ON NORMAL KUMMER FIELDS OVER A
NON-MODULAR FIELD*

BY

A. ADRIAN ALBERT

1. Let F be any non-modular field, p an odd prime, $\xi \neq 1$ a pth root of
unity. Suppose that μ in $F(\xi)$ is not the pth power of any quantity of $F(\xi)$
so that the equation $\gamma^p = \mu$ is irreducible in $F(\xi)$. Then the field $F(\gamma, \xi)$ is
called a Kummer\dagger field over F.

In the present paper we shall give a formal construction of all normal
Kummer fields over F. This is equivalent to a construction of all fields $F(x)$
of degree p over F such that $F(x, \xi)$ is cyclic of degree p over $F(\xi)$. In par-
ticular we provide a construction of all cyclic fields of degree p over F.

We shall also apply the cyclic case to prove that a normal division algebra
D of degree p over F is cyclic if and only if D contains a quantity γ not in F
such that $\gamma^p = \gamma$ in F.

2. The equation

$$g(\xi) = \xi^{p-1} + \xi^{p-2} + \cdots + \xi + 1 = 0$$

is irreducible in the field R of all rational numbers and has all the primitive
pth roots of unity as roots. If F is any non-modular field, then $g(\xi)$ has an
irreducible factor $h(\xi) = 0$ in F and with ξ as a root. The roots of $h(\xi) = 0$ are
all powers of ξ and hence are in a sub-field L of $R(\xi)$. But then the coefficients
of $h(\xi) = 0$ are in L so that the group of $h(\xi)$ with respect to F is its group with
respect to L. This latter group is the group of all the automorphisms of the
cyclic field $R(\xi)$ leaving the quantities of L invariant and is a sub-group of
the group of $R(\xi)$. Every sub-group of a cyclic group is cyclic, so that $h(\xi) = 0$
has a cyclic group generated by

$$T: \xi \mapsto \xi^t,$$

where t is an integer belonging to the degree n of $h(\xi) = 0$, $t^n \equiv 1 \pmod{p}$. We
may write

$$\xi_k = \xi^{k-1}, \quad \xi_{n+1} = \xi_1 = \xi^n \quad (k = 1, \ldots, n),$$

so that we have

* This paper is a revision and amplification of the paper *On cyclic equations of prime degree*,
which I presented to the Society on December 27, 1933; it was received by the editors March 17, 1934.

† If F is the field of all rational numbers, then $F(\gamma, \xi)$ is the ordinary Kummer field of modern
arithmetic. Our work is a generalization to any non-modular field of that special case.

885
(2) \[\xi_k = \xi^t_k, \ t_k = t^{k-1} \pmod{p}, \ 1 \leq t_k < p. \]

Then \(T \) is equivalent to the cyclic substitution \((\xi_1, \xi_2, \cdots, \xi_n)\) on the roots of \(h(\xi) = 0 \).

If \(\lambda \) and \(\mu \) are any two quantities of \(K = F(\xi) \) we say that \(\lambda \) is \(p \)-equal to \(\mu \) and write

(3) \[\lambda \equiv \mu \pmod{p}. \]

H. Hasse* has then given a purely algebraic proof of

Lemma 1. If

\[y^p = \mu \neq 1, \pmod{p}, \]

then \(Z = K(y) \) is cyclic of prime degree \(p \) over \(K \) and with generating automorphism

\(S: \ y \mapsto \xi y. \)

Conversely every cyclic field \(Z \) of degree \(p \) over \(K \) is equal to a field \(K(y) \),

\[y^p = \mu \neq 1, \pmod{p}. \]

Moreover if also \(Z = K(z) \), \(z^p = \mu' \) in \(K \), then

\[\mu' \equiv \mu^a, \pmod{p}, \]

so that \(z = \lambda y^a \) where \(\lambda \) is in \(K \).

