TWO-DIMENSIONAL SPACES IN WHICH THERE EXIST CONTIGUOUS POINTS*

BY

E. C. KLIPPLE

In a recent number of The Rice Institute Pamphlet† R. L. Moore has formulated a set of axioms in terms of the undefined notions "point," "region," and "contiguous to." These axioms‡ (Axioms A, B, C, 0, 1, and 2 of this paper) serve as the basis for the proofs of a considerable number of theorems of ordinary point set theory, including a large proportion of the theorems of the first two chapters of Moore's book.§ Nevertheless, there exist spaces satisfying these axioms in which an arc may contain only a finite number of points and in which a region may consist of a finite number of points.

In the present paper a study is made of spaces which satisfy the above mentioned axioms and some additional axioms which restrict the spaces to being, in a certain sense, two dimensional. The ordinary euclidean plane is a space which satisfies all the axioms.

I wish to acknowledge my indebtedness to Professor R. L. Moore, and to thank him for suggesting the problem and for many helpful criticisms in the course of its development.

For definitions of terms used but not defined here the reader may refer to S.C.P.

Definitions. A simple closed curve is a compact continuum, containing at least two distinct non-contiguous points, which is disconnected by the omission of any two of its non-contiguous points. A triune is a set of three distinct points such that each of them is contiguous to each of the others.

Axiom A. No point is contiguous to itself.

Axiom B. If the point A is contiguous to the point B, then B is contiguous to A.

* Presented to the Society, October 28, 1933; received by the editors August 18, 1937.
† Vol. 23 (1936), no. 1. In the present treatment the abbreviation S.C.P. will be used to designate part 1 of this paper.
‡ It being understood that in the statement of Axiom 2 of S.C.P. the word "non-degenerate" is to be omitted. It is clear from the context that the retention of this word was not intended.
§ Foundations of Point Set Theory, American Mathematical Society Colloquium Publications, vol. 13, New York, 1932. In the present treatment the abbreviation P.S.T. will be used to designate this book.
Axiom C. If M is a closed point set and every point of the set H is contiguous to some point of M, then no point of $S - M$ is a limit point of H.

Axiom 0. Every region is a point set.

Axiom 1. There exists a sequence G_1, G_2, G_3, \ldots such that (1) for each n, G_n is a collection of regions covering S, (2) for each n, G_{n+1} is a subcollection of G_n, (3) if R is any region whatsoever, and if X is a point of R and Y is a point of R either identical with X or not, then there exists a natural number m such that if g is any region belonging to the collection G_m and containing X, then g is a subset of $(R - Y) + X$, (4) if M_1, M_2, M_3, \ldots is a sequence of closed point sets such that M_n contains M_{n+1} for each n and there exists a region g_n of the collection G_n such that M_n is a subset of g_n for each n, then there is at least one point common to all the point sets of the sequence M_1, M_2, M_3, \ldots.

Axiom 2. If P is a point of a region R, there exists a connected domain containing P and lying in R.

Axiom 3. If J is a simple closed curve or triune, then $S - J$ is the sum of two mutually separated connected point sets such that J is the boundary of each of them.

In this paper I deal very frequently with complementary domains of simple closed curves and triunes. If J is a simple closed curve or triune and ω is a point of $S - J$, then by the interior of J with respect to ω, is meant that complementary domain of J which does not contain ω. Similarly, that complementary domain of J which contains ω is called the exterior of J with respect to ω. In case no ambiguity arises, the terms interior and exterior of J will be used without making specific reference to a point ω.

Theorem 1. Let J_1 and J_2 denote two point sets each of which is either a simple closed curve or a triune. Let I_1 and I_2 denote the interiors of J_1 and J_2, respectively, and suppose J_2 is a subset of $J_1 + I_1$. Then I_2 is a subset of I_1.

Theorem 2. If J is a simple closed curve, and AB separate C and D on J, and AXB is an arc such that the segment AXB is a subset of I, the interior of J, and no point of the segment AXB is contiguous to any point of $J - (A + B)$, then (1) I_1, the interior of AXB, is a subset of I, (2) the segment ADB is a subset of the exterior of AXB, and (3) I_1 has no point in common with I_2, the interior of $AXBDA$.

Theorem 3. Under the hypothesis of Theorem 2, $I = I_1 + I_2 + \text{segment}AXB$.

Proof. Suppose $I(I_1 + I_2 + \text{segment}AXB) = M$, where M is a non-vacuous point set. Let P be a point of M. By Theorem 38 of S.C.P. there exists an arc PX from P to X lying in I. The arc PX contains an arc PX' such that
PX' — X' is a subset of M, and X' is a point of the segment AXB. Similarly, there exists an arc Pω lying in E₂, the exterior of AXBDA. The arc Pω contains an arc PC', such that PC' — C' is a subset of M, and C' is a point of the segment ACB. Let T denote the first point in the order from X' to P which X'P has in common with PC'. If no point of the interval X'T of X'P, except possibly T, is contiguous to any point of (TC' — T), where TC' denotes the interval of PC' from T to C', then X'T + TC' is an arc from X' to C'. If there exist points of X'T — T which are contiguous to points of TC' — T, there must be a first such point in the order from X' to T. For otherwise, there would be infinitely many such points, and the set of all such points would have a limit point in X'T — T. But by Axiom C, every limit point of such a set must belong to TC', and a contradiction is reached. Let W denote the first point of X'T — T which is contiguous to a point of TC' — T. By Axiom C, W is contiguous to only a finite number of points of TC' — T. Let V denote the last point in the order from T to C' which is contiguous to W. Let X'W denote the interval of X'T from X' to W or the point X' according as W is not or is identical with X'. Let VC' denote the interval of TC' from V to C' or the point C' according as V is not or is identical with C'. The point set X'W + VC' is an arc containing at least three points. Thus, in any case, the point set PX' + PC' contains an arc X'P'C', such that the segment X'P'C' contains at least one point and is a subset of M. Similarly, we may show the existence of an arc X''P''C'' such that (1) the segment X''P''C'' contains at least one point and is a subset of I, and (2) the points X'' and C'' are points of the segments AXB and ACB, respectively. Let X'X'' denote the point X' or the arc of the segment AXB from X' to X'', according as X'' is or is not identical with X'. Also let C'C'' denote the point C' or the arc of the segment ACB from C' to C'', according as C'' is or is not identical with C'. By means of repeated applications of Axiom C it may be shown that the point set X'P'C' + C'C'' + X''P''C'' + X'X'' contains a simple closed curve J', which contains at least one point of each of the segments X'P'C' and X''P''C''. Let I' denote the interior of J'. Now I' is a subset of I by Theorem 1. Thus the segment ADB is a subset of E', the exterior of J'. Since the connected set I₂ plus the segment ADB contains no point of J' but does contain a point of E', it follows that I₂ plus the segment ADB is a subset of E'. Furthermore I' cannot contain a point of the segment AXB. For, suppose I' contains the point F of the segment AXB. The connected set F + I₂ contains no point of J' but contains points of both complementary domains of J'. We conclude from this contradiction that the segment AXB is a subset of J' + E'. Now I' cannot be a subset of M since there exists a point of J' · I₁ which is either a limit point of I' or contiguous to a point of I',
and M and I_1 are two mutually separated domains. Also, I' cannot be a subset of I, since there exists a point of J' of M which is either a limit point of I' or contiguous to a point of I', and M and I_1 are two mutually separated domains. Also I' cannot be a subset of $M + I_1$ and contain points of both M and I_1 since I' would thus be the sum of two mutually separated sets, contrary to Axiom 3. Thus in any case we reached a contradiction, and the theorem is established.

Theorem 4. If the points A and B separate the points C and D on the simple closed curve J, and if the segments AXB and CYD are both subsets of I, the interior of J, then these segments have at least one point in common.

Proof. Suppose the segments AXB and CYD have no point in common. There exists an arc $A'\omega$ such that $A'\omega - A'$ is a subset of E, the exterior of J, and such that A' is a point of the segment CAD of J. Similarly, there exists an arc $B'\omega$ such that $B'\omega - B'$ is a subset of E and B' is a point of the segment CBD. The point set $A'\omega + B'\omega$ contains an arc $A'X'B'$ such that the segment $A'X'B'$ is a subset of E. Let AA' denote the point A or the arc of the segment CAD from A to A' according as A' is or is not A, and let BB' denote the point B or the arc of the segment CBD from B to B' according as B' is or is not B. It may be shown that there exists a simple closed curve J^* satisfying the following conditions: (1) J^* is a subset of $AA' + BB' + AXB + A'X'B'$, (2) J^* contains at least one point of each of the segments AXB and $A'X'B'$, and (3) $J^* \cup J$ is the sum of two mutually separated continua which separate C and D on J; therefore $J - J^* \cup J = g_1 + g_2$, where g_1 and g_2 are mutually separated segments containing C and D, respectively. Since J^* contains no point of the arc CYD, it follows that the connected point set $CYD + g_1 + g_2$ is a subset of I^*, a complement domain of J^*. Thus J is a subset of $I^* + J^*$. Hence, by Theorem 1, either I or E is a subset of I^*. But each of the sets I and E contains a point of J^*, and J^* contains no point of I^*. Thus we reach a contradiction, and the theorem is established.

Theorem 5. If J is a simple closed curve or triune, then I, the interior of J, contains infinitely many points.

