ON THE ORDER OF GROUPS OF AUTOMORPHISMS*

BY

GARRETT BIRKHOFF AND PHILIP HALL

1. Introduction. Consider the following problem. Let G be any group of finite order g, and let A denote the group of the automorphisms of G. What can one infer about the order a of A, simply from a knowledge of g: in other words, to what extent is a a numerical function of g?

The main known result relating to this problem is due to Frobenius. It limits the orders of the individual elements of A in terms of g, and hence tells which primes can be divisors of a.

The present paper is independent of the work of Frobenius, and presupposes only the theorems of Lagrange and Sylow. Its main result is the following

Theorem 1. Let G be any group of finite order g. Let $\theta(g)$ denote the order of the group of the automorphisms of the elementary Abelian group of order g, and let r denote the number of distinct prime factors of g. Then the order a of the group A of the automorphisms of G is a divisor of $g^{r-1}\theta(g)$.

The function $\theta(g)$ is computed numerically from g as follows. Write g as the product $p_1^{n_1}p_2^{n_2}\cdots p_r^{n_r}$ of powers $p_i^{n_i}$ of distinct primes. Then

$$
\theta(p_k^{n_k}) = (p_k^{n_k} - 1)(p_k^{n_k} - p)\cdots (p_k^{n_k} - p^{n_k-1})
$$

$$
= p_k^{n_k(n_k-1)/2} \cdot (p_k^{2} - 1) \cdots (p_k^{n_k} - 1)
$$

and

$$
\theta(g) = \theta(p_1^{n_1})\theta(p_2^{n_2})\cdots \theta(p_r^{n_r}).
$$

For example, $\theta(12) = \theta(3)\theta(4) = 2 \cdot (3 \cdot 2) = 12$.

One can strengthen Theorem 1 in special cases, by

Theorem 2. If G is solvable, then a is a divisor of $g\theta(g)$.

Theorem 3. If G is “hypercentral,” that is, the direct product of its Sylow subgroups, then a is a divisor of $\theta(g)$.

2. Preliminary lemmas. The following two statements are immediate corollaries of Lagrange's and Sylow's Theorems, respectively:

* Presented to the Society, December 26, 1933; received by the editors August 20, 1935.
Lemma 1. Let H be any group whose elements induce automorphisms homomorphically (i.e., many-one isomorphically) on a second group G. Then the index in H of the subgroup "centralizing" G (i.e., leaving every element of G invariant) divides the order of the group of the automorphisms of G.

Lemma 2. Let G be any group, and r any positive integer. If the order of every prime-power subgroup of G divides r, then the order of G divides r.

As a further preliminary step, it is well to verify the somewhat less obvious

Lemma 3. Let P be any group of prime-power order p^n, inducing substitutions homomorphically on $r = p^aq$ letters x_1, \ldots, x_r [p^a the highest power of p dividing r]. Then there is a letter x_k such that, if S denotes the subgroup of substitutions of P which omit x_k, the index of S in P divides r.

Let S_i denote that subgroup of P whose substitutions omit the letter x_i; by Lagrange's Theorem, the index of S_i in P is a power $p^{\beta(i)}$ of p. Hence the transitive system including x_i contains exactly $p^{\beta(i)}$ letters. But the sum of the numbers of letters in the different transitive systems is not a multiple of p^{a+1}; hence $\beta(i) < \alpha$ for some $i = i_0$. Setting $S_i = S_{i_0}$, we have Lemma 3.

Lemma 4. Let G be any group of prime-power order p^n. Then the order a of the group A of the automorphisms of G divides $\theta(p^n) = (p^n - 1)(p^n - p) \cdots (p^n - p^{n-1})$.

By Lemma 2, it is sufficient to prove the result for every subgroup Q of A of prime-power order q^n. But given Q, one can define $Q_1 > Q_2 > Q_3 > \cdots > Q_r = 1$ and $S_1 < S_2 < S_3 < \cdots < S_r = G$ recursively as follows:

1. Q_1 is the group Q.
2. Given Q_k, S_k is the subgroup of the elements of G "centralized" by Q_k (i.e., invariant under every automorphism of Q_k).
3. Given Q_k and S_k, Q_{k+1} is a proper subgroup of Q_k whose index in Q_k divides the number of elements in $G - S_k$.

The only questionable point in the existence of these subgroups concerns the possibility of (3); this is ensured by Lemma 3.

Moreover multiplying together on one side the indices of the Q_{k+1} in the Q_k, and on the other their multiples, the degrees of the $G - S_k$, one sees that q^n divides the product of those factors $(p^n - p^i)$ corresponding to the orders

† A more delicate result implying this, but presupposing a study of the structure of groups of prime-power order, is given by P. Hall in *A contribution to the theory of groups of prime-power order*, Proceedings of the London Mathematical Society, vol. 36 (1933), p. 37.
of complexes $G-S_k$. Hence a fortiori q^m divides $\theta(p^n)$, and the lemma is proved.

3. Proof of principal theorem. We are now in a position to prove Theorem 1.

Accordingly, let G be any group of finite order g, let $g=p_1^{r_1}\cdots p_r^{r_n}$, let $\theta(g)$ denote the order of the group of the automorphisms of the elementary Abelian group of order g, and let A (of order a) denote the group of the automorphisms of G.

