < Tk¿ f M¿r**Vdy
(16.13) J Rp+3-Rp-i

< Tk» e-'WMJVp+2

for x in Z7 and />>?. Hence if we choose kp successively for p = 1, 2, • • -, so

that this quantity is <1/2P (and so that (16.7) holds), then the series in

(16.10), when defined for complex values of x, converges uniformly in a com-

plex neighborhood of any point of R. Therefore the function G(x) is analytic

in R, completing the proof.

17. The numbers kp as chosen above depend not only on the functions

Up(x) but also on the function g(x). Under certain restrictions, we can take

them independent of g(x), as follows.

Lemma 7. Let the open sets Ri, R2, ■ • ■ , the numbers ci, e2, • • • , and the

functions «i(x), m2(x), • • • be given as in Lemma 6; let Ai(r), A2(r), • • • be

a sequence of positive continuous functions defined for r>0, such that Ap(r)—»0

as r—*0 and Ap+i(r) çzAp(r); let a be a point of R, and M a positive number.

Then there is a sequence of numbers «&, k2, ■ ■ ■ , with the following property.

If g(x) is any function of class Cm defined in R such that | g(a) | ^ M and

(17.1) | Dkg(x') - Dkg(x) | < Ap(rxx.) in Rp      (<rk g ct„ p = 1, 2, • • • ),

and if G(x) is defined in terms of g(x) as in the previous lemma, using the above

numbers kp, then G(x) is analytic in R and (16.1) holds.

As the m's and their derivatives are uniformly continuous in E, there are

functions r„(x) of the same sort as the A's above such that

(17.2) | Dkup(x') - Dkup(x) | < r,(f„0 in E (<rk ̂ ap+u p = 1, 2, ■ • • ).

The conditions on g(x) imply that for some Ml', \ Dkg(x) \ <Mi' in ~R3

(<r*^a2)it Say

| Dkup(x) | < Zp' in E (<rk g ap+i, p=l,2,-- ■).

Then as Wi(x) =0 in R—R3, we have

| DjUi(x')Dig(x') - D¡Ui(x)Dig(x) | á Ti(rxx,)M{' +ZlA3(rxx.)

t If dsis the diameter of R3, then \g(x)\<M+Ai(d3) in R¡. Now take any k' = (ki, • • • , kk—l,

• • •, i„) and k = (ki, • • • , y(0<iri^a¡). Let x'x" be a line segment parallel to the zn-axis and

lying wholly in J?8; set r= | xk"—Xh'\. As | Dk'g(x")—Dk'g(x') | < Ai(r), the law of the mean gives, for

some point z* of x'x", | Dk(x*)\ <Ai(r)/r. Hence | Dk(x)\ <Ai(r)/r+At{dz) in R3 (0<<rk^at).



1934] EXTENSIONS OF DIFFERENTIABLE FUNCTIONS 79

for <r,. ̂a¡ and o-j ̂ a2 and any * and *' in E. Hence if we put

Ai*(r) = [(«.+ l)l]»[ri(f)M1" + Z{A3(r)],

we shall have, on differentiating /Ji(*) =Ui(x)g(x),

(17.3) | £>*Z/i(*') - Z>tffi(af) | = Ai*(rXI0 in £ («r4 g a,).

Also |Z>*ffi(«) |<[(a2+l)!]"Zi'Mi" in R3 and =0 in E-Ri (<rk^a2); thus

inequalities corresponding to (15.7) and (15.8) hold for H\(x). Hence if we

take Si>0 so that

Af(r}<ß{/2 (r<*ù,

and take ki so that

1 - «fofa) < /3i'/{4[(«2 + l)\]nZ{M{'},

then if we form Gi(*) for any admissible g(x) by means of (16.5), (16.7) will

hold with p = 1 ; we take ki large enough so that the right hand side of (16.13)

with/> = l will be <l/2.
If we differentiate (16.5) with p = 1 ak times (ak^m), we derive an equa-

tion similar to (15.5); forming this for * = * and * = *' and subtracting, we

find (changing y to y+x'—x in one equation)

(17.4) £*&(*') - ¿V?i(*) = TV j [D.H^y + *'-*)- DkH1(y)]e-'^hdy.

This with (17.3), (15.3), and the definition of $(<») gives

(17.5) | DkG1(x') - DtG^x) | g Ai*(r«0 in E (<rk g «2).