Proof. Suppose I contains exactly n points, where n denotes a natural number. Thus every point of J is contiguous to some point of I. If there are infinitely many points of J, the closed point set I contains a limit point of J by Axiom C. But this is impossible since J is closed. Hence J contains only a finite number of points. Let A and B be two contiguous points of J, and let X_0 be a point of $J - (A + B)$. Let X be a point of I which is contiguous to A and Y a point of I contiguous to B. Let XY denote the point X or an arc from X
to Y lying in I, according as Y is or is not identical with X. The point set $XY+A+B$ contains a simple closed curve or triune J_1 which is a subset of $J+I$ and contains A, B, and a point X_1 of I but is such that X_2 is in the exterior of J_1. Similarly, there exists a simple closed curve or triune J_2 which is a subset of J_1 plus its interior and contains A, B, and a point X_2 of the interior of J_1 but is such that X_1 is in the exterior of J_2. By continuing the indicated process $n+1$ times we reach a contradiction, since X_1, X_2, X_3, ..., X_{n-1} are distinct points of I. Hence I must contain infinitely many points.

Theorem 6. Let J denote a simple closed curve whose interior I contains a point P which is contiguous to at least three distinct points of J. Let P_1, P_2, ..., P_n, $(n \geq 3)$, be points of J (in the order indicated if $n>3$), and let $\beta = P_1 + P_2 + \cdots + P_n$. Suppose β is the set of all points of J that are contiguous to P. Let P_kP_{k+1}, $(k = 1, 2, \cdots, n)$, denote that arc of J which contains only the points P_k and P_{k+1} of the set β, and let P_{n+1} denote P_1. Let I_k, $(k = 1, 2, \cdots, n)$, denote the interior of the triune or simple closed curve $P + P_kP_{k+1}$. Then $I = P + \sum_{k=1}^{n} I_k$.

Proof. By Theorem 1, I_k, $(k = 1, 2, \cdots, n)$, is a subset of I. Also, if $k \neq j$, then I_k and I_j are mutually exclusive. Suppose $I - (P + \sum_{k=1}^{n} I_k) = M$, where M is a non-vacuous point set, and let M_1 denote a component of M. Now M is a domain; hence M_1 is a domain. Let α denote the set of all points of I, each of which is either a limit point of M_1 or contiguous to a point of M_1. There exists at least one point of α. For let Q_1 denote any point of M_1, and let $Q_1\omega$ denote an arc from Q_1 to ω lying in the exterior of the simple closed curve or triune $P + P_1P_2$. Let Q_1' denote the first point that $Q_1\omega$ has, in order Q_1 to ω, in common with J. Now Q_1' is obviously a point of α, since Q_1' is the first point of $Q_1\omega$, in order Q_1 to ω, which does not belong to M_1.

Suppose there exist two points X and Y of α, which do not lie together on one of the arcs P_1P_2, P_2P_3, ..., P_nP_1. Since X and Y are non-contiguous points of J, it follows that J is the sum of two arcs from X to Y having nothing in common except their end points such that the corresponding segments of these arcs are mutually separated. There exists a point P, of β on one of these segments and a point P_* of β on the other. Since P_r and P_s are both points of β, $P_r + P + P_s$ is an arc lying in $I + J - (M + X + Y)$. There exists an arc P_rQP_* which is a subset of $J + E - (X + Y)$, where E denotes the exterior of J, and is such that P_rQP_*, J is the sum of two mutually separated connected point sets M_r, M_* which contain P_r, and P_*, respectively, but no other points of β, and which separate X and Y on J. The point set $P + P_rQP_*$ is a simple closed curve J' which contains P and is such that $J' - J$ is the sum of two mutually separated connected point sets which separate X and Y on J. License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Thus $J - J' \cdot J$ is the sum of two mutually separated segments g_x and g_y which contain X and Y, respectively. Now J' separates X from Y, for otherwise g_x and g_y would lie together in I', a complementary domain of J'; therefore by Theorem 1, either I or E would be a subset of I', which is contrary to the fact that both I and E contain points of J'. Since X and Y are boundary points of M_1 lying in different complementary domains of J', it follows that there are points of M_1 lying in different complementary domains of J'. This is impossible since M_1 contains no point of J'. From this contradiction we conclude that if X and Y are any two distinct points of α, then there exists an arc of the set $P_1P_2, P_2P_3, \ldots, P_nP_1$ which contains both X and Y.

Thus, if $J - \beta$ contains a point X of α, then the arc of the set $P_1P_2, P_2P_3, \ldots, P_nP_1$ which contains X must contain all of α. Now if α is not a subset of one of the arcs of the set $P_1P_2, P_2P_3, \ldots, P_nP_1$, it follows that $J - \beta$ contains no point of α. Furthermore, it follows that $n = 3$ and $\alpha = \beta = P_1 + P_2 + P_3$. In this case, since J is not a triune, one of the segments P_1P_2, P_2P_3, P_3P_1 exists. Suppose the segment P_3P_1 is non-vacuous. Using methods similar to those used in the early part of the proof to get J', we obtain a simple closed curve J^* satisfying the following conditions: (1) J^* is a subset of $P + J + I + E$, (2) J^* contains P, a point of the segment P_2P_1, a point of E, and a point of I_3, and (3) $J^* - J$ is the sum of two mutually separated connected point sets which separate P_1 and P_3 on J, and $J - J^* - J$ is therefore the sum of two mutually separated segments, one containing P_1 and the other containing P_3. The argument used above to show that J' separates X and Y may be applied here to show that J^* separates P_1 and P_3. Hence J^* separates two points P'_1 and P'_3 of M_1, since P_1 and P_3 are points of α. But this is impossible since M_1 is connected and contains no point of J^*. Thus we reach a contradiction, and we conclude that there exists an arc P_iP_{i+1} of the set of arcs $P_1P_2, P_2P_3, \ldots, P_nP_1$ which contains α.

Let E_i denote the exterior of the simple closed curve or triune $(P + P_iP_{i+1})$. The domain E_i contains M_1, and we write $E_i = M_1 + (E_i - M_1)$. The boundary of M_1 is a subset of $(P + P_iP_{i+1})$. Hence M_1 and $E_i - M_1$ are mutually separated, contrary to Axiom 3. Thus we reach a contradiction, and the theorem is established.

Theorem 7. Let $P_1, P_2, \ldots, P_n, (n \geq 3)$, be points of the simple closed curve J (in the order indicated if $n > 3$). Let $A_1, A_2, \ldots, A_k, (k \geq 2)$, be points of the arc A_1A_k (in the order indicated if $k > 2$) where A_1A_k is a subset of I, the interior of J. Let $\beta = P_1 + P_2 + \cdots + P_n$, and let $\gamma = A_1 + A_2 + \cdots + A_k$. Suppose β is the set of all points of J each of which is contiguous to at least one point of A_1A_k, and suppose γ is the set of all points of A_1A_k each of which is contiguous to at least one point of β. Suppose furthermore that no point of β is contiguous to both
A_1 and A_k, but that P_1 is contiguous to A_1 and to no other point of γ and P_n is contiguous to A_k and to no other point of γ. It follows that if $j < j'$, and if P_j is contiguous to A_i and $P_{j'}$ is contiguous to $A_{i'}$, then $i \leq i'$. Let P_jP_{j+1}, $(j = 1, 2, \ldots, n)$, denote that arc of J from P_j to P_{j+1} which contains no other point of β, where P_{n+1} denotes P_1. Let A_iA_{i+1}, $(i = 1, 2, \ldots, k-1)$, denote the arc of A_1A_k from A_i to A_{i+1}. Let I_i, $(j = 1, 2, \ldots, n-1)$, denote the interior of C_i, where C_i denotes the triune or simple closed curve ($P_jP_{j+1}A_{i+1}$) in case P_j and P_{j+1} are both contiguous to A_i, or C_i denotes the simple closed curve ($P_jP_{j+1}A_{i+1}A_{i+2}$) in case no point of γ is contiguous to both P_j and P_{j+1}, but where P_j is contiguous to A_i and P_{j+1} is contiguous to A_{i+1}. Let I_n denote the interior of the simple closed curve ($P_{n+1}A_{i+1}A_{i+2}$). If P_j is contiguous to each of the points $A_{i_1}, A_{i_2}, \ldots, A_{i_{k_j}}$, let $I_{j_1}, I_{j_2}, \ldots, I_{j_{k_j}}$ denote the interiors of ($P_jA_{i_1}A_{i_2}$), ($P_jA_{i_{j_1}}A_{i_{j_2}}$), \ldots, and ($P_jA_{i_{j_{k_j-1}}}A_{i_{j_{k_j}}}$), respectively. Then

$$I = A_1A_k + \sum_{j=1}^{n} I_{j_1} + \sum_{i=1}^{k} \sum_{j=1}^{k_j} I_{j_{i+1}},$$

where I_{j+1} is a null set if P_j is contiguous to only one point of γ.

The theorem is illustrated by Fig. 1.