3. We now assume that \(Z \) is any normal field of degree \(pn \) over \(F \) containing \(K = F(\xi) \) of degree \(n \) over \(F \). Then \(K \) is the set of all quantities of \(Z \) unaltered by a cyclic sub-group \(H \) of \(Z \) of order \(p \) and \(Z \) is cyclic of degree \(p \) over \(K \). By Lemma 1, \(Z = F(y, \xi) \), \(y^p = \mu \) in \(K \) and \(H = (I, S, \cdots, S^{n-1}) \) where \(S \) is given above. We can then decompose the group \(G \) of \(Z \) relative to \(H \) and write \(G = H + HS_1 + \cdots + HS_{n-1} \). Then \(I, \sigma_1, \cdots, \sigma_{n-1} \) carry \(\xi \) to the other roots of the irreducible equation \(h(\xi) = 0 \). In particular one \(\sigma_i = \tau \) carries \(\xi \) to \(\xi^t \).

We let \(T = \tau^p \) so that \(T \) also carries \(\xi \) to \(\xi^t \) since \(t^p = t \pmod{p} \). Then \(\tau^a \) leaves \(\xi \) unaltered and is in \(H \). Hence \(\tau^a = S^r, \ T^a = S^{pr} = I \).

The group \(G \) now has the decomposition \(G = H + HT + \cdots + HT^{n-1} \). For otherwise \(T^r = S^r T^i \) where \(n > r > j \) so that \(T^{r-1} = S^i \) leaves \(\xi \) unaltered, which is impossible. We have proved that

The group \(G \) has a cyclic sub-group \((T^i) \) of order \(n \) and hence \(Z \) has a sub-field \(F(x) \) of degree \(p \) over \(F \). Moreover
\[
y^{(T)} = \lambda y^r
\]
(\(\lambda \) in \(K \)).

For \(y^{(T)} \) in \(Z \) evidently generates \(K(y) \) and we may apply Lemma 1. But
\[
y^{(TS)} = \lambda T y^r = y^{(ST)} = \xi^* \lambda y^r,
\]
where \(e \equiv r \pmod{p} \) so that \(e \equiv rt^{n-1} \pmod{p} \). Hence \(TS = S^*T \). Conversely if \(TS = S^*T \) then \(r \equiv et \pmod{p} \) is determined and we have proved

Theorem 1. Let \(F(x) \) have degree \(p \) over \(F \) and \(F(x, \xi) = Z \) be normal over \(F \). Then \(Z \) has the group
\[
S^*T^i \quad (i = 0, 1, \ldots, p - 1; j = 0, 1, \ldots, n - 1),
\]
such that \(S^p = T^n = I \), the identity automorphism, and
\[
TS = S^*T \quad (0 < e < p).
\]
Moreover \(Z = F(y, \xi) \) where \(y^p = \mu, \xi \) in \(F(\xi) \),
\[
\xi^{(T)} = \xi^t, \quad y^{(T)} = \lambda y^r, \quad \xi^{(S)} = \xi, \quad y^{(S)} = \xi y, \quad \mu^{(T)} = \mu^r, \quad \mu^{(S)} = \mu^s,
\]
and \(r \equiv et \pmod{p} \).

Conversely every normal field \(Z > F(\xi) \) of degree \(p^n \) over \(K = F(\xi) \) is generated as a field \(Z = F(y, \xi) \), \(y^p = \mu = \mu(\xi) \) in \(F(\xi) \) such that
\[
\mu \neq 1, \quad \mu^{(T)} = \mu^r \quad (1 \leq r < p).
\]
The group of \(Z \) is then given by \((5), (6), (7) \) where \(e \) is determined by \(r \equiv et \pmod{p} \) and \(Z \) contains a sub-field \(F(x) \) of degree \(p \) over \(F \), the field of all quantities of \(Z \) unaltered by the automorphism \(T \).