Assume now we have defined functions Ap*(r) and have chosen numbers

kp so that

(17.6) | I>*GP(*') - DkGp(x) | g A*(rxx>) in E (<rk g aj)+1),

so that (16.7) holds, and so that the quantity in (16.13) is <1/2P, for p<q.

Then for any admissible g(x), g(x) — {&(*)+ • • • +Gt-i(x)} satisfies the

same kind of conditions as g(x); hence, just as before, we find a function

As*(r) so that an inequality similar to (17.3) holds for DkHq(x) in E (ak ¿a!+i).

Also HQ(x) is bounded properly; hence we can choose Kq so that (16.7) holds

for any admissible g(x) with p replaced by q, and so that (16.13) with p = q is

<l/25. From this we show, as before, that (17.6) holds with p replaced by q.

We can thus continue finding functions Ap* (r) and numbers kp indefinitely.

We put finally G(x) =Gi(*)+G2(*)+ • • •, and show, just as in Lemma 6,

that G(x) has the required properties. This ends the proof.
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IV. Analytic extensions

18. Proof of Theorem I. Let g(x) be the extension of f(x) of class Cm

given by Lemma 2. Set R = E—A and define Ri, R2, ■ • • , oti, a2, ■ ■ ■ , and

numbers ei, e2, • • • , approaching zero as in §16. Define G(x) in E—A as in

Lemma 6, and set F(x) =G(x) in E—A, F(x) =/(x) in A. That F(x) is of

class Cm in E and property (2) holds follows from (16.1) and Lemma 1, just

as in §11; the other facts are obvious.

19. The functions coyk(x). In the next sections we shall discuss the an-

alyticity of the extension of f(x) at the isolated points of A. Let R be an open

set, let oi, a2, • • • be points of R having no limit point in R, let m%, nh, • ■ ■

be corresponding integers è0, and let m be an integer ^-1 or ». We as-

sume that if a„„ a„„ • • • is any sequence of points a„ approaching the bound-

ary of R, then

(19.1) lim inf m,t 2: m.

Choose about each a, a neighborhood U, lying, with its boundary, in R,

so that no two have common points. Define the numbers p(v; k) so that when

(v; k) runs through the values (1; k), ak^mi; (2; k), Vicente; etc.; then p(v; k)

runs through the values 1, 2, 3, • • • . Let p'(v; k)- equal one plus the largest

of the numbers j»i, • • • , m„ p(v; k).

Take any positive integer s, and consider all neighborhoods U, such that

p'(vk) —S for some k (o-k-¿mv); let R, be the set of all points of R whose dis-

tances from these neighborhoods and from the boundary of R are > \/s, and

whose distances from the origin are <s. Then R, is a bounded open set, R.

lies in R,+i (s = l, 2, ■ ■ ■ ), Ri+R2+ ■ ■ ■ =R, and U, lies in R—Rp>(,k)

(ak<mv). By Lemma 2, there are functions uyk(x) of class C°° in E, defined

for o-k^m„ v = l, 2, • ■ ■ , such that

Í  1,1 - *
(19.2) Diu>*(a,) = (at ¿ m,); œrk(x) = 0 in E - U,.

[   0, l 5¿  k

Choose for each v a positive number ß, < \/v so that ß, = ßv+i, and

(9,| D^k(x) | < lM(i»„ + l)n] in E

(<rk & m„ a\ ¿ *»„ i» - 1, 2, • • • ).

Now let/,* be any set of numbers, defined for <rtS¡í»„ v —1, 2, • • • , satis-

fying the condition

(19.4) | /,* | á |S, (<r* á »„ v = 1, 2, • • • ).

Set
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(19.5) cH,k) = f,k,    wH,k)(x) = u>,k(x)     (fft -g m,, p » 1, 2, • • • ).

Take any s = p(vk). As co.' (*) =w„*(*) =0 inP-t/,,, and R, = Rpíyk) is in

Rp'(vk) which has no points in common with U„

(19.6) <o8'(*) = 0inP. (í=1, 2, •■•)•

20.-The transformation  L.   Define  functions  Ui(x),  u^x), • • •   as  in

Lemma 6. Consider any function

(20.1) «(*)- W(*) + X2co2'(*) + •■ • (| X.| g l,s = 1,2, • • •);

such functions and X's we shall call admissible. Set

(20.2) e. = /3,/2«+1 (j=l, 2, •••)•

There are, obviously, functions Ax(r), A«(r), ■ • • , so that (17.1) holds for any

such g(x) ; hence, by Lemma 7, we can define numbers «Ci, k2, ■ • ■ , so that if

G(x) is defined in terms of g(x) as in Lemma 6, then G(x) is analytic in R and

(16.1) holds. In using Lemma 6, we replace ap by p.