Proof. First I shall prove the assertion made in the statement of the theorem to the effect that if $j < j'$, and if P_j is contiguous to A_i and $P_{j'}$ is contiguous to $A_{i'}$, then $i \leq i'$. Suppose there exist two integers j and j' such that
j < j', P_j and P_{j'} are contiguous to A_i and A_{i'}, respectively, and i > i'. It follows that i > 1 and i' < k. Also since P_1 is contiguous to A_1 but to no other point of γ, we see that 1 < j. Again, since P_n is contiguous to A_k but to no other point of γ, we see that j' < n. Thus 1 < j < j' < n; hence P_1 and P_{j'} separate P_j and P_n on J. Let A_{i'} be the point of γ with lowest subscript which is contiguous to P_{j'}, and let A_{i} be the point of γ with the highest subscript which is contiguous to P_1. Let A_j A_{i'} denote the arc A_j A_{i'} of A_1 A_k or the point A_1 according as i' is not or is 1, and let A_{i} A_k denote the arc A_{i} A_k of A_1 A_k or the point A_k according as i is not or is k. Now P_1 + A_{i} A_{i'} + P_{j'} and P_1 + A_{i} A_k + P_n are arcs satisfying the conditions of Theorem 4. Hence \(A_{i} A_{i'} \) and \(A_{i} A_k \) have a point in common. But \(1 \leq i' < i \leq i \leq k \); therefore \(A_{i} A_{i'} \) and \(A_{i} A_k \) cannot have a point in common. Thus we reach a contradiction, and we conclude that if \(j < j' \), and if \(P_j \) and \(P_{j'} \) are contiguous to \(A_i \) and \(A_{i'} \), respectively, then \(i - i' \).

This result enables us to verify the following implications made in the statement of the theorem: (1) there do not exist two distinct points of γ each of which is contiguous to both \(P_j \) and \(P_{j+1} \); (2) if no point of γ is contiguous to both \(P_j \) and \(P_{j+1} \), then there exists an integer \(i \) such that \(A_i \) is contiguous to \(P_j \) and \(A_{i+1} \) is contiguous to \(P_{j+1} \); and (3) if no point of β is contiguous to both \(A_i \) and \(A_{i+1} \), then there exists an integer \(j \) such that \(j < n \) and \(P_j \) and \(P_{j+1} \) are contiguous to \(A_i \) and \(A_{i+1} \), respectively.

Suppose \(I - (A_1 A_k + \sum_{j=1}^{n} I_j + \sum_{j=1}^{n} \sum_{i=1}^{k} I_{i,j}) = M \) is a non-vacuous point set. Let \(M_1 \) be a component of the domain \(M \), and let \(\alpha \) denote the boundary of \(M_1 \). Obviously \(\alpha \) is a subset of \(J + A_1 A_k \). Furthermore, \(\alpha \) contains at least one point of \(J \) and at least one point of \(A_1 A_k \). For let \(P \) be a point of \(M_1 \), and let \(P \omega \) be an arc from \(P \) to \(\omega \) lying in the exterior of \((A_1 A_k + P_1 P_n) \). Now \(P \omega \) obviously contains a point of \(\alpha \cdot J \). Similarly, let \(PA_1 \) denote an arc from \(P \) to \(A_1 \) which lies in \(I \). Now \(PA_1 \) contains a point of \(\alpha \cdot A_1 A_k \).

Suppose \(J \) contains two non-contiguous points \(X \) and \(Y \) of \(\alpha \). If \(X \) and \(Y \) do not lie together on any one of the arcs \(P_1 P_2, P_2 P_3, \ldots, P_n P_1 \), there exist two points \(P_r \) and \(P_s \) of \(\beta \) which separate \(X \) and \(Y \) on \(J \); hence there exists a simple closed curve \(J' \) such that: (1) \(J' \) is a subset of \(E + J + A_1 A_k \); (2) \(J' \cdot J = M_r + M_s \) where \(M_r \) and \(M_s \) are two mutually separated continua which contain \(P_r \) and \(P_s \), respectively, and which separate \(X \) and \(Y \) on \(J \); therefore \(J - J' \cdot J = g_x + g_y \) where \(g_x \) and \(g_y \) are mutually separated segments containing \(X \) and \(Y \), respectively; (3) \(J' \) contains at least one point \(O \) of \(E \) and at least one point of \(A_1 A_k \). If \(X \) and \(Y \) lie together on the arc \(P_j P_{j+1} \) of the set \(P_1 P_2, P_2 P_3, \ldots, P_n P_1 \), there exists a simple closed curve \(J' \) such that: (1) \(J' \) is a subset of \(E \) plus the segment \(XY \) of \(P_j P_{j+1} + I_j + A_1 A_k + (J - P_j P_{j+1}) \); (2) \(J' \cdot J \) is the sum of two mutually separated continua which separate \(X \)
and \(Y \) on \(J \); hence \(J - J' \cdot J = g_x + g_Y \) where \(g_x \) and \(g_Y \) are mutually separated segments containing \(X \) and \(Y \), respectively; (3) \(J' \) contains at least one point \(O \) of \(E \) and at least one point of \(A_1 A_k \). Now, in either case it may be readily shown that \(J' \) separates \(X \) from \(Y \) and hence that \(J' \) separates two points \(X' \) and \(Y' \) of \(M_1 \). But this is impossible since \(M_1 \) is connected and contains no point of \(J' \). From this contradiction we conclude that \(\alpha \cdot J \) consists either of a single point or of two contiguous points. By an analogous argument it may be shown that \(\alpha \cdot A_1 A_k \) consists either of a single point or of two contiguous points.

Now I wish to show that \(\alpha \) is a subset of a simple closed curve or triune \(J^* \), which is a subset of \(J + A_1 A_k \), satisfying the condition that either there exists an integer \(j \) such that \(I_j \) is the interior of \(J^* \), or there exists a pair of integers \((j, t)\) such that \(I_{j, t} \) is the interior of \(J^* \). If \(\alpha \cdot J \) is a subset of \(P_n P_{i+1} \), then \(J^* = P_n P_{i+1} + A_1 A_k \). If \(\alpha \cdot J \) is not a subset of \(P_n P_{i+1} \), we shall use the following procedure.

Case 1. Suppose that \(P_i P_{i+1}, (j \neq n) \), is the only arc of the set \(P_1 P_2, P_2 P_3, \ldots, P_n P_1 \) which contains \(\alpha \cdot J \). It follows that if \(X \) denotes either \(P_i \) or \(P_{i+1} \), then \(P_i P_{i+1} - X \) contains at least one point \(Z \) of \(\alpha \). If \(P_i \) and \(P_{i+1} \) are both contiguous to the point \(A_i \) of \(\gamma \), then we may show that \(A_i = \alpha \cdot A_1 A_k \). Suppose the contrary. Let \(Y \) denote a point of \(\alpha \cdot A_1 A_k \) which is different from \(A_i \). Now \(Y \) either precedes or follows \(A_i \), in the order \(A_i \) to \(A_k \). Suppose \(Y \) precedes \(A_i \). Then \(A_i + P_i P_{i+1} \), and \(Y \) is not contiguous to \(P_{i+1} \). There exists a simple closed curve \(J' \) having the following properties: (1) \(J' \) is a subset of \(J + A_1 A_k + I_n \); (2) \(J' \cdot J \) is a connected point set such that the connected point set \(J - J' \cdot J \) contains \(P_n + (P_i P_{i+1} - P_i) \); (3) \(J' \cdot A_1 A_k \) is a connected set such that \(A_1 A_k - J' \cdot A_1 A_k \) is either a connected set containing \(Y \) and \(A_1 \), or the sum of two mutually separated connected sets, one containing \(Y \) and \(A_1 \) and the other containing \(A_k \); (4) \(J' \) contains at least one point of \(I_n \) and at least one point of \(J - P_n P_{i+1} \). By means of these four conditions imposed on \(J' \) we may readily show that \(J' \) separates \(Y \) from \(Z \) and hence that \(J' \) separates two points \(Y' \) and \(Z' \) of \(M_1 \). But this is impossible since \(M_1 \) is connected and contains no point of \(J' \). Thus we conclude that \(Y \) cannot precede \(A_i \) on \(A_1 A_k \). Similarly \(Y \) cannot follow \(A_i \) on \(A_1 A_k \). Therefore \(A_i = \alpha \cdot A_1 A_k \). Thus \((A_i + P_i P_{i+1}) \) is a simple closed curve or triune \(J^* \) which contains \(\alpha \) and whose interior is \(I_j \).

If there exists no point of \(\gamma \) which is contiguous to both \(P_i \) and \(P_{i+1} \), then there exists an integer \(i \) such that \(P_i \) is contiguous to \(A_i \) and \(P_{i+1} \) is contiguous to \(A_{i+1} \). In this case we show that \(\alpha \cdot A_1 A_k \) is a subset of \(A_i A_{i+1} \). Suppose the contrary. Let \(Y \) denote a point of \(\alpha \cdot A_1 A_k \) not on \(A_i A_{i+1} \). Either \(Y \) precedes \(A_i \) or \(Y \) follows \(A_{i+1} \), in the order \(A_i \) to \(A_k \). Suppose \(Y \) precedes \(A_i \).
Then \(i \neq 1 \) and \(j \neq 1 \) or \(n \). Now there exists a simple closed curve \(J' \) having the following properties: (1) \(J' \) is a subset of \(J + A_1 A_k + I_n \); (2) \(J' \cdot J \) is a connected point set such that the connected set \(J - J' \cdot J \) contains \(P_n + (P_i P_{i+1} - P_j) \); (3) \(J' \cdot A_1 A_k \) is connected, and \(A_1 A_k - J' \cdot A_1 A_k \) is the sum of two mutually separated connected point sets, one containing \(Y \) and \(A_1 \), and the other containing \(A_{i+1} \) and \(A_k \); (4) \(J' \) contains at least one point of \(I_n \) and at least one point of \(J - P_n P_i \). Thus again \(J' \) separates \(Y \) from \(Z \) and hence separates two points \(Y' \) and \(Z' \) of \(M_1 \). Again we reach a contradiction, and we conclude that \(Y \) cannot precede \(A_i \). The same argument applies to show that \(Y \) cannot follow \(A_{i+1} \). Hence \(A_1 A_k \) is a subset of \(A_i A_{i+1} \), and \((P_i P_{i+1} + A_i A_{i+1}) \) is therefore a simple closed curve \(J^* \) containing \(\alpha \). The interior of \(J^* \) is \(I_i \).

