ON CYCLIC FIELDS*

BY

A. ADRIAN ALBERT

1. Introduction. The most interesting algebraic extensions of an arbitrary field F are the cyclic extension fields Z of degree n over F. I have recently given constructions of such fields for the case $n = p; \dagger$ a prime, when the characteristic of F is not p, and for the case $n = p^t \ddagger$ when the characteristic of F is p. Moreover it is well known that when F contains all the nth roots of unity then $Z = F(x), x^n = \alpha$ in F.

The last result above does not provide a construction of all cyclic fields Z over F since in general F does not contain these nth roots. Moreover if we adjoin these roots to F and so extend F to a field K the composite (Z, K) over K may not have degree n. Finally even if (Z, K) over K does have degree n then it is necessary to give conditions that a given field $K(x), x^n = \alpha$ in F, shall have the form (Z, K) with Z cyclic over F. This has not been done and is certainly not as simple as the considerations I shall make here.

It is well known that if $n = \prod_{i=1}^t p_i^{e_i}$ with p_i distinct primes, then Z is the direct product $Z = Z_1 \times \cdots \times Z_t$ where Z_i is cyclic of degree p_i over F. Hence it suffices to consider the case $n = p^t, p$ a prime. I have already done so for the case where F has characteristic p. In the present paper I shall make analogous considerations for the case where F has characteristic not p by first studying the case where F contains a primitive pth root of unity ξ and later giving complete conditions for the case where F does not contain ξ.

2. Algebraic units of Z. Let Z be cyclic of degree n over a field F and S be a generating automorphism of the automorphism group of Z. Then we define the relative norm

$$N_{Z/F}(a) = a a_S \cdots a_S^{n-1},$$

a quantity of F for every a of Z. We shall now give a new proof of a theorem of Hilbert.||

* Presented to the Society, September 7, 1934; received by the editors July 30, 1934.
† See my paper in these Transactions, 1934, On normal Kummer fields over a non-modular field.
§ For let Z be the field of the 2^{n+1} roots of unity so that Z has degree 2^n over \mathbb{Q}, the rational field. Then K is actually a sub-field of degree 2^{n-1} of Z and Z has degree 2 over K.
|| Cf. Hilbert's Abhandlungen I, p. 149. Hilbert's proof uses the assumption that F is infinite and is very different from the rather interesting proof given here. The proof here also goes more deeply into the true reason for the theorem.
Theorem 1. A quantity a of Z has the property

\[N_{Z/P}(a) = 1 \]

if and only if there exists a quantity $b \neq 0$ of Z such that

\[a = b^s/b. \]

For obviously if a has the form (3) then $N_{Z/P}(a) = N_{Z/P}(b)N_{Z/P}(b^{-1}) = 1$. Conversely let $N_{Z/P}(a) = 1$.

Consider the cyclic algebra M whose quantities are all $\sum_{i=0}^{n-1} z_i y^i$ with z_i in Z and $1, y, \ldots, y^{n-1}$ left linearly independent in Z. Let

\[y^t z = z^s y^i, \ y^n = 1 \quad (z \text{ in } Z), \]

so that M is equivalent to the algebra of all n-rowed square matrices. Then Z may be thought of as a field of n-rowed square matrices, y is a matrix whose minimum equation is $y^n - 1 = 0$, its characteristic equation. The matrix $a^{-1}y = y_0$ has the property $y_0^n = N(a^{-1}) = 1$ and has the same minimum equation as y. Since this equation defines the only invariant factor of y which is not unity, the two matrices y and y_0 have the same invariant factors and are similar. Thus $y_0 = A y A^{-1}$ with $A = \sum z_i y^i \neq 0$ and

\[yA = A y = \sum z_i S y^{i+1} = a \sum z_i y^{i+1}. \]

Then $az_i = z_i^S \neq 0$ for at least one z_i so that we take $b = z_i \neq 0$.