We note here a certain property of G(x) : If g(x) is admissible and

(20.3) if g (x) = 0 in R„ then \ DkG(x) | < e„_i/2'-2 in P._i      (f^i-1).

As up(x) =0 in P-P. (#áí-2), up(x)g(x) =0 in P (/>^s-2). Using (16.5),

we see in succession that &(x) =0, • • • , G._2(*) =0. This with (16.9) and

(16.11) gives

CO «)

I DkG(x) | =     E   I DkGP(x) | <     E    eP/2p á e.-i/2'-2
P—s— 1 p=»—1

in P,_i (<r*^5 — 1), as required.

Given any admissible g(x), let Lg(x) be the corresponding function G(x).

It follows easily from the definition of G(x) that L is linear:

(20.4) £[Xigi(*) + \2g2(x)] = XiZ,gl(*) + XtLgtix).

We show now that for admissible numbers X,

oo oo

(20.5) Il \,w! (*) =  E KLui(x).
»=i «-i

To prove this, take any point *° of P, in the set Pa, and any e>0. Take

q'^q so that 1/2«'-»<€. (19.6) and (20.3), for i = g'+l, g'+2, • • • , give, as
X,w,' (*) is admissible,

oo oo oo

|   E KLwl(x) | = |   E £X.cos'(*) I <     E 1/2-2 = 1/2 «'-2 < f/2
«— g'+l »=a'+i ,_a'+l
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in Rt>, and in particular, at x°. As

oo

J2   X.£o.'(*) = OinJ?e,+1
«-i'+i

and is admissible,

00

\L   £ X.a,.'(x°)|< l/2«'-1<e/2.
«-a'+l

Moreover
oo q* oo

¿I x.œ.'(*)= Yá\jM¡(x)+L Y, *.">.'(*);
»—I •— 1 t—q'+l

hence

|¿¿ X.co.'íx«)- ¿ X^o.'(x»)|
j-i »-i

^ | ¿   ¿    X^o.' (x») | + |    Z    X.i«: (*«) I < e,
»-«'+i «-«'+i

which proves (20.5).

We prove two inequaUties. Take any (v; k), (p.; I) (<rk^m„ ai^m,,); then

(20.6) | DkLwpfa,) — Dko>p,i(a,) \ < eP(,t),

(20.7) I DkLù}„i(a,) — D^u^a,) \ < ei0li).

The first foUows from (16.1) when we note that a, is in R—RPn,k), and

tp'(,k)<epirk), and o-kt%m,<p'(vk) (recall that ap was replaced by p in using

Lemma 6). We now prove the second. As w^j(x)=0 in Rp-^r, and p'ijil)

^p(pl) + i, (20.3) gives

(a) | Dk-Luip.i(x) — Dk>ùip.i(x) | < ep(„0 in Rp-^D-i (ak. ^ p'(pl) — 1).

Also (16.1) gives

(b) | Dk.Lwßi(x) - Dk-upt(x) I < ep(M¡) in R - Rp     (o-k. Ú p, p =■ p'(pl) - 1).

Say a, is in Rp+\—RP- As a, is not in R,n,m, p'(vk) ^p, and (Tk^m,^p'(vk)

-l£p-l. Iip^P'(ßl)-l, (20.7) foUows directly from (b). If p<p'(pl) -1,
then a, is in iîp^o-i, and <rk^p — l <p'(p.í) — í, and (a) appUes.

21. An infinite system of linear equations. We prove here

Lemma 8. Suppose v, and c, (s = l,2, ■ ■ ■ ), and y„ (s, t = 1, 2, • • • ), are

given, so that 1 ̂  t;, ̂  17,-f-i > 0 (s = l, 2, • ■ ■), |c,|^l, and

(21.1) \y.t\<v./2>+l (s,t= 1, 2, •••).
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Then there are numbers X, (s = l, 2, • • • ) such that

OO 00

(21.2) E(7.« + «.i)X, =  Ef.iX. + X. = c, (s - 1, 2, • - • ),
(-i «-i

awfl"

(21.3) |X. -ft|sS* (i = l, 2, ■••)•

Using the method of successive approximations, put

00

(21.4) Xi. = c„   \p, = - Et.<Xp-M (p = 2, 3, • • • ).
(-i

It is readily proved by induction that

(21.5) |XP.| <7,./2*-i (p = 2, 3, ■■■).