Case 2. If there exists no integer \(r \) such that \(P_r P_{r+1} \) is the only arc of the set \(P_1 P_2, P_2 P_3, \ldots, P_n P_1 \) which contains \(\alpha \cdot J \), it follows that \(\alpha \cdot J \) is a point \(P_j \) of \(\beta \). The case in which \(\alpha \cdot J = P_n \) has been disposed of in the paragraph preceding Case 1. Hence suppose \(j < n \). Let \(A_i \) be the point of \(\gamma \) with lowest subscript which is contiguous to \(P_i \), and let \(A'_i \) be the point of \(\gamma \) with highest subscript which is contiguous to \(P_i \). By means of an argument like that used in Case 1, it may be shown that no point of \(\alpha \cdot A_1 A_k \) precedes \(A_i \) or follows \(A'_i \) in the order from \(A_1 \) to \(A_k \). If \(i = i' \), then \(\alpha \cdot A_1 A_k = A_i \). Thus \((P_i P_{i+1} + A_i) \) or \((P_i P_{i+1} + A_i A_{i+1}) \), according as \(P_i \) and \(P_{i+1} \) are or are not both contiguous to \(A_i \), is a triune or simple closed curve \(J^* \) which contains \(\alpha \) and whose interior is \(I_i \). If \(i \neq i' \), then the arc \(A_i A'_i \) of \(A_1 A_k \) contains \(\alpha \cdot A_1 A_k \). Furthermore, since \(\alpha \cdot A_1 A_k \) consists either of a single point or of two contiguous points, it follows that \(\alpha \cdot A_1 A_k \) is a subset of one of the arcs of the set \(A_i A_{i+1}, A_{i+1} A_{i+2}, \ldots, A_{i+t-1} A_i \). Suppose the arc \(A_{i+t-1} A_{i+t} \) contains \(\alpha \cdot A_1 A_k \). Then since \(A_s \), \((i \leq s \leq i') \), is contiguous to \(P_i \), it follows that \((P_i + A_{i+t-1} A_{i+t}) \) is a simple closed curve or triune \(J^* \) which contains \(\alpha \) and whose interior is \(I_i \). Thus for any case it has been shown that \(\alpha \) is a subset of a simple closed curve or triune \(J^* \) satisfying the condition that either there exists an integer \(j \) such that \(I_j \) is the interior of \(J^* \), or there exists a pair of integers \((j, t) \) such that \(I_{j+t} \) is the interior of \(J^* \).

Let \(E^* \) denote the exterior of \(J^* \). Now \(E^* \) contains \(M_1 \); hence \(E^* = M_1 + (E^* - M_1) \), where both \(M_1 \) and \(E^* - M_1 \) are non-vacuous point sets neither of which contains a point of \(\alpha \). Thus \(E^* \) is the sum of two mutually separated sets, contrary to Axiom 3; and the theorem is established.

Theorem 8. Let the following changes, and none other, be made in the hypotheses of Theorem 7: \(A_1, A_2, \ldots, A_k \), \((k \geq 1) \), are points of an arc \(A_1 T \) (in the order indicated if \(k > 1 \)) where \(A_1 T - T \) is a subset of \(I \) and \(T \) is a point of
the segment P_nP_1, $(n \geq 2)$. The set $\gamma = A_1 + A_2 + \cdots + A_k$ is the set of all points of $A_1T - T$ which are contiguous to points of J; $\beta = P_1 + P_2 + \cdots + P_n$ is the set of all points of J which are contiguous to points of γ. The point P_n is no longer restricted to be contiguous to A_k alone of the set γ; I_n denotes the interior of $P_nT + A_kT$; and I_0 denotes the interior of $A_1T + TP_1$. Then

$$I = (A_1T - T) + \sum_{j=0}^{n} I_j + \sum_{j=1}^{n} \sum_{t=1}^{k_j} I_{jt}.$$

If $\beta = P_1 + P_2 + P_3 + \cdots$ and $\gamma = A_1 + A_2 + A_3 + \cdots$, where β and γ are infinite sets each having T as its only limit point, then

$$I = (A_1T - T) + \sum_{j=0}^{\infty} I_j + \sum_{j=1}^{\infty} \sum_{t=1}^{k_j} I_{jt}.$$

Theorem 9. Let the following changes, and none other, be made in the hypotheses of Theorem 7: $V, A_1, A_2, \ldots, A_k, T$, $(k \geq 1)$, are points of the arc VA_1T in the order indicated, where the segment VA_1T is a subset of I, and where V and T are points of J in the order $V, P_1, P_2, \ldots, P_n, T$, $(n \geq 1)$. The set $\gamma = A_1 + A_2 + \cdots + A_k$ is the set of all points of the segment VA_1T which are contiguous to points of J, and $\beta = P_1 + P_2 + \cdots + P_n$ is the set of all points of J which are contiguous to points of γ. The points P_1 and P_n are no longer restricted as to the number of points of γ to which they are contiguous. If $I_0, I_n,$ and I_0^* denote the interiors of $(VP_1 + VA_1), (P_nT + A_kT),$ and $(TV + VA_1T)$, respectively, where TV is that arc of J not containing P_1, then

$$I = \text{segment } VA_1T + I_* + \sum_{j=0}^{n} I_j + \sum_{j=1}^{n} \sum_{t=1}^{k_j} I_{jt}.$$

If $\beta = P_1 + P_2 + P_3 + \cdots$ and $\gamma = A_1 + A_2 + A_3 + \cdots$ are infinite sets each having T as its only limit point, then

$$I = \text{segment } VA_1T + I_* + \sum_{j=0}^{\infty} I_j + \sum_{j=1}^{\infty} \sum_{t=1}^{k_j} I_{jt}.$$

A similar formula holds for the case in which each of the points V and T is approached sequentially by a sequence from β and by a sequence from γ.

Theorem 10. Let the following changes be made in the hypotheses of Theorem 7: P_1 is contiguous to both A_1 and A_k but to no other point of γ. Either each of the points A_1 and A_k is contiguous to some point of $\beta - P_1$ or else $k > 2$. Then either it is true that if P_i and P_j, $i \leq i'$, or it is true that if P_i and P_j, respectively, and if $j < j'$, then $i \leq i'$, or it is true that if P_i and P_j, respectively, and if $j < j'$, then $i \geq i'$. If the former condition holds, if I^* denotes
the interior of $A_1A_k + P_1$, and if I_n denotes the point set obtained by substituting n for j in the definition of I_i given in the statement of Theorem 7, then

$$I = A_1A_k + I^* + \sum_{j=1}^{n} I_j + \sum_{j=2}^{n} \sum_{i=1}^{k_j} I_{ji}.$$

The theorem is illustrated by Fig. 2.

If in Theorem 10, $\beta = P_1 + P_2$, where P_1 and P_2 are non-contiguous, then J is the sum of two arcs, P_1XP_2 and P_1YP_2, and is such that the corresponding segments are mutually separated. Suppose $k \geq 3$. (1) If at least one of the points A_1 and A_k, say A_1, is contiguous to P_2, then by Theorem 3, $I - A_1 = D_1 + D_2$, where D_1 and D_2 are the interiors of the simple closed curves $P_1XP_2 + A_1$ and $P_1YP_2 + A_1$, respectively. Let I_1 denote that domain above which does not contain A_k. Suppose $I_1 = D_1$. Let I_2 denote the interior of $P_1YP_2 + A_k$ or of $P_1XP_2 + A_k - A_k$, according as A_k is or is not contiguous to P_2. (2) If neither A_1 nor A_k is contiguous to P_2, then $I - A_1A_2 = D^* + D^{**}$, where D^* and D^{**} are the interiors of $P_1XP_2 + A_1A_2$ and $P_1YP_2 + A_1A_2$, respectively. Let I_1 denote the domain above which does not contain A_k. Suppose $I_1 = D^*$. Let I_2 denote the interior of $P_1YP_2 + A_{k-1}A_k$. Then in either of
these two cases we have, in accordance with the above notation, the following theorem:

Theorem 11. \[I = A_1 A_2 + I^* + I_1 + I_2 + \sum_{i=1}^{k_2} I_{2i}. \]

This theorem is illustrated by Fig. 3.

Theorem 12. Let \(J \) and \(C \) denote two point sets, each of which is either a simple closed curve or a triune. Let \(I \) and \(D \) denote the interiors of \(J \) and \(C \), respectively, and suppose \(P \) is a point of \(I \cdot D \). Then there exists a simple closed curve or triune \(Q \) such that (1) \(Q \) is a subset of \(J + C \), and (2) the interior of \(Q \) contains \(P \) and is a subset of \(I \cdot D \).

Indication of proof. If at least one of the two sets \(J \) and \(C \) is a triune, one of the sets is a subset of the other plus its interior and hence will have the properties required of \(Q \).

A similar situation exists if both \(J \) and \(C \) are simple closed curves and one of them is a subset of the other plus its interior.