3. Cyclic fields of degree p^s over K. Let K be a field of characteristic not p containing a primitive p^sth root of unity ζ and let Z be cyclic of degree p^s over K, $s > 1$. Then Z contains a unique cyclic sub-field Y of degree $m = p^{s-1}$ and Z is cyclic of degree p over Y. But then

\[Z = Y(z), \ z^p = a \text{ in } Y. \]

Let S be a generating automorphism of Z so that S may also be considered as a generating automorphism of Y. Then $S^m = Q, Q^p = I$, the identity automorphism of Z, and Y is the set of all quantities of Z unaltered by the cyclic group (I, Q, \ldots, Q^{p-1}).

We compute $(z^Q)^p = a^Q = a$. Then z^Q is a root of $\omega^p = a$ and hence

\[z^Q = \zeta^\mu z \quad (0 \leq \mu < p). \]

If $\mu = 0$ then $z^Q = z$ is in Y contrary to our hypothesis that $Z = Y(z) \neq Y$. Hence $\mu > 0$ is prime to p,

\[\mu \mu_0 = 1 + \mu_1 p, \quad (\mu_0, \ p) = 1, \]

for integers μ_0, μ_1. Define $S_0 = S^{\mu_0}, Q_0 = Q^{\mu_1}$ so that S_0 is a generating auto-

* For every cyclic field of degree p over Y containing ζ is a Kummer field $Y(z), z^p = a$ in Y.
morphism of \(Z \), \(Q_0 \) is a generator of the group \((I, Q, \ldots, Q^{p-1})\). Then
\[z_0^\mu = \xi^\mu z_0 = \xi z. \]
Hence by properly choosing \(S \) we may assume
\[z^Q = \xi z, \]
instead of (6).

Now \((z^S)^p = a^S\) so that, by a well known theorem on Kummer fields,\(^*\) we have
\[z^s = \beta z, \beta \in Y, 1 \leq \nu < p. \]
Then
\[z^{s^2} = \beta^{s^2} \beta^s z = \beta^{s^2} \beta^s = \beta z, \]
and hence \(z^{s^m-1} = \beta^{p-1} z \) is in the field \(Y \). But then \(\nu^m = 1 \) (mod \(p \)) and, since \(m = p^{e-1} \) so that \(\nu^m = \nu \) (mod \(p \)) we have \(\nu = 1 \) (mod \(p \), \(\nu = 1 \).

Then
\[z^S = \beta z, \beta \in Y. \]

Also
\[z^{s^2} = \beta^{s^2} \beta z, \ldots, z^{s^m} = z^Q = \beta^{s^m-1} \beta^s \beta z \]
and
\[N_{Y/K}(\beta) = \xi. \]

The quantity \(\beta \) is in \(Y \) and has the property (10) so that
\[N_{Y/K}(\beta^p) = \xi^p = 1. \]
By Theorem 1 applied in \(Y \) we have
\[\beta^p = \frac{\alpha^S}{\alpha}, \quad \alpha \in Y. \]
But now \(a^S = (z^S)^p = \beta^p a \) so that
\[(\alpha a^{-1})^S = \alpha a^{-1}, \]
and hence \(\alpha = \lambda a \) with \(\lambda \) in \(K \).

We may finally prove that in fact \(Z = K(z) \). This will obviously be true if \(z^p = a \) generates \(Y \). Hence let \(a \) be in a proper sub-field of \(Y \). Then \(a \) is in the unique sub-field \(H \) of degree \(p^{e-2} \) of \(Y \) and if \(m = pr, R = S^r \), we have
\[R^p = Q, a^R = a. \]
Then \(a^S = a\beta^p, a^R = a(\beta\beta^{s^2} \cdots \beta^{s^p-1}) = a \) so that \([N_{H/K}(\beta)]^p = 1, N_{H/K}(\beta) = \xi, N_{Y/K}(\beta) = \xi^p = 1 \), a contradiction. We have proved