Hence the series Xi,+X2,+ • • • converges to a limit X, (s = l, 2, • • • )> aQd

00 00 00 CO

E(t«» + s«f)X( = E E(7»t + 8,t)\pt = E(^j>» — Xp+i,,) = c„
(-1 J)—1   Í-1 p—1

00 00

I x, - c. I = I E x„ I = E '?./2P71 = i?..
p—2 p—2

22. We are now ready to prove

Lemma 9. Let R, m, a„ my(v = \, 2, ■ ■ ■) be defined as in §19. Then there

are numbers ßr>0 (v = 1, 2, • • • ) with the following property. Given any set of

numbers fyk defined for ak ̂  m„ v = 1, 2, • • • , such that (19.4) holds, there exists

a function G(x) analytic in R, such that

(22.1) Dfi(ar) = /,* («r» = m„     v = 1, 2, ■ ■ ■ ),

and such that if we set G(x) =0 in E—R, then G(x) is of class Cm in E, and

(22.2) DkG(x) = 0 in E - R (<rk^m).

We define the u,k(x) and the ß, as in §19. Now take any /,* satisfying

(19.4), and define the c„(,k) by (19.5). Define the e, and the transformation L

as in §20. Set

(22.3) tin,t) = ß, (ak á tn„ v « 1, 2, • • • ),

and

(22.4) 7,i = 7p(„¡t)p((,¡) = DkLa^a,) — 8,t = DkLu^(a,) — Dko)»i(a,).

Let u = p (0/) be the larger of the two numbers s = p (vk) ,t = p (ßl). Then us-

ing (20.6) or (20.7) according as u = s or u = t, we find (as j3p(9,-) ^ßf<,,k) á/3,)
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Also I c, | = \f,k | ̂ ß,<l. Therefore the equations (21.2) have a solution

Ai, X2, • • • , and

00

(22.5) 2Z(t»< + 5S()X( =   2JKp(,p.i)DkLij3ILi(a,) = c, = cpi,k) = f,k.
<-i ii.i

By (22.8) below, the X's are admissible (§20), and we can define the analytic

function G(x) in R by the equation

(22.6) G(x) =£¿A(<o/(*).
«-i

(20.5) and (22.5) give
oo

(22.7) DkG(a,) = Dk XXLco/(a,) = ¿2K{p.i>DkL(aßi(ai) = f,k.
f-1 M.I

(19.6) and (20.3) show that the last sum above is uniformly convergent in any

Up; hence the termwise differentiation is permissible.

Set G(x) =0'mE—R;vie must show that G(x) is of class Cm in E. (This is

trivial if m= -1.) First note that, by (19.4) and (21.3),

(22.8) | X,(,*j | ^  | cp{yk) | + ,,„», - I/*| +'0, ^ 20,;

this with (19.3) gives (replacing v, k and Ihy p,l and ¿)

(22 9) ' X>^Dk0>»>(x) I < 2/KOT" + O"] in £

(fr*, ffj á »WM — 1, 2, • • • )•

Now take any boundary point x° of R, any integer m'^m, and any e>0.

Take q^m' so that «„< e/2. Take ô>0 so that 7?, has no points within 5 of

x°, and so that if v is any number such that U, has points within 8 of x°, then

m, = m' and 2/f<e/2 (see (19.1)). Consider any point y of R within S of x0,'

and take any k, akx%.m'. Either Dko>ßi(y) =0 for all p, I, or else for some p, y

lies in Up, in which case there are at-most («^+1)" such numbers ^0, and

2/p<e/2, and mß^m'. Thus if we replace x by y in (22.9) and sum over p

and /, we find

OO

| Dk 5>,ùii'(y) | = | 5>*<di>£*«i.i(y) I < e/2 (»* = »')•
(-1 ,.i

As y is in R—Rt, replacing a4 by q^m' in (16.1) gives

oo oo

| DkL ¿2\tw¡ (y) - Dk ¿à*»! (y) I < «« < </2 (<r* á «').
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This with the last inequality gives

| DkG(y) | < e in R if *v„ < 5 (<r* = »»');

the proof is completed with the aid of Lemma 1.