If neither of the simple closed curves \(J \) and \(C \) is a subset of the other plus its interior, let \(A \) be a point of \(J \cdot D \), and let \(PA \) be an arc from \(P \) to \(A \) lying
wholly in \(D\). Let \(O\) denote the first point, in the order \(P\) to \(A\), that \(PA\) has in common with \(J\). I wish to show the existence of a simple closed curve or triune \(Q'\) such that (1) \(Q'\) is a subset of \(C+J\cdot D\), (2) \(Q'\cdot C\) is connected, (3) \(Q'\cdot J\cdot D\) is connected and contains \(O\), and (4) the interior of \(Q'\) contains \((PO-O)\). Obviously, the existence of \(Q'\) will be established if it can be shown that there exists a point set \(K\) (which shall contain \(Q'\cdot J\cdot D\)) which is a connected subset of \(J\) containing \(O\) and which satisfies with respect to \(C\) those conditions satisfied by any one of the point sets \(P\), \(A_1A_k\), segment \(AXB\), \((A_1T-T)\), segment \(VA_1T\), \(A_1A_k\), or \(A_1A_k\) with respect to the corresponding given simple closed curve of Theorems 6, 7, 3, 8, 9, 10, and 11, respectively. There are several cases.

Case 1. Suppose \(O\) is not contiguous to any point of \(C\). Let \(B\) denote a point of \(J\cdot E\). The set \(J\) is the sum of two arcs from \(O\) to \(B\), say \(OXB\) and \(OYB\). Let \(M\) denote the closed point set consisting of \(C\) together with all points \(Z\) of \(D\) such that \(Z\) is contiguous to at least one point of \(C\). Let \(A_1\) and \(A_2\) denote the first points that \(OXB\) and \(OYB\) have in common with \(M\), in the order \(O\) to \(B\). If both \(A_1\) and \(A_2\) are points of \(C\), the hypothesis of Theorem 3 is satisfied, and the segment \(AxOA2\) is the desired point set \(K\).

Case 2. Suppose \(O\) is not contiguous to any point of \(C\) and that one of the points \(A_1\) and \(A_2\) described in Case 1, say \(A_1\), is a point of \(D\), while the other, \(A_2\), is a point of \(C\). If \(A_1\) is contiguous to two or more points of \(C\), then the hypotheses of Theorem 8 are satisfied, and \((A_1OA2-A2)\) is the desired point set \(K\). If \(A_1\) is contiguous to only one point \(F\) of \(C\), and \(F\) is not contiguous to \(A_2\), then the hypotheses of Theorem 3 are satisfied, and \((A_1OA2-A2)\) is the desired point set \(K\). If \(F\) is contiguous to \(A_2\), let \(A_1'\) denote the first point of \(OXB\), in the order \(O\) to \(B\), which is either a point of \(D\) that is contiguous to a point of \(C-F\) or else a point of \(C\). Now if \(A_1'\) is a point of \(D\), the hypothesis of Theorem 8 is satisfied, and \((A_1'OA2-A2)\) is the desired point set \(K\). If \(A_1'\) is a point of \(C\), the hypothesis of Theorem 9 is satisfied, and the segment \(A_1OA2\) is the desired point set \(K\).

The remaining cases may be treated with similar methods.

If \(Q'\) is a triune, \(Q'\) has the properties required of \(Q\), since the interior of \(Q'\) cannot contain any points of \(J\). (No simple closed curve may contain a point of each complementary domain of a triune.)

If \(Q'\) is a simple closed curve whose interior contains no point of \(J\), then \(Q'=Q\). If the interior of \(Q'\) contains any points of \(J\), let \(M\) denote the set of all such points of \(J\). Now, \(M+Q'\) contains a simple closed curve \(Q\) having the required properties. The proof of this last statement is little different from the proof for spaces in which there do not exist contiguous points.

As an immediate result of Theorem 12 we have the following theorem:
Theorem 13. Let \(J_1, J_2, \ldots, J_n \) denote \(n \) point sets each of which is either a simple closed curve or a triune; and suppose that \(I_1, I_2, \ldots, I_n \), the interiors of \(J_1, J_2, \ldots, J_n \), respectively, have a point \(O \) in common. Then there exists a simple closed curve or triune \(J \) which is a subset of \(J_1 + J_2 + \cdots + J_n \) and is such that \(I \), the interior of \(J \), is a subset of \(I_1 \cdot I_2 \cdot \cdots \cdot I_n \) and contains \(O \).

Theorem 14. Suppose each of the sets \(J_1 \) and \(J_2 \) is either a simple closed curve or a triune. Let \(I_1 \) and \(I_2 \) denote the interiors of \(J_1 \) and \(J_2 \), respectively, and suppose \(I_1 + I_2 \) is connected. Then there exists a simple closed curve or triune \(J \) which is a subset of \(J_1 + J_2 \) and whose interior is a subset of \(I_1 \cdot I_2 \).

Indication of proof. Assume the theorem false. Then by Theorem 12 \(I_1 \cdot I_2 = \emptyset \). Hence there exist points \(P_1 \) and \(P_2 \) of \(I_1 \) and \(I_2 \), respectively, such that \(P_1 \) is contiguous to \(P_2 \). Thus \(P_1 \) is a point of \(J_2 \) and \(P_2 \) is a point of \(J_1 \). There exists a point \(F \) of \(J_1 \cdot J_2 \) and an arc \(P_1 F \) of \(J_2 \) such that \(P_1 F - F \) is a subset of \(I_1 \). Let \(P_2 F \) denote an arc of \(J_1 \). The point set \(P_1 F + P_2 F \) contains a simple closed curve or triune \(J' \) containing \(P_1 \) and \(P_2 \), whose interior \(I' \) is a subset of \(I_1 \). The set \(J' + I' \cdot J_2 \) contains a simple closed curve or triune \(J \) satisfying the required conditions. Thus the assumption is false, and the theorem is established.

With the help of Theorems 12 and 14, the following theorem may be established:

Theorem 15. Let \(J_1 \) and \(J_2 \) denote two point sets, each of which is either a simple closed curve or a triune. Let \(I_1 \) and \(I_2 \) denote the interiors of \(J_1 \) and \(J_2 \), respectively. Suppose \(I_1 + I_2 \) is connected. Then there exists a simple closed curve or triune \(J \) which is a subset of \(J_1 + J_2 \), and whose interior contains \(I_1 \cdot I_2 \).

Theorem 16. Let \(J_1, J_2, \ldots, J_n \) denote \(n \) point sets each of which is either a simple closed curve or a triune. Let \(I_1, I_2, \ldots, I_n \) denote the interiors of \(J_1, J_2, \ldots, J_n \), respectively. Suppose \(I_1 + I_2 + \cdots + I_n \) is connected. Then there exists a point set \(J \) which is either a simple closed curve or a triune, which is a subset of \(J_1 + J_2 + \cdots + J_n \), and which is such that \(I \), the interior of \(J \), contains \(I_1 + I_2 + \cdots + I_n \).

Theorem 17. If \(J \) is a simple closed curve or triune, then \(I \), the interior of \(J \), contains at least one point which is not contiguous to any point of \(J \).

Proof. Suppose each point of \(I \) is contiguous to some point of \(J \). Let \(P \) be any point of \(I \). I wish to show the existence of two distinct points of \(I \), each contiguous to \(P \). Since \(I \) is connected and contains infinitely many points, \(P \) is either contiguous to a point of \(I \) or is a limit point of \(I \). By Axiom C, \(J \) contains all limit points of \(I \); hence \(P \) must be contiguous to a point \(Q \) of \(I \). In case there exists a point \(P_1 \) of \(J \) which is contiguous to both
P and Q, then I, the interior of the triune PQP, is a connected subset of I.
Since J contains all the limit points of I, it follows that P is contiguous to a
point T of I. Thus for this case there exist two distinct points (Q and T) of
I, each contiguous to P. In case no point of J is contiguous to both P and Q,
let P and Q denote points of J which are contiguous to P and Q, respectively,
and let P and Q denote an arc of J. The point set P + P + Q contains a simple
closed curve J2, which contains P and Q. Let I2 denote the interior of J2. The
argument used above may be used here to show that P is contiguous to a
point T of I2.

Let QT denote an arc lying in I. The point set QT + P contains a simple
closed curve or triune J' whose interior I' contains infinitely many points,
no one contiguous to any point of J. Thus we reach a contradiction, and the
theorem is established.

Example 1. In the euclidean plane let C1, C2, and C3 denote three circles,
each tangent externally to each of the others. Denote their centers by P1, P2,
and P3, respectively, and their radical center by O. Let A1 = C1 ∩ C2, A2 = C2 ∩ C3,
and A3 = C3 ∩ C1. Let B1, B2, and B3 denote points on the rays OA1, OA2, and
OA3, respectively, such that d(O, B1) = d(O, B2) = d(O, B3), and d(O, B1) > d(O, A1).
Let B1B2, B2B3, and B3B1 be circular arcs having P1, P2, and P3,
respectively, as centers and lying on the non-O sides of the lines B1B2, B2B3,
and B3B1, respectively. Let β1 = P3P1 + OP3 + OP1, β2 = B1B2 + OB1 + OB2,
β3 = B2B3 + OB2 + OB3. For each point P of β1 and each j, (i = 1, 2, 3;
j = 1, 2, 3, · · ·), let QP denote the point of the interval PjP such that
d(P, QP) = d(P, A) + [d(P, P) − d(P, A)]/j, and let β denote the set
of all points QP. Let TI, (i = 1, 2, 3), denote Ci plus its interior. Let S denote
the following collection: (1) T, (i = 1, 2, 3), is an element of S, and (2) each
point of the plane not in T1 + T2 + T3 is an element of S. For each positive
integer n, let Gn denote the following subsets of S: (1) the interior of each
circle of radius 1/n or less which neither encloses nor contains a point of
T1 + T2 + T3 is an element of Gn; (2) for each pair (i, j), (i = 1, 2, 3;
j = n, n + 1, · · ·), the set consisting of Tj and all elements of S enclosed by
β is an element of Gn. If each element of S is called a “point,” each element
of G is called a “region,” and each of the “points” T1, T2, and T3 is “con-
tiguous to” each of the others, then each of the axioms of this paper is non-
vacuously satisfied.

