A SET OF FOUR POSTULATES FOR BOOLEAN ALGEBRA
IN TERMS OF THE "IMPICATIVE" OPERATION*

BY

B. A. BERNSTEIN

1. Introduction. Whitehead and Russell's Principia Mathematica makes fundamental the notion "\(\supset \)" of "implication," defined by

\[p \supset q = \sim p \lor q, \text{ Df.} \]

The main object of my paper is to present in terms of this "implicative" operation\(\uparrow \supset \) a set of four postulates for Boolean algebra. This will secure for Boolean algebra, for the first time, a set of postulates expressed in terms of an operation other than "rejection" having as few postulates as the present minimum sets.\(\uparrow \) Of course, by the principle of duality in Boolean algebra, my postulates will also be a set in terms of the dual of \(p \supset q \), namely \(\sim pq \).

I prove for my postulates (a) their consistency, (b) their mutual independence, (c) their sufficiency for Boolean algebra, (d) their necessity for Boolean algebra.\(\S \) The consistency and independence systems are all Boolean

* Presented to the Society, June 19, 1933; received by the editors October 9, 1933.
\(\uparrow\) The Principia calls \(\supset \) a relation.
\(\uparrow \) For the present minimum sets, see B. A. Bernstein, (I) A set of four independent postulates for Boolean algebras, these Transactions, vol. 17 (1916), pp. 50–51; (II) Simplification of the set of four postulates for Boolean algebras in terms of rejection, Bulletin of the American Mathematical Society, vol. 39 (1933), pp. 783–787. For another set of postulates in terms of \(\supset \), the first set in terms of \(\supset \), see E. V. Huntington, (I) A new set of independent postulates for the algebra of logic, with special reference to Whitehead and Russell's Principia Mathematica, Proceedings of the National Academy of Sciences, vol. 18 (1932), pp. 179–180. Huntington's postulates are eight in number (including an inadvertently omitted existence postulate).

\(\S \) I offer (a)–(d) as a set of defining properties of a set of postulates: a system of propositions \(S \) is a set of postulates for a (consistent) system \(\Sigma \) if and only if the propositions of \(S \) are (a) consistent, (b) mutually independent, (c) sufficient for \(\Sigma \), (d) necessary for \(\Sigma \). More simply and less formally stated, a set of postulates for a system is a set of propositions of the system which cannot be derived from one another but from which all the other propositions of the system can be derived. This view of postulates is opposed to the view, seemingly held widely, that demands of postulates only sufficiency and necessity (hence also consistency). The latter view would have to accept as a set of postulates for euclidean geometry all of Euclid's Elements, and would violate the generally accepted distinction between postulate and theorem. My view of postulates is of course opposed to the view, seemingly held by some, that demands of postulates only sufficiency. This view would have to accept \(\Sigma \) as a set of postulates for \(\Sigma \), not only when \(\Sigma \) is the whole of \(\Sigma \), but also when \(\Sigma \) is inconsistent (since "a false proposition implies any proposition") and when \(\Sigma \) is only a special case of \(\Sigma \) (when \(\Sigma \), for example, is the theory of Abelian groups and \(\Sigma \) the theory of groups in general). If I am correct in my view, the term "independent postulates," found in the literature, must be understood to mean "postulates whose independence has been proved," and the term "postulates" applied to \(\Sigma \) when only (c) and (d) have
and very simple. The proof of sufficiency consists in deriving from the postulates my second set of postulates in terms of rejection (see my Paper II, loc. cit.); the proof of necessarity consists in the converse derivation.

I shall derive from my postulates the “theory of deduction” of the Principia. This will verify the fact, obtained elsewhere* less directly and from another point of view, that the theory of deduction is derivable from the general logic of classes.

There is a close relation between ϑ and the operation “—” of “exception” used by me†, and later by Taylor‡, in postulates for Boolean algebra. I shall bring out this relation.

If in a set of independent postulates for the logic of classes there is a proposition demanding that the number of elements be at least two, and if this proposition be replaced by a proposition demanding that the number of elements be just two, then the propositions resulting from the change will be sufficient for the logic of propositions as a two-element Boolean algebra. But these propositions will, in general, not be independent. I have so chosen my postulates that the change in question will render them a set of independent postulates for the logic of propositions.§

2. The postulates. The postulates with which we are mainly concerned have as primitive ideas a class K and a binary operation ϑ, and are the propositions A_1-A_4 below.|| In Postulates A_2 and A_3, there is to be understood the supposition that the elements involved and their indicated combinations belong to K. This must especially be borne in mind when the independence of the postulates is considered. The postulates follow.