It is evident that \(F(x) \) is uniquely determined in the sense of equivalence and is generated by any quantity
\[
x = \sum_{i=0}^{p-1} \alpha_i(\xi) y^i = \sum_{i=0}^{p-1} \alpha_i(\xi^i) \lambda^i y^i
\]
for which at least one \(\alpha_i \neq 0 \) for \(i > 0 \). Moreover the equation
\[
\phi(\eta) = (\eta - x)(\eta - x^{(S)}) \cdots (\eta - x^{(S^{p-1})})
\]
has coefficients in \(F \), is irreducible in \(F \), and has \(x \) as a root. Hence Theorem 1

A similar result was obtained by Hilbert for the case \(F = R \).
gives a formal construction of all fields $F(x)$ of degree p over F with the property that $F(x, \zeta)$ is normal over F in terms of the construction of all quantities μ satisfying (8).

If in particular $F(y, \zeta)$ has an abelian group, then $F(y, \zeta) = F(x) \times F(\zeta)$, where $F(x)$ is cyclic over F. Conversely if $F(x)$ is cyclic over F, then $F(x) \times F(\zeta) = F(y, \zeta)$ has an abelian group, $e = 1$, $r = t$ and we have

Theorem 2. Let μ range over all quantities of $F(\zeta)$ such that

$$\mu \neq 1, \quad (\mu^t) = \mu^t.$$

Then $Z = F(x) \times F(\zeta)$ where $F(x)$ is cyclic of degree p over F. Conversely every cyclic field $F(x)$ of degree p over F is the uniquely defined sub-field of such an $F(\mu^{1/p}, \zeta)$.

4. We proceed now to the construction of the quantities μ. The condition

$$\mu \neq 1, \quad (\mu)$$

is evidently an irreducibility condition depending intrinsically on F itself and so must remain in our final conditions. We first prove

Lemma 2. The integer r satisfies the congruence

$$r^n \equiv 1 \pmod{p}.$$

For

$$\text{if } \mu(\tau) = \mu^r \text{ then } \mu = \mu^{rn}$$

and hence

$$\mu^{rn-1} = 1, \quad (\mu)$$

But then if $y^p = \mu$ the quantity $y^{n-1} = \lambda y^s$ where $r^n - 1 = s \pmod{p}$, $0 \leq s < p$ and λ is in $F(\zeta)$. But y^p is then in $F(\zeta)$ so that $s = 0$.

We have observed that $0 < r < p$ so that there exists an integer ρ such that

$$\rho r \equiv 1 \pmod{p}.$$

We define

$$\rho_k \equiv \rho^{k-1} \pmod{p}, \quad 1 \leq \rho_k < p,$$

for all integer values of k, where $\rho_{n+1} = \rho_1 = 1$, and $\rho^{-\alpha}$, $\alpha > 0$, is to be defined as a corresponding positive power of ρ. Then

$$r \rho_k \equiv \rho_{k-1} \pmod{p}.$$
We may then prove

Lemma 3. Let \(\lambda \) be any quantity of \(F(\xi) \) and define

\[
\mu = \prod_{k=1}^{n} \lambda(\xi_k)^{\rho_k}.
\]

Then

\[
\mu^{(T)} = \mu(\xi^t) = \mu^r.
\]

For the automorphism \(T \) carrying \(\xi \) to \(\xi^t \) carries each \(\xi_k \) to \(\xi_{k+1} \). Hence

\[
\mu^{(T)} = \prod_{k=1}^{n} \lambda(\xi_{k+1})^{\rho_k} = \prod_{k=1}^{n} \lambda(\xi_k)^{\rho_k-1},
\]

while, by (15),

\[
\mu^r = \prod_{k=1}^{n} \lambda(\xi_k)^{\rho_k} = \mu(\xi^t),
\]

as desired.

