REMARKS ON THE PRECEDING PAPER OF
JAMES A. CLARKSON*

BY
NELSON DUNFORD AND ANTHONY P. MORSE

1. In the preceding paper Clarkson has introduced the interesting con-
cept of a Banach space X with a uniformly convex norm and has shown that
for such spaces the following theorem holds.

Theorem. If the additive function $F(R)$ which is defined for elementary
figures R contained in a fixed figure R_0 in Euclidean space of n dimensions and
has its values in the Banach space X, is of bounded variation, then it has a de-

**rivative $F'(P)$ for almost all points P in R_0. $F'(P)$ is summable on R_0 and if
$F(R)$ is absolutely continuous then for every elementary figure R in R_0 we have

$$F(R) = \int_R F'(P) dP.$$

In this paper it is shown that the theorem holds for all Banach spaces X
with a base which satisfies the following postulate:

(A) If a_1, a_2, \ldots is any sequence of real numbers such that $\sup_n \|\sum_{i=1}^n a_i \phi_i\|
< \infty$, then the series $\sum_{i=1}^\infty a_i \phi_i$ converges.

It is obvious that l_p ($p \geq 1$) or any Hilbert space satisfies (A).

In §3 it is shown that L_p ($p > 1$) does likewise. The method of proof is
entirely different from that of Clarkson. In §4 it is shown that if X is any
Banach space having the property that every function on a linear interval
to X, which satisfies a Lipschitz condition, is differentiable almost everywhere,
then also every function of bounded variation from the linear interval to X is
differentiable almost everywhere and its derivative is summable.

2. Proof of the theorem. It should first be noted that it is no loss of gen-
erality to assume besides (A) the property

$$\left\| \sum_{i=1}^n a_i \phi_i \right\| \leq \left\| \sum_{i=1}^{n+1} a_i \phi_i \right\| \quad \text{for any constants } a_i, i = 1, 2, \ldots .$$

* Presented to the Society, April 11, 1936; received by the editors February 16, 1936.
† I.e., $\sum_{i=1}^n \|F(R_i)\|$ is bounded for all finite sets of non-overlapping elementary figures R_1, \ldots , R_k contained in R_0.
‡ Here, as well as elsewhere in this note, the concept of summability is that of Bochner or of Dunford. The two notions are equivalent.
§ I.e., $\lim_{|R| \to 0} F(R) = 0$.
This is made evident by the following two considerations. If a Banach space Y is isomorphic* to X then the theorem holds for X if and only if it holds for Y. Now associated with X is a space Y composed of all sequences $y = \{\eta_i\}$ such that $\sum_{i=1}^{\infty} \eta_i \phi_i$ converges. If the metric in Y is defined by $||y|| = \sup \sum_{i=1}^{n} ||\eta_i \phi_i||$ then Y is a Banach space and isomorphic to X. By taking $y_k = \{\eta_k\}$ where $\eta_i^k = 0$ if $k \neq i$, $\eta_i^i = 1$, it is easily seen that y_i forms a base for Y which has the properties (A) and (B). Thus it will be assumed in what follows that X has the properties (A) and (B). Now

$$F(R) = \sum_{i=1}^{\infty} a_i(R) \phi_i,$$

where the coefficients $a_i(R)$ are given by means of the limited linear functionals† T_i defined on X according to the equation $a_i(R) = T_i F(R)$. Thus it is immediate that the functions $a_i(R)$ are additive, real functions of bounded variation with summable derivatives $a_i'(R)$. The functions $F_n(R) = \sum_{i=1}^{n} a_i(R) \phi_i$ thus have derivatives $F_n'(R) = \sum_{i=1}^{n} a_i'(R) \phi_i$ summable on R_0. Let $V(F_n, R)$ be the total variation of F_n on R, then the positive real function $S_n(R) = V(F_n, R)$ is additive and of bounded variation on R_0 with $S_n(R) \geq ||F_n(R)||$. Hence $S_n'(R) \geq ||F_n'(R)||$ and thus

$$V(F_n, R) = S_n(R) \geq \int_{R} S_n'(R) dP \geq \int_{R} ||F_n'(R)|| dP.$$

Now from postulate (B) and (1)

$$||F_n'(R)|| \leq ||F_{n+1}'(R)||,$$

$$\int_{R} ||F_{n}'(R)|| dP \leq V(F_n, R_0) \leq V(F, R_0).$$

If we let $b(P) = \lim_n ||F_n'(P)||$, the inequality (2) shows that $b(P)$ is summable and hence finite almost everywhere. Postulate (A) then insures the convergence of the series

$$G(P) = \sum_{n=1}^{\infty} a_n'(P) \phi_n$$

for almost all P in R_0. Since $||G(P)|| = b(P)$ and $G(P)$ is measurable it is summable on R_0. It will now be shown that $G(P)$ is the derivative of $F(R)$. To do this we need the following lemmas which, in the case of real-valued functions, are well known.