Postulate A_1. $a \vartheta b$ is an element of K whenever a and b are elements of K.

† B. A. Bernstein, (IV) A complete set of postulates for the logic of classes expressed in terms of the operation “exception,” and a proof of the independence of a set of postulates due to Del Re, University of California Publications in Mathematics, vol. 1, pp. 87–96.
§ For a discussion of the nature of the logic of propositions, see B. A. Bernstein, (V) Sets of postulates for the logic of propositions, these Transactions, vol. 28 (1926), pp. 472–478.
|| The symbol “\equiv” used in the postulates is taken as an idea outside the system. Compare my (VI) Whitehead and Russell’s theory of deduction as a mathematical science, Bulletin of the American Mathematical Society, vol. 37 (1931), pp. 480–488. For sets of postulates for Boolean algebra in which “\equiv” is taken as an idea within the system, see E. V. Huntington, (II) New sets of independent postulates for the algebra of logic, with special reference to Whitehead and Russell’s Principia Mathematica, these Transactions. vol. 35 (1933), pp. 274–304.
Postulate A₃. \((a \supset b) \supset a = a\).

Postulate A₄. There is an element \(z\) in \(K\) such that
\[
(d \supset d) \supset [(a \supset b) \supset c] = \{(c \supset z) \supset [((b \supset c) \supset z)]\} \supset z.
\]

Postulate A₄. \(K\) consists of at least two distinct elements.

3. Consistency and independence of the postulates. The consistency and independence of Postulates A₁-A₄ are given by the following systems \(S₀-S₄\), in which \(S₀\) is the consistency system, and \(S₁, S₂, S₃, S₄\) are the independence systems for A₁, A₂, A₃, A₄ respectively. The systems are all Boolean.

<table>
<thead>
<tr>
<th>System</th>
<th>(K)</th>
<th>(a \supset b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S₀)</td>
<td>0,1</td>
<td>(a', b)</td>
</tr>
<tr>
<td>(S₁)</td>
<td>0,1</td>
<td>0/0*</td>
</tr>
<tr>
<td>(S₂)</td>
<td>0,1</td>
<td>0</td>
</tr>
<tr>
<td>(S₃)</td>
<td>0,1</td>
<td>(a)</td>
</tr>
<tr>
<td>(S₄)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

4. Theorems. The proof of the sufficiency of Postulates A₁-A₄ for Boolean algebra, and for the theory of deduction of the *Principia*, will be effected with the help of the following theorems 1a-26a.

1a. \((a \supset z) \supset z = a\).

2a. \((a \supset a) \supset b = b\).

3a. \((a \supset b) \supset c = \{(c \supset z) \supset a\} \supset [((b \supset c) \supset z)] \supset z\).

4a. \((a \supset z) \supset b = (b \supset z) \supset a\).

5a. \(a \supset b \supset (b \supset z) \supset (a \supset z)\).

6a. \(a \supset (b \supset z) = b \supset (a \supset z)\).

7a. The element \(z\) of Postulate A₃ is unique.

Definition 1a. \(a₁ = a \supset z\).

8a. \(a₁₁ = a\), where \(a₁₁ = (a₁)₁\).

9a. \((a \supset b) \supset c = [(c₁ \supset a) \supset (b \supset c₁)]₁\).

10a. \(a₁ \supset b = b₁ \supset a\).

11a. \(a \supset b = b \supset a₁\).

12a. \(a \supset b₁ = b \supset a₁\).

13a. \(a₁ = a \supset a₁\).

14a. \(a \supset a = b \supset b\).

* In a two-element Boolean algebra, we may define the quotient precisely as in the case of the algebra of number.
POSTULATES FOR BOOLEAN ALGEBRA

Definition 2a. \(u = a \gg a \).