Let now

\[
\mu(\xi^t) = \mu^r \quad \text{and} \quad \mu \not= 1.
\]

Then define

\[
M = \prod_{k=1}^{n} \Lambda(\xi_k)^{\rho_k}
\]

where \(\Lambda = \mu \). Then \(\Lambda(\xi_k) = \mu^{\rho_k-1} \) so that

\[
\Lambda(\xi_k)^{\rho_k} = \mu^{(\rho_k)^{\rho_k-1}} = \mu
\]

and hence

\[
M = \mu^n.
\]

But \(n \) is not divisible by \(p \) so that \(z = y^n \) generates \(K(y) \),

\[
z^p = M.
\]

Hence \(F(y, \xi) = F(w, \xi) \) where \(w^p = M \) is a quantity of the form (16). Conversely if \(\mu \) has the form (16) and

\[
\mu \not= 1
\]
then $F(y, \zeta), y^p = \mu$, is normal of degree np over F. We have proved

Theorem 3. Let λ range over all quantities of $F(\zeta)$ such that

\[(22) \quad y^p = \mu = \prod_{k=1}^{n} \lambda(\zeta_k)^{p_k} \neq 1.\]

Then $F(y, \zeta)$ is a normal field of Theorem 1. Conversely every normal field of Theorem 1 is generated by a μ defined by (22).

We have now succeeded in giving a formal construction of all the fields of Theorem 1. In particular we have constructed all cyclic fields of prime degree over F. For this case we have $\rho t \equiv 1 \pmod{p}$, and may state

Theorem 4. Let $\rho_k \equiv t^{p-k} \pmod{p}$ so that $t\rho_k \equiv t^{p-(k-1)} \equiv \rho_{k-1} \pmod{p}$ and let λ range over all quantities of $F(\zeta)$ such that

\[(23) \quad a = \prod_{k=1}^{n} \lambda(\zeta_k)^{\rho_k}\]

is not the pth power of any quantity b of $F(\zeta)$. Then if

\[(24) \quad z^p = a,
\]

the field $F(z, \zeta)$ is cyclic of degree np over F and

\[F(z) = F(x) \times F(\zeta),\]

where $F(x)$ is cyclic of degree p over F. Conversely every cyclic field $F(x)$ of degree p over F is generated as the uniquely defined sub-field of such an $F(z, \zeta)$.

We have thus given a construction of all cyclic fields of prime degree over any non-modular field F where the condition $a \neq b^p$ is the irreducibility condition.

5. On normal division algebras of degree p. Let Z be a cyclic field of degree p over F so that every automorphism of Z is a power of an automorphism S given by $z \mapsto z^S$ for every z and corresponding z^S of Z. Define an algebra D whose quantities have the form

\[(25) \quad \sum_{i=0}^{p-1} z_i y^i \quad (z_i \text{ in } Z),\]

such that

\[(26) \quad y^t z = z^{s^t} y^i, \quad y^p = \gamma \neq 0 \text{ in } F.\]

Then D is a cyclic algebra over F and is a normal division algebra if and only
if \(y \neq N(z) \) for any \(z \) in \(Z \). Evidently \(D \) is uniquely defined by \(Z, S, \gamma \) and we write

\[
D = (Z, S, \gamma) = (Z, S, \delta), \quad \delta = N(c)\gamma
\]

for any \(c \) of \(Z \). For \(\gamma \) is replaced by \(\delta \) when we replace \(\gamma \) by \(cy \). Also*

\[
(Z, S, \gamma) \times (Z, S, \delta) \sim (Z, S, \gamma\delta).
\]

If \(D \) is a cyclic normal division algebra of degree \(p \) over \(F \), then \(D \) has the above form and hence contains a sub-field \(F(y) \), \(y^p = (\gamma) \) in \(F \).