23. Functions analytic at the isolated points of A. Lemmas 4, 6 and 9 lead

directly to the following theorem.

Theorem II. Let Abe a closed set in E, and let a\, a2, ■ ■ ■ be isolated points

of A. Set A'=A — (fli+Oî-r- • • • )• Let m be an integer = — 1 or °o, and let the

integers m,^Q, v = l, 2, • • • , satisfy (19.1). Let fk(x) be defined for x in

A'(crk^m), and for x-a, (o-* = ?»,), so thatf(x) is of class Cm in A. Then there

is a function F(x) of class Cm in E such that

(1) F(x)=f(x)inA,
(2) DkF(x)=fk(x) in A' for <rk^m and at each a, for ak^m,,

(3) F(x) is analytic in E—A'.

We asked that /(*) be of class Cm in A, while fk(ay) may not be defined

for certain values of v and k (ak = m). We require merely that after setting

fk(ay) =0 (<rk>my),f(x) shall be of class Cm in A.

A special case of interest is m = — 1. The m, and the fk(ay) are then unre-

stricted. A ' may be void, in which case/(*) is analytic throughout E. A ' may

of course contain isolated points.

To prove the theorem, set R = E—A' and determine the open sets R, and

the numbers ßy (v = \, 2, • • • ), as in §19.-Let g'(x) be the extension of /(*)

of class Cn in E and of class Cm E—A' given by Lemma 4 (setting/* (a,) = 0

for <rk>my). Let G'(x) be the analytic function in R given by Lemma 6 (with

aP replaced by p) such that

(23.1) | £*£'(*) - Dkg'(x) | < ßp in R - Rp (ak = p),

and set G'(x) =/(*) in A'. G'(x) is of class Cm in E, and

(23.2) £>*<?'(*) = fk(x) in A' (ak = m)

(see §18). Set

(23.3) fyk = Dkg'(ay)-DkG'(ay) («r» <t m„ v - 1, 2, • ••)•

As a, lies in R—Rp^yk) and p'(vk) >my, (23.1) gives \fyk \ </3„'(»*) <ß,(o-ki=my).

Thus the conditions of Lemma 9 are satisfied, and there is a function G(x)

analytic in R, =0 in A', of class O in E, and such that (22.1) and (22.2)

hold. Set

(23.4) F(x) =G'(x) +G(x);
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then F(x) is our required function. It is of class Cm in E as the same is true

of G'(x) and G(x) ; it is analytic in R = E—A ' as the same is true of G'(x) and

G(x); it equals/(x) in A' as G'(x)=f(x) and G(x)=0 there. (22.1), (23.3)

and (14.2) show that DkF(ai) = Dkg'(av) =fk(ay) (cr*gw,); (22.2) and (23.2)

show that DkF(x) =fk(x) in A', completing the proof.

24. An extension-approximation theorem. We prove here

Theorem IILf Let A be closed, and let A-i, A0, Ax, • ■ • be closed subsets of

A such that each A, lies in A,+i. Let aA, a,2, ■ ■ • be points of A.—A.-i which

are isolated points of A, and set A' = A—%2ast. Let B-i be void, and let B0,

Bi, • • • be sets whose sum B lies in E—A, such that each B, lies in B,+i, such

that each set B,—B,^i has limit points in B—B^i+A, only, and such that each

set A+B—B. is closed. Letfk(x) be defined in each selT',= A+B — (A,-i+Bs_i)

for ak^s (s = 0, 1, • • • ) so that f(x) =/o(x) is of class C" in V, in terms of the

fk(x) for each s. Let e(x) be a continuous function, positive in E—A' and zero in

A'. Then there is a function F(x) defined in E—A_x such that

(1) F(x) is of class C' in E—A,-i (s = 0, 1, • • • ),

(2) DkF(x) =fk(x) inA-A-i (<xk^s, 5 = 0, 1, • • ■ ),

(3) | DkF(x) -}k(x) | <e(x) in B-B.^i (<rk£s, 5 = 0, 1, • • • ),

(4) F(x) is analytic in E—A'.