† Banach, loc. cit., p. 111.
‡ Banach, loc. cit., p. 111.
Lemma 1. Let \(G(R) \) be an additive function of bounded variation defined for elementary figures \(R \) contained in a fixed figure \(R_0 \) and with values in an arbitrary Banach space. Then \(G(R) \) has a derivative equal to zero at almost all points of \(R_0 \) if and only if for every \(\varepsilon > 0 \) there is an open set \(E \) in \(R_0 \) with measure less than \(\varepsilon \) such that \(V(G, E) = V(G, R_0) \).

By the variation \(V(G, D) \) of \(G \) on an open set \(D \) in \(R_0 \) is meant the upper bound of all finite sums \(\sum_{i=1}^{k} \| G(R_i) \| \) where \(R_1, R_2, \ldots, R_k \) are non-overlapping elementary figures in \(D \). Now suppose \(|E| < \varepsilon \) and \(V(G, E) = V(G, R_0) \). Define \(S(C) = V(G, C) \) where \(C \) is either an open set or an elementary figure and let \(R_n \) be a sequence of elementary figures such that

\[
R_n \cup R_{n+1} \subset E, \quad S(R_n) \to S(E).
\]

Let \(R_n' = R_0 - R_n, \quad E' = R_0 - E, \) so that

\[
S(R_0) \geq S(R_n) + S(R_n') \geq S(R_n) + \int_{R_n} S'(P) dP.
\]

Thus since \(R_n' \supset E' \) we have

\[
S(R_0) \geq S(R_n) + \int_{E'} S'(P) dP
\]

or

\[
\int_{E'} S'(P) dP \leq S(R_0) - S(R_n) \to 0.
\]

Whence it follows that \(S'(P) = 0 \) almost everywhere on \(E' \), and since \(|R_0 - E'| < \varepsilon \) we conclude that \(S'(P) = 0 \) almost everywhere on \(R_0 \) which implies \(G'(P) = 0 \) almost everywhere on \(R_0 \).

To prove the converse let \(\eta > 0 \) and let \(R_1, R_2, \ldots, R_k \) be non-overlapping elementary figures contained in \(R_0 \) with

\[
\left| \sum_{i=1}^{k} R_i \right| > |R_0| - \frac{\varepsilon}{2}, \quad \sum_{i=1}^{k} \| G(R_i) \| \geq V(G, R_0) - \eta.
\]

Now define the set \(E_n \) as follows: a point \(P \) is in \(E_n \) if for every cube \(I \) containing \(P \) with \(|I| \leq 1/n \) it follows that \(\| G(I) \|/|I| \leq \eta \). Thus the set \(\lim E_n \) contains all points at which \(G'(P) = 0 \), i.e., almost all points in \(R_0 \). Hence \(\lim E_n \cup \sum_{i=1}^{k} R_i \) contains almost all points of \(\sum_{i=1}^{k} R_i \). Consequently there is an \(n_0 \) and a closed set \(C \) contained in \(E_{n_0} \cup \sum_{i=1}^{k} R_i \) for which \(|C| > |R_0| - \varepsilon \). Thus \(C \cup \sum_{i=1}^{k} R_i \) and \(\| G(I) \|/|I| \leq \eta \) for any cube \(I \) containing a point of \(C \) and having \(|I| \leq 1/n_0 \). Let \(d \) be the distance from \(C \) to the boundary of \(\sum_{i=1}^{k} R_i \) and \(I_1, I_2, \ldots, I_i \) be non-overlapping cubes satisfying the conditions.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
\[\sum_{i=1}^{l} I_i \supset R_0; \quad |I_i| \leq 1/n_0, \quad \text{diameter } I_i < d, \quad (i = 1, 2, \cdots, l). \]