Conversely, let \(D \) be any normal division algebra of degree \(p \) over \(F \) with \(F(x), x^p = \beta \) in \(F \) as sub-field. Let \(K = F(\xi) \) of degree \(n \) over \(F \). The algebra

\[
M = (K, T, 1),
\]

a cyclic algebra of degree \(n \) over \(F \), is a total matric algebra. We form the direct product \(M \times D \), which evidently contains \(K \times D = D_0 \) as sub-algebra. Algebra \(D_0 \) is a normal division algebra of degree \(p \) over \(K \) and has the cyclic sub-field \(Z = K(x) \). Moreover

\[
D_0 = (Z, S, \gamma),
\]

where \(\gamma \) is in \(K \) and the automorphism \(S \) is given by the transformation

\[
yx = \xi xy, \quad xs = \xi x.
\]

Let \(M \) have a basis \(\{e_i j^k\} \) \((i, k = 0, 1, \ldots, n) \) such that \(j^n = 1 \). Then in \(D \times M \) we have

\[
j(yx)j^{-1} = y_T x = j(\xi xy)j^{-1} = \xi^t xy_T,
\]

where \(y_T = jyj^{-1} \) is in \(D \times M \). But \(y \) is commutative with \(\xi \) since \(\gamma \) is in \(D_0 \). Also \(y^\xi = \xi y \) implies that \(y_T^\xi = \xi^t y_T \) and hence \(y_T \) is also commutative with \(\xi \). For \(F(\xi^t) = F(\xi) \). The algebra of all quantities of \(D \times M \) commutative with \(\xi \) is evidently \(D_0 \) so that \(y_T \) is in \(D_0 \).

Since \(y_T x = \xi^t xy_T \) while \(y^\xi x = \xi^t xy^\xi \), we then have \(y_T = dy^t \) where \(d \) is in \(Z \). Then

\[
(y_T)^p = jy^tj^{-1} = \gamma(\xi^t) = N(d)\gamma^t,
\]

where \(N(d) \) is the norm of the quantity \(d \) of the cyclic field \(Z \). But

\[
D_0^t \sim (Z, S, \gamma^t) = (Z, S, \gamma(\xi^t)),
\]

by (33), (27).

* If \(A \) is any normal simple algebra, then \(A = M \times D \), where the total matric algebra \(M \) and the normal division algebra \(D \) are uniquely determined in the sense of equivalence. If \(A \) and \(B \) are two normal simple algebras with the same \(D \), we say that \(A \) and \(B \) are similar, and write \(A \sim B \).
By applying (34) we have $D_0 \sim (Z, S, \gamma(t^k))$, and hence

$$D_0 \sim (Z, S, \gamma(t^k)),$$

from which, if $u = \sum \rho_k t_k = n + \lambda p$ by (25),

$$D_0 \sim D_0 \sim (Z, S, \alpha),$$

where

$$\alpha = \prod_{k=1}^{n} \gamma(t_k)^{\rho_k}.$$

If D is any normal simple algebra of prime degree p over F, and K is a field of degree n not divisible by p, then D is a total matric algebra if and only if $D \times K$ over K is a total matric algebra. Moreover, if r is prime to p, then D^r is total matric if and only if D is total matric. Hence, if $D_0 = D \times K$ and D_0^r is a total matric algebra, then so is D.

Algebra D_0 is a normal division algebra since D is a normal division algebra. Hence $\alpha \not= \mathcal{N}(c)$ for any c of Z. In particular $\alpha \not= b^p$ for any b of K. Thus D_0 contains a cyclic field W of prime degree p over F. But then $D_0 \times W'$ over $W' \subseteq W_K$, the composite of W and K, is a total matric algebra. Hence $D_0 \times W'$ is a total matric algebra and so must be $D \times W$ over W, $W \subseteq W$. But then D has a sub-field equivalent to W and is cyclic.

Theorem 5. A normal division algebra D of prime degree p over F is cyclic if and only if D has a sub-field $F(x)$, $x^p = \gamma$ in F.

* The cyclic sub-field of $F(a^{1/p})$ defined by Theorem 4.

The Institute for Advanced Study,

Princeton, N. J.