Theorem 2. Let \(Z \) be a cyclic field of degree \(p^e \) over \(K \), \(e > 1 \), \(S \) be a generating automorphism of \(Z \), and \(Y \) its unique sub-field of degree \(p^{e-1} \) over \(K \). Then \(Z = K(z) \) where \(z^p = a \) in \(Y \) and \(Y \) contains a quantity \(\beta \) such that
\[N_{Y/K}(\beta) = \xi, a^S = \beta^p. \]

Moreover the generating automorphism S of Z is given by that in Y and
\begin{equation}
 z^8 = \beta z.
\end{equation}

We may now prove

Theorem 3. A necessary and sufficient condition that a cyclic field Y of degree p^{e-1} over K, $e > 1$, shall possess cyclic overfields of degree p^e over K is that Y shall contain a quantity β such that $N_{Y/K}(\beta) = \xi$. Every such cyclic overfield* is a field $K(z)$, $z^p = a_0$, with generating automorphism (14), where $a_0 = \lambda a$, a is any root of
\begin{equation}
 a^8 a^{-1} = \beta^p,
\end{equation}
and λ ranges over all quantities of K.

For if Z is cyclic of degree p^e over K then the existence of β is given by Theorem 2. Conversely let $N_{Z/K}(\beta) = \xi$ for β in Y. By Theorem 1 there exists a quantity a in Y such that (15) is satisfied. If $a = b^p$ for b in K then $a^8 a^{-1} = (b^8 b^{-1})^p = \beta^p$, $\beta = \xi b^8 b^{-1}$, $N_{Y/K}(\beta) = 1$, a contradiction. Hence the field $Z = Y(z)$, $z^p = a_0$, has degree p over Y for every solution a_0 of $a^8 a^{-1} = \beta^p$. Moreover $a_0 = \lambda a$ for any fixed solution a. In our proof of Theorem 2 we showed that in fact $Y = K(a_0)$ so that $Z = K(z)$. Finally Z is evidently a field of Theorem 2 and is cyclic with generating automorphism given by that in Y and by (14).

Suppose now that Z_0 is a new cyclic overfield of Y of degree p^e over K so that Z_0 defines a quantity β_0 with $N_{Y/K}(\beta_0) = \xi$. Then $N_{Y/K}(\beta_0 \beta^{-1}) = 1$ and
\begin{equation}
 \beta_0 = \beta d^8 d^{-1},
\end{equation}
with d in Y by Theorem 1. Moreover $Z_0 = K(z_1)$, $z_1^p = a_1$, where $a_1^8 a_1^{-1} = \beta_0 p$. But if $a_{01} = \lambda a d^p$ with λ in K and $a^8 a^{-1} = \beta p$, then $a_{01}^8 a_{01}^{-1} = \beta^p (d^8 d^{-1})^p = \beta_0 p$. But then a_{01} is a constant multiple of a_1, and, by proper choice of λ, $a_1 = a_{01} = \lambda a d^p$. The field $Z_0 = K(z)$, $z = d^{-1} z_1$, $z^p = \lambda a$ is evidently equivalent to $K(z)$. Moreover $z^8 = (d^8)^{-1} z_1^8 = (d^8)^{-1} \beta d^8 d^{-1} z = \beta z$ as desired.

We have determined the structure of cyclic fields of degree p^e over K when K contains a primitive pth root of unity ξ. We now study the more general case where ξ is not in the reference field F.

4. The field $K = F(\xi)$. Let F be any field of characteristic not p so that the equation $x^p = 1$ is separable and has as roots the primitive pth roots of unity
\begin{equation}
 \xi^i \quad (i = 1, 2, \cdots, p - 1),
\end{equation}