15a. \(z \gg a = u \).
16a. \(u \gg a = a \).
17a. \(z_1 = u; \ u_1 = z \).
18a. \(a \gg b = (b \gg a_1) \gg a_1 \).
19a. \((a \gg b) \gg b = b_1 \gg a \).
20a. \(a \gg b = b_1 \gg (a \gg b) \).
21a. \(a \gg b = a \gg (a \gg b) \).
22a. \(a \gg b = (b \gg a) \gg (a \gg b) \).
23a. \(a \gg (b \gg a) = u \).
24a. \(a \gg (b \gg c) = (b \gg a) \gg (b \gg c) \).

Definition 3a. \(a \mid b = a \gg a \).

Definition 4a. \(a' = a \mid a \).

Definition 5a. \(\sim a = a_1 \).

Definition 6a. \(a \vee b = a_1 \gg b \).

Definition 7a. \(\vdash a = (a = u) \).

5. Proofs of the theorems. The proofs of the theorems 1a-26a follow.

Proof of 1a. \(a = (a \gg a) \gg a = (a \gg a) \gg [(a \gg z) \gg a] = \{[(a \gg z) \gg a] \gg [(z \gg a) \gg z] \gg z = (a \gg z) \gg z, \) by A3, A3, A3, A3.

Proof of 2a. \((a \gg a) \gg b = (a \gg a) \gg [(b \gg z) \gg b] = \{(b \gg z) \gg b \gg [(z \gg b) \gg z] \gg z = (b \gg z) \gg z = b, \) by A3, A3, A3, 1a.

Proof of 3a. \((a \gg b) \gg c = (d \gg d) \gg [(a \gg b) \gg c] = \{(c \gg z) \gg a \gg [(b \gg c) \gg z] \gg z, \) by 2a, A3.

Proof of 4a. \((a \gg z) \gg b = \{(b \gg z) \gg a \gg [(z \gg b) \gg z] \gg z = \{(b \gg z) \gg a \gg [(z \gg b) \gg z] \gg z = a \gg (a \gg z) \gg z, \) by 3a, A3, 1a.

Proof of 5a. \(a \gg b = [(a \gg z) \gg z] \gg b = (b \gg z) \gg (a \gg z), \) by 1a, 4a.

Proof of 6a. \(a \gg (b \gg z) = [(b \gg z) \gg z \gg (a \gg z)] \gg (a \gg z) = b \gg (a \gg z), \) by 5a, 1a.

Proof of 7a. Suppose that two elements, \(y \) and \(z \), have the property of \(z \). Then \(y = (y \gg z) \gg z = \{(z \gg y) \gg y \gg [(z \gg z) \gg y] \gg y = z \gg [(z \gg z) \gg y] \gg y = (z \gg y) \gg y = z, \) by 1a, 3a, 1a, 2a, 1a.

Proof of 8a. By def. 1a, 1a.

Proof of 9a. By def. 1a, 3a.

Proof of 10a. By def. 1a, 4a.
Proof of 11a. By def. 1a, 5a.

Proof of 12a. By def. 1a, 6a.

Proof of 13a. \(a_1 = (a \uparrow z) \uparrow a_1 = \left[(a \uparrow z) \uparrow z \right] \uparrow a_1 = a \uparrow a_1 \), by A2, def. 1a, 1a.

Proof of 14a. \(a \uparrow a = \left[(a \uparrow a) \uparrow z \right] \uparrow z = z \uparrow z = \left[(b \uparrow b) \uparrow z \right] \uparrow z = b \uparrow b, \) by 1a, 2a, 2a, 1a.

Proof of 15a. \(z \uparrow a = \left[(z \uparrow a) \uparrow z \right] \uparrow z = z \uparrow z = u, \) by 1a, A2, def. 2a.

Proof of 16a. \(u \uparrow a = (a \uparrow a) \uparrow a = a, \) by def. 2a, A2.

Proof of 17a. \(z_1 = z \uparrow z = u, \) by def. 1a, def. 2a; \(u_1 = (z \uparrow z)_1 = (z \uparrow z) \uparrow z = z, \) by def. 2a, def. 1a, A2.

Proof of 18a. \((b \uparrow a_1) \uparrow a_1 = \left[(a_{11} \uparrow b) \uparrow (a_1 \uparrow a_1)_1 \right]_1 = \left[(a_1 \uparrow a_1) \uparrow (a_{11} \uparrow b)_1 \right]_1 = (a_{11} \uparrow b)_1 = a \uparrow b, \) by 9a, 12a, 2a, 8a.