By Sylow's Theorem, G contains subgroups S_i of orders $p_i^{r_i}$ [$i=1,\ldots,r$; $j=1,\ldots,s_i$]. By Sylow's Theorem also, s_i is the index in G of the "normalizer" of any S_i (i.e., the set of elements $a\in G$ such that $aS_iS_i^{-1}=S_i$); hence, by Lagrange's Theorem and the fact that S_i is contained in its own normalizer, s_i divides $g/p_i^{r_i}$.

Again, the automorphisms of G obviously permute the S_i of given order $p_i^{r_i}$ homomorphically. Therefore, by iterated use of Lemma 3, any subgroup Q of A of prime-power order q^m contains a subgroup Q_1 whose index in Q divides the product $\prod_{i=1}^{r}(g/p_i^{r_i})=g^{r-1}$, and which normalizes at least one S_i of each order $p_i^{r_i}$. But by Lemma 1 and iterated use of Lemma 4, Q_1 has a subgroup Q^* whose index in Q_1 divides $\theta(g)$, and which "centralizes" S_i [i.e., leaves every element of these subgroups of G invariant].

But the S_i generate G; hence Q^* contains only the identity, and q^m divides $g^{r-1}\theta(g)$.

Theorem 1 now follows from Lemma 2 and the fact that Q was permitted to be an arbitrary group of prime-power order.

4. Special cases of solvable and hypercentral groups. The proofs of Theorems 2-3 are now immediate.

In fact, Theorem 3 is really a corollary of Lemma 4. For the Sylow subgroups of a hypercentral group are characteristic. Denoting them by S_1,\ldots,S_r, one sees immediately that the group of the automorphisms of G is the direct product of the groups of the automorphisms of the S_i, making the theorem obvious.

To prove Theorem 2, suppose that G is solvable, and use the stronger known result,† analogous to Sylow's Theorem, that G contains subgroups of every index $p_i^{r_i}$. Now in the proof of Theorem 1 presented in §3, if q does not divide g, it is numerically evident that q^m divides $\theta(g)$. Hence, by Lemma 2, it is sufficient to show that if q divides g, then q^m divides $g\theta(g)$.

† More particularly, the part that states that the inner automorphisms of G are transitive on the Sylow subgroups of any fixed order.

But to say that \(q \) divides \(g \) is evidently to say that \(q = p_k \) for suitable \(k \); without loss of generality, we can assume \(k = 1 \). In this case \(Q \) normalizes some Sylow subgroup \(S \) of \(G \) of order \(p_1^{\alpha_1} \); this follows from Lemma 3 and the fact that the number of Sylow subgroups of order \(p_1^{\alpha_1} \), being a divisor of \(p_2^{\alpha_2} \cdots p_r^{\alpha_r} \), is not divisible by \(q \). Moreover \(Q \) has a subgroup \(Q_1 \) whose index in \(Q \) divides \(q^{\alpha_1} \) [and hence \(g \)] which “normalizes” (i.e., leaves invariant) a subgroup \(H \) of order \(p_2^{\alpha_2} \cdots p_r^{\alpha_r} \) (and index \(p_1^{\alpha_1} \)) in \(G \); this follows from Lemma 3 and the fact that by Hall’s Theorem cited above, the number of such subgroups \(H \) is a divisor of \(p_1^{\alpha_1} \).

Finally, by Lemmas 1 and 4, the index in \(Q_1 \) of the subgroup \(Q_2 \) “centralizing” \(S \) divides \(\theta(q^{\alpha_1}) \). And by induction on \(g \), the index in \(Q_2 \) of the subgroup \(Q^* \) “centralizing” \(H \) divides \(\theta(p_1^{\alpha_1} \cdots p_r^{\alpha_r}) \theta(p_2^{\alpha_2} \cdots p_r^{\alpha_r}) \), or, since it is by Lagrange’s Theorem a power of \(q = p_1 \) and relatively prime to \(p_2^{\alpha_2} \cdots p_r^{\alpha_r} \), it divides \(\theta(p_2^{\alpha_2} \cdots p_r^{\alpha_r}) \). But \(S \) and \(H \), if only by Lagrange’s Theorem, generate \(G \); hence \(Q^* = 1 \). Combining, one sees that if \(q \) divides \(g \), then \(q^m \) divides \(g \theta(p_1^{\alpha_1}) \theta(p_2^{\alpha_2} \cdots p_r^{\alpha_r}) \), that is, \(g \theta(g) \). But this is just what we wished to prove.

5. Possible improvement of results. It is natural to ask what likelihood there is of improving the results expressed in Theorems 1-3.

It is well known that the least upper bound to the possible values of \(a \) for fixed \(g \) is at least \(\theta(g) \); this is shown by the elementary Abelian group of order \(g \). Consequently Theorem 3 is a best possible result. Moreover in general \(\theta(g) \) is not a common multiple for the possible values of \(a \), as is shown by the dihedral group of order six and many other groups of similar structure.

On the other hand, there is no known example of a group for which \(a \) fails to divide \(g \theta(g) \); this suggests the possibility of replacing \(g^{r-1} \theta(g) \) in Theorem 1 by \(g \theta(g) \), and omitting Theorem 2 altogether.

This leaves the determination of lower bounds and common divisors of \(a \) in terms of \(g \) unattempted. The cyclic groups of order \(g \) should throw considerable light on this more trivial question.

Also, the case in which \(G \) is simple would probably repay study.

Harvard University, Cambridge, Mass.

King’s College, Cambridge, England.