* Such cyclic overfields define new quantities β_0 but we prove below that in fact we may replace β_0 by β.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
and unity itself. Suppose that \(h(x) \) is the irreducible factor in \(F \) of \(x^p - 1 \) which has \(h \) as a root. Then the field \(K = F(\zeta) \) is a normal field whose automorphisms form a group which is isomorphic to a subgroup of the cyclic group of order \(p - 1 \) which replaces \(\zeta \) by its powers (17). Every subgroup of a cyclic group is cyclic and hence \(K \) is cyclic of degree \(n \) over \(F \). Moreover a generating automorphism of \(K \) over \(F \) is given by

\[
T: \quad \zeta \mapsto \zeta^t
\]

where \(n \) divides \(p - 1 \) and is prime to \(p \), \(t \) is an integer belonging to the exponent \(n \) \((\text{mod } p)\),

\[
i^n \equiv 1 \pmod{p}, \quad t^e \not\equiv 1 \pmod{p}, \quad e < n.
\]

If we define

\[
\zeta_k = \zeta^t, \quad t_k \equiv t^{k-1} \pmod{p}, \quad 1 \leq t < p,
\]

\[
\rho \equiv 1 \pmod{p}, \quad \rho_k \equiv \rho^{k-1} \pmod{p},
\]

then I have proved*

Lemma 1. A quantity \(\mu = \mu(\zeta) \) of \(I \) has the property

\[
\mu^r = \mu(\zeta^r) = \delta^r \mu^r,
\]

with \(\delta \) in \(K \) if and only if there exists a quantity \(\lambda = \lambda(\zeta) \) in \(K \) such that

\[
\mu = \prod_{k=1}^{n} \lambda(\zeta_k)^{\rho_k}.
\]

We shall also require the known*

Lemma 2. A cyclic field \(Z_0 \) of degree \(p \) over \(K \), \(Z_0 = K(\varepsilon) \), \(\varepsilon^p = \mu \) in \(K \), is cyclic of degree \(pn \) over \(F \), so that

\[
Z_0 = Z \times K,
\]

where \(Z \) is cyclic of degree \(p \) over \(F \), if and only if \(\mu \) satisfies (21).

5. Cyclic fields of degree \(p^e \) over \(F \). Let \(Z \) be cyclic of degree \(p^e \) over \(F \). Then \(Z_0 = Z \times K \) is evidently cyclic of degree \(np^e \) over \(F \) and cyclic of degree \(p^e \) over \(K \). Moreover \(Z \) contains a cyclic field \(Y \) of degree \(p^{e-1} \) over \(F \) and the field \(Y_0 = Y \times K \) is cyclic of degree \(np^{e-1} \) over \(F \) with automorphism group

\[
S^iT^j \quad (i = 0, 1, \ldots, p^{e-1} - 1; j = 0, 1, \ldots, n - 1).
\]

By Theorem 2 we have

* Cf. On normal Kummer fields, etc., Lemma 3, Theorem 2.
Theorem 4. Let \(Z, Z_0, Y, Y_0 \) be defined as above. Then \(Y_0 \) contains a quantity \(\beta \) such that

\[
N_{Y_0/K}(\beta) = \zeta
\]

and \(Z_0 = Y_0(z), z^p = \alpha \) in \(Y_0 \) such that

\[
\alpha^p \alpha^{-1} = \beta_0^p.
\]

Let \(a \) be a fixed quantity satisfying the equation (25) in \(\alpha \) so that every solution \(\alpha \) of (25) satisfies the condition

\[
\alpha = \lambda a, \lambda \text{ in } K.
\]

Then we have proved that \(z \) may always be chosen so that

\[
z^\delta = \beta z,
\]

for any \(\beta \) satisfying (24). We may then normalize the quantity \(\beta \) and prove

Theorem 5. The quantities \(\beta, a \) may be chosen so that

\[
\beta^T = \delta^p \beta^t, \quad a^T = d^p a^t,
\]

with \(\delta, d \) in \(Y \).