Proof of 19a. \(b_1 \uparrow a = (a \uparrow b_{11}) \uparrow b_{11} = (a \uparrow b) \uparrow b, \) by 18a, 8a.

Proof of 20a. \(b_1 \uparrow (a \uparrow b) = \left[(a \uparrow b) \uparrow b \right] \uparrow b = (b_1 \uparrow a) \uparrow b = (a \uparrow b) \uparrow b = b_1 \uparrow a_1 = a \uparrow b, \) by 19a, 19a, 10a, 19a, 11a.

Proof of 21a. \(a \uparrow (a \uparrow b) = \left[(a \uparrow b) \uparrow a_1 \right] \uparrow a_1 = \left[(a_{11} \uparrow a) \uparrow (b \uparrow a_1)_1 \right] \uparrow a_1 = \left[(a \uparrow a) \uparrow (b \uparrow a_1)_1 \right] \uparrow a_1 = (b \uparrow a_1)_1 \uparrow a_1 = (b \uparrow a_1)_1 = a_1 = (b \uparrow a_1)_1 = a_1 = (a \uparrow b) \uparrow b, \) by 18a, 9a, 8a, 2a, 8a, 18a.

Proof of 22a. \((b \uparrow a) \uparrow (a \uparrow b) = \left[(a \uparrow b) \uparrow b \right] \uparrow \left[(a \uparrow (a \uparrow b)_1 \right]_1 = \left[(a \uparrow b)_1 \uparrow b \right] \uparrow \left[(a \uparrow b)_1 \right]_1 = (a_1 \uparrow b)_1 = a \uparrow b, \) by 9a, 21a, A2, 8a.

Proof of 23a. \(a \uparrow (b \uparrow a) = (b \uparrow a) \uparrow a_1 = \left[(a_{11} \uparrow b) \uparrow (a \uparrow a_1)_1 \right] \uparrow a_1 = \left[(a_{11} \uparrow b) \uparrow a_1 \right]_1 \uparrow a_1 = (b \uparrow a_1)_1 \uparrow a_1 = (b \uparrow a_1)_1 \uparrow a_1 = (a \uparrow b) \uparrow a_1 \uparrow a_1 = u, \) by 18a, 9a, 13a, 8a, A2, def. 2a.

Proof of 24a. \((b \uparrow a) \uparrow (b \uparrow c) = \left[(b \uparrow c)_1 \uparrow b \right] \uparrow \left[a \uparrow (b \uparrow c)_1 \right]_1 = \left[(b_1 \uparrow (b \uparrow c)) \uparrow [a \uparrow (b \uparrow c)]_1 \right]_1 = \left[b_1 \uparrow (b \uparrow c) \right]_1 = a \uparrow (b \uparrow c), \) by 9a, 10a, 11a, 23a, 16a, 8a.

Proof of 25a. \(a' = a \uparrow a = a \uparrow a = a, \) by def. 4a, def. 3a, 13a.

Proof of 26a. \(a \uparrow b = a_1 \uparrow b = a_{11} \uparrow b = a \uparrow b, \) by def. 5a, def. 6a, 8a.

6. Sufficiency of the postulates. I shall now prove the sufficiency of postulates A1-A4 by deriving from them my second set of postulates for Boolean algebra in terms of rejection.* This set has as primitive ideas K and "|," and as postulates the propositions B1-B4 following (in postulates B3 and B4 there is to be understood the supposition that the elements involved and their indicated combinations belong to K).

B1. K contains at least two distinct elements.

B2. If a and b are elements of K, a|b is an element of K.

Definition 1b. \(a' = a|a.\)

B3. \(a' = (b|a) \uparrow (b'|a).\)

B4. \(a| (b|c) = [(c'|a) \uparrow (b'|a)].\)

* See my Paper II, loc. cit.
The derivations of B_1-B_4 from A_1-A_4 follow.

Proof of B_1. By A_4.

Proof of B_2. By def. 3a, def. 1a, A_1.