Any number of sets A „ B„ may be void ; any of the points asi may not

exist. Note that if AX=A — (^4_i +^40 + ■ ■ •)> then F(x) is of class C°° at all

points of Ax. Theorem I for m finite is obtained by letting B and A-i, • • • ,

Am_i be void, and setting A=Am; and for m infinite, by letting B and every A,

be void. Theorem II is obtained similarly; we arrange the a,t in a sequence

ai, a2, ■ ■ ■ , and set w, = s if a, is in A.—A,-i. Lemma 6 is obtained by setting

A =A-i = E—R, B, = R,+i (s = 0, 1, • • • ), and taking e(x) so that e(x) g e,

in^-i?8.

We turn now to the proof. Take a subdivision of the open set E — (A +B)

as in §8, let y0" (v = 1, 2, ■ • • ) be the vertices of the cubes, and let x°" be a

point of r0 whose distance from ya" is not more than twice the distance from

y°" to T0. Define the functions </>o,(x) in E — (A +B) as in §9, and define gó (x)

by (11.1), using the functions <f>o,(x) and ^0-o (x; x0") =/(x°"), and replacing

E—A and A by E — (A+B) and T0 respectively. Then g¿(x) is defined

throughout E—A-i, and is easily seen to be a continuous extension of f(x).

Let go(x) be a function = gó (x) in A— A-i+Ti and analytic in the open set

E-(A+Ti) so that

t A special case of this theorem has been proved by A. Besikowitsch, Über analytische Funktionen

mit vorgeschriebenen Werten ihrer Ableitungen, Mathematische Zeitschrift, vol. 21 (1924), pp. 111-118.
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(24.1) I go(x) - gi (*) | < 0i(*)/4 in E - (A + r,),

where 0p(*)=min [e(x), distance from * to .4-fTp] (p = \, 2, • • •). Then

go(x) is continuous in E—A_i.

We shall now define in succession functions gi(x), g2(x), • ■ • , with the

following properties :

(a) gp(x) is defined in E—A-i, is of class C* in E—A,_i (5 = 0, • • • , p),

and is analytic in E — (A +rp+i).

(b) Dkgp(x)=fk(x) in ^-^i+r-p+i (<rk^s, 5 = 0, • • • , p).

(c) \Dkgp(x)-Dkgp_i(x)\<e(x)/2*+2 in Pp_i-P._i (<rk^s, 5 = 0, • • • ,

p-l).

(d) \Dkgp(x)-fk(x)\ <e(*)/2"+2 in Pp-Pp_i (<rhgp).

Assuming go(x), • ■ ■ , gP-\(x) are defined, we shall define gP(x). Consider

any point of rp; it is at a positive distance from the closed set -4p-i, and hence

we can enclose it in an open set lying at a.positive distance from Ap-\. We

thus enclose Tp in an open set Tp containing no points of Ap_i, and having no

limit points in Ap_i other than limit points of rp. Take a subdivision of the

open set E— (A +YP), let y (v = 1, 2, • • • ) be the vertices of the cubes, and

let xp" be a point of Tp whose distance from ypv is not more than twice the

distance from y" to T, (v = \, 2, ■ • ■). Define the functions 4>py(x) in

E—(A +rp) as in §9 and define ^p;*(*'; *) by (6.1) (<rk^p), replacing m by p.

Remembering that /(*) is of class C" in rp, set

(24.2) gp'(x) =   E*p»(*)*p;o(«; x*') in Tp' - rp,
y

and set gp' (*) =gp_].(*) in Tp. From the proof in §11 it is seen that gp (x) is an

extension of class O of the values of /(*) in Tp.

Set fp(*) =gp (*) — gP-i(x) in iy ; then fp(*) is of class O-1 in Tp , and

(24.3) Z>*r„(*) = 0 in Tp (<r* g p - 1).

Set r¡p = l/{2*+*c[(p+l)\]n(36n1,2)*NM} (p = 0, 1, • • • ), where 2P»>-

max Nk for ak ̂  p. Let Kp^\ be the set of points of Pp_i for which

| DkÇp(x) | è rtp-Ax)^tTx~'h for some k (<xk g p - 1),

where 8X is the distance from * to rp, or 1 if that is smaller. Each point of

A — Ap-i is at a positive distance from Kp-i, as Pp_i has no limit points in

A —Ap-.i, and each point of B—Pp_i is at a positive distance from P"p_i on

account of (24.3), as e(*) >0 in B; hence each point of Tp is at a positive

distance from ifP_i, and we can enclose rp in an open set rp" which lies in

rp and contains no points of Xp-i. Now
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(24.4) I DkÇp(x) I < r,p_i((x)oxP-1-"' in rp" .Bp_i f>» £ f - 1).