Define \(\delta_i \) \((j = 1, 2, \cdots, l)\) to be 0 or 1 according as \(I_i \cap C \) is null or non-null and let \(\delta_j^i = 1 - \delta_i \). Now \(D = D(\varepsilon, \eta) \), the complement of \(C \) with respect to \(R_0^\delta \), is open and since \(R_i I_j \) \((j = 1, 2, \cdots, l)\) is null or a cube if \(\delta_j = 1 \), it follows that

\[
\begin{align*}
V(G, R_0^\delta) - \eta & \leq \sum_{i=1}^{k} \left\| G(R_i) \right\| \leq \sum_{i=1}^{k} \sum_{j=1}^{l} \left\| G(R_i I_j) \right\| \\
& \leq \sum_{i=1}^{k} \sum_{j=1}^{l} \delta_j^i \left\| G(R_i I_j) \right\| + \sum_{i=1}^{k} \sum_{j=1}^{l} \delta_j^i \left\| G(R_i I_j) \right\| \\
& \leq \sum_{i=1}^{k} \sum_{j=1}^{l} \eta \left| R_i I_j \right| + V(G, E) \leq \eta \left| R_0 \right| + V(G, D).
\end{align*}
\]

By defining \(E = \sum_{n=1}^{\infty} D(\varepsilon/2^n, 1/n) \) the conclusion is immediate.

Lemma 2. If \(F(R) \) is an additive function of bounded variation defined for elementary figures \(R \) contained in a fixed figure \(R_0 \) with values in a Banach space satisfying postulates (A) and (B) then there exist additive functions \(\alpha(R), \beta(R) \) such that

\[F(R) = \alpha(R) + \beta(R), \]

\(\alpha(R) \) is an indefinite integral and \(\beta(R) \) has a derivative equal to zero almost everywhere on \(R_0 \).

Let \(F(R) = \sum_{i=1}^{l} a_i(R) \phi_i \) and define

\[\alpha(R) = \int_{R} \left(\sum_{i=1}^{\infty} a_i^i(P) \phi_i \right) dP, \quad \beta(R) = F(R) - \alpha(R). \]

If we write \(\beta(R) = \sum_{i=1}^{\infty} b_i(R) \phi_i \) and denote \(\sum_{i=1}^{n} b_i(R) \phi_i \) by \(\beta_n(R) \) then \(\beta_n^i(P) = 0 \) almost everywhere on \(R_0 \). Take \(\varepsilon > 0 \) and let (Lemma 1) \(E_n \) be an open set with \(|E_n| < \varepsilon/2^n \) such that \(V(\beta_n, E_n) = V(\beta_n, R_0^\delta) \) \((n = 1, 2, \cdots)\). Let \(E = E_1 + E_2 + E_3 + \cdots \). Now the \(|E| < \varepsilon \) and \(V(\beta_n, E) = V(\beta_n, R_0^\delta) \). Since \(V(\beta_n, R_0^\delta) \to V(\beta, R_0^\delta) \) by semi-continuity, we have

\[V(\beta, E) \geq V(\beta_n, E) \to V(\beta, R_0^\delta). \]

Hence \(V(\beta, E) = V(\beta, R_0^\delta) \) so that by Lemma 1, \(\beta'(P) = 0 \) almost everywhere on \(R_0 \). This completes the proof of Lemma 2.

Returning to the argument of the theorem itself we see immediately that

\[\cdots \]

* It is well known that the relation \(\beta_n(R) \to \beta(R) \) for \(R \subset R_0 \) implies \(\lim \inf_n V(\beta_n, R_0) \geq V(\beta, R_0) \). It is likewise readily seen that \(\lim \inf_n V(\beta_n, R_0^\delta) \geq V(\beta, R_0^\delta) \).
$F(R)$ has a derivative $F'(P) = G(P)$ almost everywhere on R_0. This follows from the fact that $\alpha(R)$, being an indefinite integral, is differentiable with $\alpha'(P) = G(P)$ almost everywhere on R_0. Now if $F(R)$ is absolutely continuous so are the functions $a_i(R)$ and hence

$$
\int_R F'(P)dP = \sum_{i=1}^{\infty} \phi_i T_i \int_R F'(P)dP = \sum_{i=1}^{\infty} \phi_i \int_R T_i F'(P)dP = \sum_{i=1}^{\infty} \phi_i \int_R a_i'(P)dP = \sum_{i=1}^{\infty} a_i(R) \cdot \phi_i = F(R)
$$

for every elementary figure R in R_0.