Proof of B_3. $a = (a_i) = \left[\left((a_{11} \circ b) \circ (b \circ a_1) \right)_{11} = \left(a \circ b \right) \circ \left(b \circ a_i \right) \right]_{1} = \left(b \circ a_1 \right) \circ \left(a \circ b_1 \right) = \left(b \circ a_1 \right) = \left(b \circ a_1 \right) = (b | a) = \left(b | a \right) = \left(b' | a \right)$, by $8a$, $2a$, $9a$, $8a$, $12a$, $11a$, def. 3a, 25a.

Proof of B_4. $a | (b | c) = a \circ (b \circ c_1) = \left[\left(a_{11} \circ b \right) \circ (c_1 \circ a_1) \right]_{1} = \left[\left(b_1 \circ a_1 \right) \circ (c_1 \circ a_1) \right]_{1} = \left[(c_1 \circ a_1) \circ (b \circ a_1) \right]_{1} = \left[(c' \circ a) \circ (b' \circ a_1) \right]_{1} = \left[(c' | a) \circ (b' | a) \right]_{1}$, by def. 3a, $12a$, $9a$, $10a$, $12a$, $25a$, def. 3a.

7. Necessariness of the postulates. I shall prove that A_1-A_4 are necessary for Boolean algebra by deriving A_1-A_4 from the rejection postulates B_1-B_4 above. For this derivation I shall use as auxiliary theorems propositions 1b-8b following, derivable from B_1-B_4.

1b. $a'' = a$, where $a'' = (a')'$.

2b. $a | b = b | a$.

3b. $a | (b | b') = a'$.

4b. $(a | c) | (b | c) = [c | (a' | b')]'$.

5b. $a | a' = b | b'$.

Definition 2b. $u = a | a'$.

6b. $a | u = a'$.

7b. $a | u' = u$.

Definition 3b. $a \circ b = a | b'$.

8b. $a \circ u' = a'$.

Propositions 1b, 2b, 3b, 5b are respectively Sheffer's Postulate 3, Theorem A, Postulate 4, Theorem B.* The proofs of 4b, 6b, 7b, and 8b follow.

Proof of 4b. $[c | (a' | b')]' = [b'' | c] | (a'' | a')' = (b | c) | (a | c)$, by B_4, 1b.

Proof of 6b. $a | u = a | (a | a') = a'$, by def. 2b, 3b.

Proof of 7b. $a | u' = [(a | u')'] = [(a | u') | (a' | a')'] = [u | a] | (a' | a)'] = [a | (u'' | a'')'] = a | (u | a) = a | (a | u) = a | a' = u$, by 1b, 3b, 2b, 4b, 1b, 2b, 6b, def. 2b.

Proof of 8b. $a \circ u' = a | u'' = a | u = a'$, by def. 3b, 1b, 6b.

The derivations of A_1-A_4 from B_1-B_4 now follow.

Proof of A_1. By def. 3b, def. 1b, B_3.

Proof of A_2. $a | (b | b') = a | (b' | a) = (b' | a) | [(b' | b) | a]$.

* See H. M. Sheffer, A set of five independent postulates for Boolean algebras, with application to logical constants, these Transactions, vol. 14 (1913), pp. 481-488.
Proof of \(A_3\). The element \(u'\) will serve as the required element \(z\). For,
\[\{ [(c \circ u') \circ a] \circ [(b \circ c) \circ u'] \} \circ u' = \{ [(c' \circ a') \circ (b \circ c')'] \circ u' \} = \{ [(c' \circ a') \circ (b \circ c')'] \circ (a' \circ (b')'] = \{ [c' \circ (a' \circ (b')'] \circ (a' \circ (b')'] \circ (d \circ d') = [c' \circ (a' \circ (b')'] \circ (d \circ d') = (d \circ d') \circ [(a \circ b) \circ c], \]
by def. 3b, 1b, 2b, 4b, 3b, 1b, def. 3b.

Proof of \(A_4\). By \(B_1\).

8. Derivation of the theory of deduction. I now come to the derivation from \(A_1\)-\(A_4\) of the theory of deduction of \textit{Principia Mathematica}. The primitive ideas of this theory are a \textit{class} \(K\), a \textit{unary operation} \(\sim\), a \textit{binary operation} \(\wedge\), and a notion \(\vdash\), which may perhaps be termed a \textit{predicative relation}. The postulates of the theory are the propositions \(C_1\)-\(C_7\) below. These postulates are expressed in terms of \(K\), \(\sim\), \(\wedge\), \(\vdash\), and an operation \(\triangleright\) defined by

Definition 1c. \(a \triangleright b = \sim a \wedge b\).