Example 2. In a euclidean space let s1, s2, s3, s4, and s5 denote the spheres
whose equations are (x − 1)² + y² + z² = 3/2², (x + 1/2)² + (y + (3)1/2/2)² + z² = 3/2²,
and (x + 1/2)² + (y + (3)1/2/2)² + z² = 3/2², x² + y² + (z − (3)1/2/12)² = 3/12², and
x² + y² + (z + (3)1/2/12)² = 3/12², respectively. Each of these spheres is tangent
eXterna] to each of the others. For each i, (i = 1, · · ·, 5), let Ti denote s;
plus its interior. Let S denote the collection defined as follows: (1) For each i, ($i = 1, \ldots, 5$), T_i is an element of S. (2) Let K denote the (x, y)-plane. Each point of the unbounded component of $K - K(T_1 + T_2 + T_3)$ is an element of S. (3) For each set of three distinct positive integers $i, j,$ and k, such that each integer is less than 6 and at least one integer is either 4 or 5, let M_{ijk} denote the plane which contains the centers of the spheres s_i, s_j, and s_k. Each point of the bounded component of $M_{ijk} - M_{ijk}(T_i + T_j + T_k)$ is an element of S. For each positive integer n, let G_n denote the subsets of S defined as follows: (1) The interior of each circle of radius $1/n$ or less which is a subset of $S \cdot M_{ijk}$ or of $S \cdot K$ is an element of G_n. (2) In each of the sets $S \cdot M_{ijk}$, construct three sequences of segments like the three sequences of segments constructed within the triune of Example 1, and in $S \cdot K$ construct three sequences of segments like those constructed in the exterior of the triune of Example 1. For each pair (i, j), ($i = 1, \ldots, 5; j = n, n+1, \ldots$), the subset of S consisting of T_i together with all elements of $S - (T_i, T_2, \ldots, T_5)$ each of which is enclosed by T_i plus the jth segment of one of the sequences constructed is an element of G_n. If each element of S is called a "point," each element of G_n is called a "region," and each of the "points" T_1, \ldots, T_5 is "contiguous to" each of the others, then all the axioms of this paper are non-vacuously satisfied.

Example 2 shows that Theorem 6 fails to hold if J denotes a triune instead of a simple closed curve.

Theorem 18. If J is a simple closed curve, if I is the interior of J, and if H and K are mutually exclusive compact continua lying in $J + I$, then no two points of H separate two points of K on J.

Proof. Suppose on the contrary that the points A and B of H separate the points C and D of K on J. It follows from Theorem 24 of S.C.P. that K contains an irreducible continuum T from $K \cdot ACB$ to $K \cdot ADB$. By Theorem 28 of S.C.P., $T - T \cdot J$ is a connected set having boundary points C_1 and D_1 in segments ACB and ADB, respectively. It may be readily shown that the component of $S - (J + H)$ which contains $T - T \cdot J$ contains a segment $C_2 Y D_2$, where C_2 and D_2 are points of segments ACB and ADB, respectively, and neither point belongs to H. Thus the arc $C_2 Y D_2$ contains no point of H and lies, except for its end points, in I.

The above argument may be repeated to show that there exists an arc $A_2 X B_2$ which contains no point of $C_2 Y D_2$, where the segment $A_2 X B_2$ lies in I, and A_2 and B_2 separate C_2 and D_2 on J. But this contradicts Theorem 4.

Theorem 19. The interior of a simple closed curve or triune is not a subset of any simple closed curve or triune.
Proof. Let I denote the interior of a simple closed curve or triune J. By Theorem 5, I is not a subset of a triune. Suppose I is a subset of a simple closed curve C. By Theorem 17, there exists a point P of I which is not contiguous to any point of J. Now P is either a limit point of $S - C$ or is contiguous to a point of $S - C$. If P is a limit point of $S - C$, let R be a connected domain containing P, but containing no point of J, and let Q be a point of $R \cdot (S - C)$. If P is not a limit point of $S - C$, let Q be a point of $S - C$ which is contiguous to P. In either case, Q belongs to $I \cdot (S - C)$.

Theorem 20. If neither of the contiguous points X and Y separates the point A from the point B, then their sum does not separate A from B.

Proof. Suppose $S - (X + Y) = S_A + S_B$, where S_A and S_B are mutually separated sets containing A and B, respectively. There exists an arc α from A to B which does not contain Y. The arc α contains X; hence α contains an arc AX. Similarly, there exists an arc AY. The point set $AX + AY - (X + Y)$ is connected and hence lies in S_A. The set $AX + AY$ contains a simple closed curve or triune J which contains X and Y and is a subset of $S_A + X + Y$. Let Q be any point of $J - (X + Y)$, and let I and E denote the two complementary domains of J. Since Q is a point of S_A and is a boundary point of each of the connected sets I and E, it follows that I and E are subsets of S_A. Hence S is a subset of $S_A + X + Y$. Thus we reach a contradiction, and the theorem is established.

Axiom 4. If P and Q are two distinct non-contiguous points, there exists a simple curve or triune which separates P from Q.

With the help of Axiom 4, the Borel-Lebesgue theorem (Theorem 5 of S.C.P.), and Theorem 16, the next theorem may be established.

Theorem 21. If H and K are two mutually separated compact continua, there exists a simple closed curve or triune which separates H from K.

Theorem 22. If J is a simple closed curve or triune containing the contiguous points A and B, I is the interior of J, and P is a point of $J + I$ which is not contiguous to A, then there exists a simple closed curve or triune J^* satisfying the following conditions: (1) It is a subset of $J + I$. (2) Its intersection with J is an arc containing A and B. (3) Its exterior contains P.

Proof. Suppose the theorem is false. If may be readily shown that there exists a simple closed curve or triune which satisfies conditions (1) and (2). Furthermore it may be readily shown that if P is any point of J not contiguous to A, or if P is a point of I not contiguous to A such that there is a simple closed curve or triune J' containing P and satisfying conditions (1) and (2),
then there exists a simple closed curve or triune satisfying conditions (1), (2), and (3). Hence our supposition implies that \(P \) is a point of \(I \), and every simple closed curve or triune, satisfying conditions (1) and (2), encloses \(P \). Let \(PX \) denote an arc from \(P \) to some point \(X \) of \(J - (A + B) \) such that \(PX - X \) is a subset of \(I \). Let \(S_1 \) denote the set consisting of \(P \) and all points \(Y \) of \(PX - X \) such that every simple closed curve or triune satisfying conditions (1) and (2) encloses the interval \(PY \) of \(PX \), and let \(S_2 \) denote \(PX - S_1 \). By the Dedekind-cut proposition (P.S.T., chap. 1, Theorem 64) there exists a point \(Q \) which is either the last point of \(S_1 \) or the first point of \(S_2 \), in the order \(P \) to \(X \).

Suppose \(Q \) is the first point of \(S_2 \). There exists a simple closed curve or triune \(J' \) satisfying the following conditions: If \(Q = X \), then \(J' = J \); if \(Q \neq X \), then \(J' \) contains \(Q \), satisfies conditions (1) and (2), and encloses \(PQ - Q (= S_1) \). There exists a third simple closed curve or triune \(J_1 \), which is a subset of \(J' \) plus its interior and is such that \(J' - J_1 \) is an arc containing \(A \) and \(B \) but not containing \(Q \). Thus \(Q \) is exterior to \(J_1 \); hence \(PQ - Q \) either intersects \(J_1 \) or is exterior to \(J_1 \). Both these possibilities are ruled out since \(J_1 \) satisfies conditions (1) and (2) and hence encloses \(PQ - Q \). Thus \(Q \) is not the first point of \(S_2 \).

Suppose \(Q \) is the last point of \(S_1 \). By means of an argument analogous to that used in the last paragraph, it may be shown that \(Q \) is not contiguous to a point of \(S_2 \). Thus \(Q \) is a limit point of \(S_2 \). Now \(Q \) cannot be contiguous to both \(A \) and \(B \); for if such were the case, the triune \(ABQ \) would satisfy conditions (1) and (2) and hence would enclose \(PQ = S_1 \) and, in particular, the point \(Q \). Let \(C \) denote a point of the pair \((A, B) \) which is not contiguous to \(Q \), and let \(CW \) be an arc from \(C \) to \(W \) lying in \(J \) plus its exterior and containing no point of \(J \) which is contiguous to \(Q \). By Theorem 21, there exists a simple closed curve or triune \(J' \) which separates \(Q \) from \(CW \). Since \(Q \) is a limit point of \(S_2 \), it follows that \(J' \), the interior of \(J' \), contains a segment \(QW \) of \(S_2 \). There exist a point \(F \) of the segment \(QW \), and a simple closed curve or triune \(J_1 \) which satisfies conditions (1) and (2) and is such that \(F \) is in \(E_1 \), the exterior of \(J_1 \). Let \(I_1 \) denote the interior of \(J_1 \). By Theorem 12, there exists a simple closed curve or triune \(J_2 \) which is a subset of \(J_1 + J' \) and whose interior \(I_2 \) contains \(Q \) and is a subset of \(I_1 \cdot I' \). There exists a point \(T \) of \(J_2 \cdot I' \cdot J_1 \). It may be readily shown that the point set \(J_1 - T + (J_2 - T) \) contains a simple closed curve or triune \(J^* \) which satisfies conditions (1) and (2). Furthermore, since \(J_2 + T + E_1 \) is a connected point set containing \(Q \) and \(\omega \) but no point of \(J^* \), \(Q \) is exterior to \(J^* \). Hence \(Q \) is not a point of \(S_1 \).