We can also take rp" so that if pp(x) is the distance from x to 4p_i, then

(24.5) | Dkip(x) | < Vp-iPP(x)ôx^-1-^ in rp" (<r* £ p - 1).

Let 7,( be those sets 7, of the subdivision of E—(A+Tp) lying wholly in

rp" (i = l, 2, • ■ ■), and set

(24.6) gp"(*) = gp-i(x) + fp(*) f>„(*) in E - (A + Tp),
«-i

and gP'(x) =gp-i(x) =/(x) in .A—^4_i+rP. Then gP"(x) is of class C" in

E—Ap-i, and with the help of (24.4) we find

(24.7) | Dkgp" (x) - Dkgp_i(x) | < É(*)/2*+* in B^ (ok ^ p - 1)

(see §13). Also (24.5) gives

(24.8) | Dkgp" (x) - Dkgp_i(x) | < Pp(*)/2"+3 in E - A      (<rk é P - D,

and hence gp' (x) is of class C* in E—A,_i (5 = 0, ■ • • , p), as the same is true

of gp-i(*) (i = 0, • • ■ ,p-\).

Finally let gp(x) be an analytic function such that

(24.9) |Dkgp(x) - Dkgp (x) | < 0p+i(*)/2»+a in E - (A + Tp+i)   (<r* i% p);

set gp(x) =gP-i(x) =f(x) in A—A-i+Tp+i. Then gp(x) has all the required

properties, (c) is a direct consequence of the above inequality and (24.7);

(d) follows from (24.9) and the fact that Dkgvn(x) =fk(x) in Tp(ak^p); (a)

and (b) follow with the aid of Lemma 1.

Set

(24.10) g(x) =   lim  gp(x) in E - A-i.

By (24.8) and (24.9), g(x) exists and is of class C° in E—A. Let x be any

point of any A,—A,_i; by (a), gP(x) is of class C* in a neighborhood of x for

p<L%s, and by (24.8) and (24.9), the same is true of g(x). The same argument,

using (b), shows that

(24.11) Dkg(x) = fk(x) inA- A,_i («r* á s, s - 0, 1, • • • ).

Finally (c), (d), (24.1) and the definition of go' (*) show that

(24.12) | Dkg(x) - fk(x) | < e(*)/2 in B - £._i     (ak = s, s = 0, 1, • • • ).

We have now found an extension g(x) with all the properties but (4). It

is replaced by an analytic extension F(x) just as in §23 ; we must be careful

merely to make
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(24.13) I Dtf(x) - Dkg(x) | < e(*)/2 in B - B.^  (<rk = s, s = 0, 1, • ■ • ).

Let ai, Û2, • • • be the ast arranged in a sequence, and set my = s if a, is in

A,—A,-i. Set R = E—A'. Let Rp consist of those points of the Rp of §19

whose distances from the closed set A+B—PP_i are >l/p (p = l, 2, • • • ).

Every point of E—A' lies in some Rp, as B — (P0+Pi+ • • • ) is void. Take

the ßy (§19) small enough so that if |Xp(,*)| =2/3„ (see (22.8)) and g*(x)

=EX<w/(*), then

(24.14) | Dkg*(x) | < e(*)/8 in Pp+i - Rp (<rk = p).

Let e,' be one eighth the lower bound of e(x) for * in P,+i (5 = 1,2, • • • ), or

1 if that is smaller. Replace the e, of (20.2) by min (e„ e.'). Then for any

such g*(x), (16.1) gives

(24.15) | DkLg*(x) | < ep + | Dkg*(x) \ < e(*)/4 in R^ - Rp (<rk = p).

Replace the g'(x) of §23 by the present g(x), and determine G'(x) so that

(24.16) | DkG'(x) - Dkg(x) \ < min [ßp, £(*)/4] in R - Rp (ak = p),

and, in particular, in B—Pp_i. Now if G(x) and F(x) are determined as in

§23, then (24.13) and hence property (3) hold; the other properties are easily

verified, and the proof of the theorem is complete.
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