By 26a, the \(\triangleright\) of Definition 1c is seen to be the same as the \(\triangleright\) of postulates \(A_1\)-\(A_4\). This fact will be used hereafter without further mention.

The postulates \(C_1\)-\(C_7\) follow.†

- \(C_1[^*1\cdot1].\) If \(\vdash \neg a\) and \(\vdash (a \triangleright b)\) then \(\vdash b\).
- \(C_2[^*1\cdot2].\) \(\vdash [(a \wedge v) \triangleright a]\).
- \(C_3[^*1\cdot3].\) \(\vdash [a \triangleright (b \wedge v) a]\).
- \(C_4[^*1\cdot4].\) \(\vdash [(a \wedge b) \triangleright (b \wedge v) a]\).
- \(C_5[^*1\cdot6].\) \(\vdash \{ (a \triangleright b) \wedge [(c \wedge v) \triangleright (c \wedge v) b] \}\).
- \(C_6[^*1\cdot7].\) If \(a\) is in \(K\), then \(\neg a\) is in \(K\).
- \(C_7[^*1\cdot71].\) If \(a\) and \(b\) are in \(K\), then \(a \wedge v b\) is in \(K\).

The derivations of \(C_1\)-\(C_7\) from \(A_1\)-\(A_4\) follow.

\textbf{Proof of} \(C_1\). Let \(\vdash \neg a\) and \(\vdash (a \triangleright b)\). Then \(a = u\) and \(a \triangleright b = u\), by def. 7a. Hence \(u \triangleright b = u\). Hence \(b = u\), by 16a; hence \(\vdash b\), by def. 7a.

\textbf{Proof of} \(C_2\). \((a \wedge v) \triangleright a = (a \circ a) \triangleright a = a \circ a = a\), by def. 6a, 19a, def. 2a. Hence the theorem, by def. 7a.

\textbf{Proof of} \(C_3\). \(a \triangleright (b \wedge v) a = a \triangleright (b \circ a) = u\), by def. 6a, 23a. Hence the theorem, by def. 7a.

\textbf{Proof of} \(C_4\). \((a \wedge b) \triangleright (b \wedge v) a = (a \circ b) \triangleright (b \circ a) = (a \circ b) \triangleright (a \circ b) = u\), by def. 6a, 10a, def. 2a. Hence the theorem, by def. 7a.

\textbf{Proof of} \(C_5\). \((a \triangleright b) \circ [(c \wedge v) \triangleright (c \wedge v) b] = (a \triangleright b) \circ [(c \circ a) \triangleright (c \circ b)] =

† The numbers associated with \(C_1\)-\(C_7\) are those of the \textit{Principia}. For the form of \(*1\cdot1\), see my (VII) Remarks on propositions \(*1\cdot1\) and \(*3\cdot35\) of \textit{Principia Mathematica}, Bulletin of the American Mathematical Society, vol. 39 (1933), pp. 111-114. The \textit{Principia} proposition \(*1\cdot5\) has been omitted, since \(*1\cdot5\) is redundant (see P. Bernays, Mathematische Zeitschrift, vol. 25 (1926), pp. 305-320).
(a \lor b) \lor [(a \lor (c_1 \lor b)) \lor (b_1 \lor a) \lor (b_2 \lor b_1)] = b \lor [(a \lor (c_1 \lor b)) \lor (b_1 \lor a) \lor (b_2 \lor b_1)] = b_1 = [(b_1 \lor a) \lor (c_1 \lor b) \lor b_1] \lor b_1 = [(b_1 \lor a) \lor (c_1 \lor b) \lor b_1] \lor b_1 = [(b_1 \lor a) \lor (c_1 \lor b) \lor b_1] \lor b_1 = [b \lor (a \lor b)] \lor b_1 = [b \lor (a \lor b)] \lor b_1 = b_1 \lor b_1 = u, \text{ by def. 6a, 24a, 24a, 18a, 9a, 8a, 10a, A_3, 8a, A_2, def. 2a. Hence the theorem, by def. 7a.}

Proof of C_6. By def. 5a, def. 1a, A_1.

Proof of C_7. By def. 6a, def. 1a, A_1.