For we have \(a^g = a \beta^r \) and may define

\[
\beta_0 = \prod_{k=1}^n \beta(\zeta_k)^{\rho_k}, \quad a_0 = \prod_{k=1}^n a(\zeta_k)^{\rho_k},
\]

so that by Lemma 1 we have \(\beta_0^T = \delta^p \beta_0^t, a_0^T = d^p a_0^t \). Since \(ST = TS \) in \(Y \), we also have

\[
a_0^g a_0^{-1} = \prod_{k=1}^n [\beta(\zeta_k)^{\rho_k}] [a(\zeta_k)^{\rho_k}]^{-1}
\]

\[
= \prod_{k=1}^n \beta(\zeta_k)^{\rho_k} = \beta_0^g.
\]

We also compute

\[
N_{Y_0/K}(\beta_0) = \prod_{k=1}^n N_{Y_0/K} \beta(\zeta_k)^{\rho_k} = \prod_{k=1}^n \zeta_k^{\rho_k} = \zeta^r
\]

where

\[
\tau = \sum_{k=1}^n t_k \rho_k = \sum_{k=1}^n (t \rho)^{k-1} = n \pmod p.
\]

Hence \(N_{Y_0/K}(\beta_0) = \zeta^n \). We let \(\mu n \equiv 1 \pmod p \), \(\beta_1 = \beta_0^\mu \), \(a_1 = a_0^\mu \) so that
and obviously
\[(33) \quad a_1s_1^{-1} = \beta_1^p.\]
Moreover
\[(34) \quad \beta_1T = (\beta_0^s)^{\mu} = (\delta_0^s\beta_0^t)^{\mu} = (\delta_0^s)^p\beta_1^t = \delta_0^p\beta_1^t,\]
\[(35) \quad a_1T = (a_0^s)^{\mu} = (d_0^s a_0^t)^{\mu} = (d_0^s)^p a_1^t = d_0^p a_1^t,\]
as desired. We have proved Theorem 5.

The automorphisms S and T of Y are commutative so that $N(\beta^T) = [N(\beta)]^T = \xi^t = N(\beta^t)$ with $N(\beta)$ defined as $N_{Y/K}(\beta)$. Then by Theorem 1
\[(36) \quad \beta^T = f{\xi^T}^{-1}\beta^t\]
with f in Y_0. Also
\[(37) \quad (a^s a^{-1})^T = (\beta^T)^p = a^T s(a^T)^{-1} = (d^s d^{-1})^p (a^s a^{-1})^t = (d^s d^{-1})^p \beta^t,\]
so that
\[(38) \quad \beta^T = \xi^t d^s d^{-1} \beta^t \quad (0 \leq \nu < p).\]
We shall only need (38) and $a^T = d^p a^t$ in our further study of the field Z.

We now take as basic in our study the given field $Y_0 = Y \times K$ of degree p^{-1} over K where Y_0 is also cyclic of degree $n p^{-1}$ over F and assume that Y_0 contains a quantity β such that $N_{Y_0/K}(\beta) = \xi$. We have then shown that there always exists a quantity a of Y such that $a^s a^{-1} = \beta^p$ and moreover that β and a may be so chosen that (38) and
\[(39) \quad a^T = d^p a^t \quad (d \text{ in } Y)\]
both hold. We now seek necessary and sufficient conditions that Y shall possess cyclic overfields of degree p^e over F. We shall in fact prove the fundamental result

Theorem 6. The field Y possesses cyclic overfields Z of degree p^e over F if and only if in (38) $\nu = 0$. Moreover every such field is determined by $Z_0 = Y_0(\alpha)$, $z^p = \alpha$ in Y such that
\[(40) \quad \alpha = \lambda a, \quad \lambda^T = \sigma^p \lambda^t\]
with σ in K, where then $Z_0 = Z \times K$, Z_0 is cyclic of degree $n p^e$ over F.