Thus we have reached a contradiction and the theorem is established.

Theorem 23. The interior of every triune is non-compact and so is the interior of every simple closed curve which contains two contiguous points.
Proof. Let J denote a simple closed curve or triune containing the contiguous points A and B, and let I denote the interior of J. Suppose that I is compact. It follows that $J+I$ is compact, completely separable, and metric. Let D_1, D_2, D_3, \ldots be a sequence of domains which properly covers $J+I$ and with respect to which $J+I$ is completely separable. Let n_1 denote the smallest integer (which exists in view of Theorems 17 and 22) such that there exists a simple closed curve or triune J_1 which is a subset of $J+I$, and such that $J\cdot J_1$ is an arc containing A and B, and D_{n_1} is exterior to J_1. Let n_1, n_2, n_3, \ldots be an increasing sequence of positive integers satisfying the following conditions: For each integer $k>1$, n_k is the smallest integer greater than n_{k-1} such that there exists a simple closed curve or triune J_k which is a subset of J_{k-1} plus its interior, and such that $J_{k-1}\cdot J_k$ is an arc containing A and B, and D_{n_k} is exterior to J_k. For each integer r, let α_r denote the point $J_r-(A+B)$ in case J_r is a triune. Otherwise, let α_r denote an arc P_rQ_r of $J_r-(A+B)$, where Q_r is either contiguous to B or else $d(Q_r, B)<1/r$, and where P_r is either contiguous to A or else $d(P_r, A)<1/r$. For each integer n let E_n denote the exterior of J_n. For each integer r and each point P of α_r, there exists an integer n_P such that E_{n_P} contains P. By the Borel-Lebesgue theorem, there exists a finite collection of these domains covering α_r. The domain of this finite collection with greatest subscript E_s contains all other domains of the finite collection; therefore E_s contains α_r. Hence $\alpha_r\cdot J_s=0$, and consequently $\alpha_r\cdot \alpha_s=0$. Thus there exists an increasing sequence of integers r_1, r_2, r_3, \ldots such that for each integer $k>0$, $\alpha_{r_k}\cdot \alpha_{r_{k+1}}=0$; hence $\alpha_{r_1}, \alpha_{r_2}, \ldots$ is a sequence of mutually exclusive continua. There exists a subsequence of this sequence which converges to a sequential limiting set L containing A and B. Hence by Theorem 33 of S.C.P., L is a perfect continuum and is therefore uncountable. For each integer n, L is a subset of J_n plus its interior. Hence if L contains a point X other than A or B, then X is contiguous to A or B. But the set of all such points X is at most countable by Theorem 14 of S.C.P. Hence L is countably infinite or finite. We have thus reached a contradiction, and the theorem is established.

Theorem 24.* If H and K are two mutually separated, closed and compact point sets containing the points A and B, respectively, then there exists a simple closed curve or triune J which separates A from B such that $J\cdot (H+K)=0$.

Proof. Let h_A and k_B denote the components of H and K containing A and B, respectively. From Theorem 21 it follows that for each component h of H there exists a simple closed curve or triune J_{hB} which separates h from

Let D_{hB} denote that complementary domain of J_{AB} which contains h. The collection of all such domains D_{hB} covers H; hence there exists a finite collection T of such domains covering H. Let T^* denote the point set which is the sum of all the elements of T. By Theorem 16 there exists a simple closed curve or triune J_{AB} whose interior with respect to B contains that component of T^* which contains A. Furthermore, $(H+k_B) \cdot J_{AB} = 0$. For each component k of K let J_{Ak} denote a simple closed curve or triune (which exists in view of the preceding argument) which separates A from k and is such that $(H+K) \cdot J_{Ak} = 0$. Let D_{Ak} denote the interior of J_{Ak} with respect to A. The collection of all such domains D_{Ak} covers K; hence there exists a finite collection G of such domains covering K. Let G^* denote the sum of the elements of G. By Theorem 16 there exists a simple closed curve or triune J whose interior with respect to A contains that component of G^* which contains B. Furthermore, $(H+K) \cdot J = 0$.

Theorem 25. If H and K are two mutually separated closed and compact point sets, and if neither H nor K separates the point A from the point B, then $H+K$ does not separate A from B.

Proof. Suppose $H+K$ separates A from B.

Case 1. Suppose H is connected. With the help of Theorem 24, it may be shown that there exists a domain D which contains K but no point of H and is the sum of a finite number of components each of which is bounded by a simple closed curve or triune containing no point of $H+K$. Let AXB denote an arc from A to B containing no point of K, and AYB an arc containing no point of H. Let $J_1, J_2, J_3, \ldots , J_r$ denote the boundaries of those components of D which have points in common with AYB. There are four possibilities: (1) A and B are both in $S-D$, (2) A and B are the same component of D, (3) A and B are in different components of D, (4) A or B is in $S-D$ while the other is in D. In each case it may be readily shown that $(AYB-AYB \cdot D) + J_1 + J_2 + \cdots + J_r + AXB \cdot D$ contains an arc from A to B.

Case 2. Suppose H has only a finite number of components, h_1, h_2, \ldots , h_n. By Case 1, $h_1 + K$ does not separate A from B. The sets h_2 and $h_1 + K$ are mutually separated; hence by Case 1, $h_2 + (h_1 + K)$ does not separate A from B. Continuing this process we obtain the fact that $h_n + (h_{n-1} + \cdots + h_1 + K)$ does not separate A from B.

Case 3. Suppose H has infinitely many components. Let AXB denote an arc containing no point of K. By Axiom C, at most a finite number of components of K contain points which are contiguous to points of AXB. Let

ki, k2, \ldots, kn be the set of all such components of K. By Case 2 there exists an arc AVB which contains no point of H + k1 + \cdots + kn. If AVB · K = 0, the theorem is established. Suppose AVB · K \neq 0. For each component k of K which intersects AVB, the set H + AXB + K is the sum of two mutually separated sets, one containing A and the other containing k, by Theorem 27 of S.C.P. By Theorem 24 there exists a simple closed curve or triune \(J_k \) which separates A from k and is such that \(J_k \cdot (H + AXB + K) = 0 \). Let \(I_k \) denote the interior of \(J_k \) with respect to A. The collection of all such domains \(I_k \) covers the closed point set \(AVB \cdot K \); hence there exists a finite subcollection \(T \) doing so. Let \(T^* \) denote the sum of the elements of \(T \). By Theorem 16, for each component \(t \) of \(T^* \) there exists a simple closed curve or triune \(C_t \) which is a subset of the boundary of \(t \) and whose interior with respect to \(A \) contains \(t \). Let \(C_1, C_2, \ldots, C_s \) be the set of all simple closed curves or triunes thus obtained. The point set \((AVB - AVB \cdot T^*) + C_1 + C_2 + \cdots + C_s \) contains an arc from A to B which contains no point of \(H + K \).

Theorem 26. If \(J \) is a simple closed curve, \(I \) is a complementary domain of \(J \), \(H \) and \(K \) are two mutually separated subcontinua of \(J \), \(\alpha \) and \(\beta \) are the two components of \(J - (H + K) \), and \(C \) is a simple closed curve which separates \(H \) from \(K \), then there exists an arc \(AXB \) such that \(A \) and \(B \) are points of \(\alpha \) and \(\beta \), respectively, and segment \(AXB \) is a subset of \(I \cdot C \).