3. $L_p(\phi > 1)$ has the property (A). Let $\{\phi_i\}$ be the orthonormal sequence of Haar. Schauder\dagger has shown that $\{\phi_i\}$ is a base for $L_p (\phi \geq 1)$. The sequence $\{\phi_i\}$ also determines the sequence $\{T_i\}$ of linear functionals on L_p by the formula

$$
T_i \psi = \int_0^1 \phi_i(t) \psi(t)dt.
$$

If $\phi > 1$ this sequence forms a fundamental set in \overline{L}_p (the space conjugate to L_p) in the sense that every point in \overline{L}_p can be approached by finite linear combinations of the elements of the sequence $\{T_i\}$. Now suppose a_1, a_2, \cdots is an arbitrary sequence of real numbers such that $\|x_n\|$ is bounded, where $x_n = \sum_{i=1}^{\infty} a_i \phi_i$. We have

$$
(5) \quad T_i x_n = a_i, \quad (i \leq n),
$$

and so x_n is a weakly convergent sequence in L_p. Since L_p is weakly complete there is a point $x = \sum_{i=1}^{\infty} T_i x \phi_i$ in L_p such that $Tx_n \rightarrow Tx$ for every T in \overline{L}_p. Now from (5) $a_i = \lim_n T_i x_n = T_i x$ and so $x = \sum_{i=1}^{\infty} a_i \phi_i$, which was to be proved.

4. Differentiability of functions of bounded variation. It is the purpose of this paragraph to prove the final assertion in the introduction. Let $f(i)$ be of bounded variation on $(0, 1)$ to X, and let E be the set of functional values of the strictly monotone real function

$$
\sigma(t) = t + V(f; 0, t), \quad (0 \leq t \leq 1).
$$

The symbol $V(f; a, b)$ stands for the total variation of f on $a \leq t \leq b$. Let $\tau(s)$

\[\dagger\] For the interchange of T_i and \int_R see Garrett Birkhoff, these Transactions, vol. 38 (1935), p. 371.

\[\S\] Banach, loc. cit., p. 133, Theorem 1. This theorem needs to be modified so as to apply to weakly convergent sequences rather than sequences weakly convergent to a point.
on \(E \) to \((0, 1)\) be the inverse of \(\sigma(t) \) and let \(g(s) \) be defined on \(E \) by the equation \(g(s) = f(\tau(s)) \). Now for any two points \(s < s' \) in \(E \),

\[
\|g(s') - g(s)\| \leq V(f; \tau(s), \tau(s')) \\
(6) \leq \tau(s') - \tau(s) + V(f; \tau(s), \tau(s')) \\
\leq \sigma(\tau(s')) - \sigma(\tau(s)) = s' - s.
\]

By first extending the domain of definition of \(g(s) \) to \(\overline{E} \) (the closure of \(E \)) in the natural way and then in a linear fashion on each of the intervals which make up the complement of \(E \) with respect to the interval \(0 \leq s \leq 1 + V(f; 0, 1) \) it is seen that the extended function satisfies the same Lipschitz condition (6) on the whole of \(0 \leq s \leq 1 + V(f; 0, 1) \). Thus \(g(s) \) has a derivative almost everywhere on \((0, 1 + V(f; 0, 1))\) and hence almost everywhere on \(E \) with respect to \(E \). Now \(\tau(s) \) satisfies the Lipschitz condition \(|\tau(s') - \tau(s)| \leq |s' - s| \), and hence if we let \(E^* \) be those points of \(E \) at which \(g \) has a derivative with respect to \(E \) we have \(m[\tau(E - E^*)] = 0 \). That is, for almost all \(t \) in \((0, 1)\) the point \(\sigma(t) \) is in \(E^* \). Thus for almost all \(t \) in \((0, 1)\) we have

\[
\lim_{h \to 0} \frac{f(t + h) - f(t)}{h} = \lim_{h \to 0} \frac{g(\sigma(t + h)) - g(\sigma(t))}{\sigma(t + h) - \sigma(t)} \lim_{h \to 0} \frac{\sigma(t + h) - \sigma(t)}{h} \\
= g'(\sigma(t)) \cdot \sigma'(t),
\]

so that \(f(t) \) has a derivative at almost all points of \((0, 1)\), and since this derivative is the product of a bounded measurable function and a real summable function it follows that \(f'(t) \) is summable.

Brown University, Providence, R. I.