For we may write $Y_0 = Y(\xi)$ so that if Z is cyclic of degree p^e over F with
Y as sub-field then \(Z_0 = Y_0(z) \), \(z^p = \alpha = \lambda \beta \) with \(\lambda \) in \(K \). Moreover \(Z \) is cyclic of degree \(\rho \) over \(Y \) and by Lemma 2 we have

\[
\alpha^\rho = \psi^{\psi^\rho}
\]

with \(\psi \) in \(Y \). Hence

\[
\lambda^\rho = \lambda^\rho d^\rho \alpha^\rho = \psi^\rho \lambda^\rho \alpha^\rho,
\]

and

\[
\lambda^\rho = (\psi d^{-1})^\rho \lambda^\rho.
\]

The quantity \(x_1 = d^{-1} \psi \) has its \(\rho \)th power \(x_1^\rho = \rho = \lambda^\rho \lambda^{-\rho} \) in \(K \). Hence either \(\psi = d \sigma \) with \(\sigma \) in \(K \) or \(X_{10} = K(x_1) \) is a cyclic sub-field of \(Y_0 \) of degree \(\rho \) over \(K \). But \(Y_0 = Y \times K \) so that then \(X_{10} = X_1 \times K \) where \(X \) is cyclic of degree \(\rho \) over \(F \) and in fact

\[
\rho^\rho = \sigma^\rho \rho^\rho,
\]

with \(\gamma \) in \(K \). Then \(\lambda^\rho = \lambda^\rho \rho^\rho \) implies

\[
\lambda^\rho = \lambda^\rho \rho^\rho = \lambda^\rho \sigma \rho^\rho,
\]

so that finally

\[
\lambda^\rho = \gamma^\rho \lambda^\rho \rho^\rho = \gamma^\rho \lambda^\rho \rho^\rho.
\]

The quantity \(\lambda^\rho = \lambda^\rho \rho^\rho \) since \(t^\rho \equiv 1 \pmod{\rho} \). Hence \(\rho^\rho \) is the \(\rho \)th power of a quantity of \(K \) where \(\phi = nt^{\rho-1} \) is prime to \(\rho \). This evidently implies that \(\rho \) is the \(\rho \)th power of a quantity of \(K \) contrary to hypothesis. Hence \(x_1 = \sigma \) in \(K \) and we have proved that (40) holds.

We have shown that \(z \) may be so chosen that \(z^S = \beta z \) with (38), (39). Then (38) may be replaced by

\[
\beta^\rho = \gamma^\rho (\psi^S \psi^{-1}) \beta^\rho,
\]

since \(\psi = \sigma d, \psi^S = \sigma d^S \).

Since \(ST = TS \) in \(Z \) we obtain \((z^\rho)^\rho = \alpha^\rho = \psi^\rho \alpha^\rho = \psi^\rho z^\rho \), \(z^\rho = \gamma^\rho \psi z^\rho \) with \(0 \leq \epsilon < \rho \). Then \(z^S = \beta z \) gives

\[
z^\rho z = \gamma^\rho \psi z \beta^\rho = z^\rho \beta = (\beta^\rho)^\rho = \gamma^\rho \psi z^\rho \beta^\rho,
\]

so that \(\gamma^\rho = 1, \nu = 0 \).

Conversely let \(Y \) be cyclic of degree \(\rho^{-1} \) over \(F \), \(Y_0 = Y \times K \), \(\beta \) and \(a \) be chosen in \(Y_0 \) and satisfying \(N_{Y_0/K}(\beta) = \gamma \), (38), (39). Let \(\lambda \) range over all quantities of \(K \) such that (40) holds so that \(\alpha \) satisfies (47). We have proved
that then $Z_0 = Y_0(z)$ has the property $Z_0 = K(z)$ and is cyclic of degree p^e over K. It remains merely to show that then Z_0 is actually cyclic of degree p^n over F if $v = 0$. We define the automorphism T of Z_0 by that in Y_0 and by

$$z^T = \psi z^t, \; \psi = \sigma d,$$

where $\alpha^T = \psi \sigma^t$. Then we require only to show that $ST = TS$ so that the automorphism group of Z_0 over F is actually the cyclic group (S^iT^j) ($i = 0, 1, \cdots, p^e - 1; j = 0, 1, \cdots, n-1$). But this immediately follows from the computation in (48) with $e = 0$, and Theorem 6 is proved.

University of Chicago,
Chicago, Ill.