9. Relation between the implicative operation and the operation exception. I shall now bring out the relation existing between the implicative operation \(\supset \) and the operation "\(-\)" of "exception."

The considerations are simple. The element \(a \rightarrow b \) is, in the usual Boolean notation, the element \(ab' \). Since \(a \supset b \) is the element \(a' + b \), the elements \(a \supset b \) and \(b \rightarrow a \) are the duals of each other. Hence, a postulate-set in terms of \(\supset \) is essentially also a set in terms of "\(-\)," and vice versa.

Let me actually transform Postulates A_1-A_4 into a set in terms of "\(-\)." To do this, it will be convenient to re-letter the formulas in A_1-A_4. If we write \(b \rightarrow a \) for \(a \supset b \), \(z \) for \(u \) (the dual of \(z \)), and re-letter, Postulates A_1-A_4 become the following postulates D_1-D_4 in terms of "exception."

D_1. \(a \rightarrow b \) is an element of \(K \) whenever \(a \) and \(b \) are elements of \(K \).

D_2. \(a \rightarrow (b \rightarrow a) = a \).

D_3. There is an element \(u \) in \(K \) such that \([a \rightarrow (b \rightarrow c)] \rightarrow (d \rightarrow d) = u \rightarrow \{u \rightarrow (a \rightarrow b) \rightarrow [c \rightarrow (u \rightarrow a)] \}. \)

D_4. \(K \) consists of at least two distinct elements.

To actually transform a set of "exception" postulates into a set of "implication" postulates, let me take a set due to Taylor.* This set consists of the postulates E_1-E_6 following.†

E_1. \(K \) contains at least two distinct elements.

E_2. If \(a \) and \(b \) are elements of \(K \), \(a \rightarrow b \) is an element of \(K \).

E_3. \(a \rightarrow (b \rightarrow b) = a \).

E_4. There exists a unique element \(u \) in \(K \) such that \(a \rightarrow (u \rightarrow b) = b \rightarrow (u \rightarrow a) \).

DEFINITION 1e. \(a_1 = u \rightarrow a \).

E_5. \(a \rightarrow (b \rightarrow c) = [(a \rightarrow b)_1 \rightarrow (a \rightarrow c)]_1 \).

If we replace \(a \rightarrow b \) by \(b \supset a \) and \(u \) by \(z \), and re-letter, E_1-E_6 become the following postulates F_1-F_6 in terms of implication.

F_1. \(K \) contains at least two distinct elements.

F_2. If \(a \) and \(b \) are elements of \(K \), \(a \supset b \) is an element of \(K \).

F_3. \((a \supset a) \supset b = b \).

* J. S. Taylor, loc. cit.

† In E_5, E_6, E_4 there is to be understood the supposition that the elements involved and their indicated combinations belong to \(K \). In E_4 there is to be understood the further supposition that E_4 holds.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
There exists a unique element \(z \) such that \((a \uparrow z) \downarrow b = (b \uparrow z) \downarrow a\).

Definition 6. \(a_1 = a \uparrow z \).

F. \((a \uparrow b) \uparrow c = [(a_1 \uparrow c) \uparrow (b \uparrow c)]_1\).

10. Postulates for the logic of propositions. I take up finally the last item of my paper: to show that a simple change in one of the postulates \(A_1-A_4 \) will make these postulates a set of *independent* postulates for the logic of propositions as a two-element Boolean algebra. The change consists in replacing Postulate \(A_4 \) by Postulate \(A'_4 \) following:

POSTULATE \(A'_4 \). \(K \) consists of two distinct elements.

That \(A_1, A_2, A_3, A'_4 \) are necessary and sufficient for a two-element Boolean algebra, is obvious. That \(A_1, A_2, A_3, A'_4 \) are mutually *independent*, is seen from the table of §3: in that table each of the independence systems for \(A_1, A_2, A_3 \) consists of only two elements.*

* In the same way, and for the same reasons, one can transform into independent postulate-sets for the logic of propositions my two sets for Boolean algebra in terms of rejection (see my Papers I, II, loc. cit.). A like remark applies to Huntington's first set of postulates for Boolean algebra (E. V. Huntington, (III) Sets of independent postulates for the algebra of logic, these Transactions, vol. 5 (1904), pp. 288-309).

University of California, Berkeley, Calif.