Proof. Suppose the theorem is false. Let \(\omega \) be a point of \(S - (J + I + C) \), which exists by Theorem 19. Let \(D \) denote the interior of \(C \). One of the sets \(H \) and \(K \), say \(H \), is a subset of \(D \). Obviously, \(C \) contains at least one point of each of the sets \(\alpha \), \(\beta \), and \(I \). Let \(P, Q, Z, \) and \(W \) denote points of \(\alpha \cdot C, \beta \cdot C, H, \) and \(K \), respectively. Let \(\alpha' \) and \(\beta' \) denote continua which are subsets of \(\alpha \) and \(\beta \), respectively, and which contain \(\alpha \cdot C \) and \(\beta \cdot C \), respectively. Now, \(\alpha' + \beta' + I \cdot C \) is the sum of two mutually separated continua \(M_1 \) and \(M_2 \) containing \(\alpha' \) and \(\beta' \), respectively. Let \(E \) denote the last point of the arc \(PZQ \), in the order \(P \) to \(Q \), which is either a point of \(M_1 \) or contiguous to a point of \(M_1 \); and let \(F \) denote the first point of \(PZQ \) which is either a point of \(M_2 \) or contiguous to a point of \(M_2 \). It may be readily seen with the help of Theorem 4 that if \(E \) and \(F \) are distinct, then \(E \) precedes \(F \) in the order \(P \) to \(Q \). Suppose first that \(E \) and \(F \) are distinct non-contiguous points. The interval \(EF \) of \(PZQ \) contains at least one point of \(H \). Furthermore, there exists an arc \(OL \) where \(L \) is a point of segment \(EF \) and \(OL - L \) is a subset of \(I - I \cdot C \). By Theorem 12 there exists a simple closed curve \(J' \) which is a subset of \(J + C \) and contains \(EF \), and whose interior \(I' \) is a subset of \(I \cdot D \) and contains \(OL - L \). Now \(J' \) contains no point of \(K \), for otherwise \(H + I' + K \) would be a connected set containing no point of \(C \). Thus \(J' \) contains an arc \(E'F' \), where \(E' \) and \(F' \)
are points of segments \(LEW \) and \(LFW \), respectively, and the segment \(E'F' \) is a subset of \(I \cdot C \). Thus segment \(E'F' \) is a subset of \(M_1 \) and also a subset of \(M_2 \). From this contradiction, it follows that \(E \) and \(F \) are identical or contiguous. Also \((E+F) \cdot (M_1+M_2) = 0 \). Similarly, if \(T \) denotes the last point of \(PWQ \) which is either a point of \(M_1 \) or contiguous to a point of \(M_1 \), and if \(V \) denotes the first point of \(PWQ \) which is either a point of \(M_2 \) or contiguous to a point of \(M_2 \), then \(T \) and \(V \) are identical or contiguous. Let \(C' \) denote a simple curve which separates \(M_1 \) from \(M_2 \). Let \(P'Q' \) denote an arc such that \(P' \) and \(Q' \) are points of \(M_1 \) and \(M_2 \), respectively, and segment \(P'Q' \) is a subset of \(J+I-(J+I)-(C+E+F+T+V) \). Let \(G \) denote a point of segment \(P'Q' \) which belongs to \(C' \), and let \(NY \) denote an arc which is a subset of \(C' \) and contains \(G \), where \(N \) and \(Y \) are points of \(J \) and segment \(NY \) is a subset of \(I \). Now \(N \) and \(Y \) do not lie in different components of \(J-(\alpha'+\beta') \), for otherwise, \(H+K+NY \) would be a connected set containing no point of \(C \). Suppose both \(N \) and \(Y \) are points of that component of \(J-(\alpha'+\beta') \) which contains \(H \). If either \(N \) or \(Y \) preceded \(E \) in the order \(PZQ \), we would have two arcs (one a subset of \(C \cdot M_1+E \), the other a subset of \(C \cdot M_2+\text{interval } Q'G \) of arc \(P'Q' \)+\text{interval } NG \) of arc \(NY \)) satisfying the hypothesis of Theorem 4 but not the conclusion of this theorem. Similarly, it may be shown that neither \(N \) nor \(Y \) follows \(F \). Hence \(N \) is identical with \(Y \) or contiguous to \(Y \). Again a contradiction is reached, and the theorem is established.

Theorem 27. If \(A, X, B, \) and \(Y \) are points of the simple closed curve \(J \) in the order indicated, if \(I \) is the interior of \(J \), and if \(H \) and \(K \) are mutually separated closed and compact subsets of \(J+I \) such that \(H \cdot AXB = 0 \) and \(K \cdot AYB = 0 \), then there exists an arc \(AB \) lying in \(J+I-(H+K) \).

Proof. Two cases will be considered.

Case 1. Suppose there exists no component \(T \) of \(H+K \) such that \(T+J-(A+B) \) is connected. Let \(N_1 \) and \(N_2 \) denote continua which are subsets of segments \(AYB \) and \(AXB \), respectively, and which contain \(H \cdot AXB \) and \(K \cdot AYB \), respectively; and let \(\alpha \) and \(\beta \) denote the components of \(J-(N_1+N_2) \) which contain \(A \) and \(B \), respectively. By Theorem 27 of S.C.P., \(N_1+N_2+H+K \) is the sum of two mutually separated closed sets \(M_1 \) and \(M_2 \) containing \(N_1 \) and \(N_2 \), respectively. Hence by Theorem 24 there exists a simple closed curve \(C \) which separates \(N_1 \) from \(N_2 \) and contains no point of \(M_1+M_2 \). Thus \(C \) contains no point of \(H+K \). By Theorem 26 there exists an arc \(A'X'B' \), where \(A' \) and \(B' \) are points of \(\alpha \) and \(\beta \), respectively; and segment \(A'X'B' \) lies in \(I \cdot C \). Now \(A'X'B' + \alpha + \beta \) contains an arc \(AB \) lying in \(J+I-(H+K) \).

Case 2. Suppose that for at least one component \(T \) of \(H+K \), \(T+J \)
\[(A + B)\) is connected. With the help of Axiom C, it may be shown that there is only a finite number of such components. Either \(H\) or \(K\), say \(H\), contains at least one such component. There exists a point \(Y_1\) which is the first point of segment \(AYB\), in order \(A\) to \(B\), which is either a point of, or contiguous to a point of, such a component of \(H\).

First suppose there exists at least one point \(Q\) of \(AY_1 - A\) having the property that there is a component \(T_Q\) of \(K\) such that \(Q + T_Q + \text{segment} AXB\) is connected. Let \(Q_1, Q_2, \ldots, Q_n\) denote all such points in the order \(A\) to \(Y_1\). Obviously \(Q_i, (i = 1, 2, \ldots, n)\), is not a point of \(H + K\). If the segment \(AQ_i\) of \(AY_1\) contains no point of \(H\), let \(\alpha_i\) denote the interval \(AQ_i\). If segment \(AQ_i\) contains a point of \(H\), it may be shown with the help of Theorem 18 and Case 1 of this theorem that there exists an arc \(\alpha\), from \(A\) to \(Q_1\), lying in \(J + I - (H + K)\). Similarly, if \(n > 1\), there exists an arc \(\alpha_i, (i = 2, 3, \ldots, n)\), from \(Q_{i-1}\) to \(Q_i\), lying in \(J + I - (H + K)\). The set \(\alpha_1 + \alpha_2 + \cdots + \alpha_n\) contains an arc \(\alpha\) from \(A\) to \(Q_n\). Now let \(X_2\) denote the last point of segment \(AXB\), in order \(A\) to \(B\), for which there exists a component \(T_2\) of \(H\), such that \(Y_1 + T_2 + X_2\) is connected. If \(Q_n = Y_1\), and if there exists a point \(P\) of \(AXB\) between \(X_2\) and \(B\) for which there is a component \(T'\) of \(K\) such that \(Y_1 + T' + P\) is connected, then, denoting \(Q_n\) by \(Q'\), we have an arc \(AQ' = \alpha\) having the following properties: (1) The arc \(AQ'\) lies in \(J + I - (H + K)\), (2) \(Q'\) is a point of segment \(AYB\) and does not precede \(Y_1\), (3) there is at least one component \(T\) of \(H\) for which \([T + \text{segment} AXB + \text{interval} AQ'(\text{of} AYB) - A]\) is connected, but \(T + Q'B - Q'\) is not connected, and (4) there exists no component \(W\) of \(H + K\) such that \(W + AYB - Q'\) is connected. If \(Q_n = Y_1\), and if there exists no such point \(P\), let \(X_1\) denote the first point of \(AXB\), such that \(Y_1 + T_2 + X_1\) is connected; or if \(Q_i \neq Y_1\), let \(X_1\) denote the first point of \(AXB\) for which there exists a component \(T\) of \(H\) such that \(Y_1 + T + X_1\) is connected. In either case, \(X_1\) is a point of segment \(AXB\), and with the help of Theorem 18, Case 1, it may be shown that there exists an arc \(\beta\) from \(Q_n\) to \(X_1\) lying in \(J + I - (H + K)\). If \(X_1 \neq X_2\), then by means of an argument like that used in obtaining \(\alpha\) it may be shown that there exists an arc \(\gamma\), from \(X_1\) to \(X_2\), lying in \(J + I - (H + K)\). If \(X_1 = X_2\), let \(\gamma\) denote \(X_1\). If there exists no point \(X'\) of \(AXB\) between \(X_2\) and \(B\) for which there is a component \(T\) of \(K\) such that segment \(AYB + T + X'\) is connected, then the argument for obtaining \(\alpha\) may be used here to obtain an arc \(\delta\), from \(X_2\) to \(B\), lying in \(J + I - (H + K)\). In this case, \(\alpha + \beta + \gamma + \delta\) contains an arc from \(A\) to \(B\), and the theorem is established. If there exists a point \(X'\), as described, let \(Q'\) denote the first point of segment \(AYB\) for which exists a component \(T\) of \(K\), such that \(Q' + T\) segment \(X_2B\) is connected. It follows from Theorem 18 and Case 1, that there exists an arc \(\eta\), from \(X_2\) to \(Q'\), lying in \(J + I - (H + K)\). In this case, \(\alpha + \beta + \gamma + \eta\) con-
tains an arc AQ' having the four properties listed above.

Now suppose there is no point Q as described above. Let X_2 have the same meaning as above, and let γ denote an arc from A to X_2 lying in $J+I-(H+K)$. Again, if there exists no point X', as described above, let δ denote an arc from X_2 to B lying in $J+I-(H+K)$. In this case $\gamma+\delta$ contains an arc from A to B, and the theorem is established. If there exists a point X', as described above, let Q' and η be defined as before. Now $\gamma+\eta$ contains an arc AQ' with properties listed above.

Thus, in any case either there exists an arc AB lying in $J+I-(H+K)$, or else there exists an arc AQ' having the properties listed above. In the latter case, if there exists no point Y' of AYB, between Q' and B, for which there exists a component T of H such that $Y'+T+$segment AXB is connected, then the argument for obtaining α may be used to obtain an arc $Q'B$ lying in $J+I-(H+K)$. In such a case, $AQ'+Q'B$ contains an arc from A to B, and the theorem is established. If there exists a point Y', as described above, let Y_2 denote the first such point in the order Q' to B. Now the argument for obtaining AQ' may be repeated to obtain either an arc $Q'B$ lying in $J+I-(H+K)$ (in which case $AQ'+Q'B$ contains an arc from A to B, and the theorem is established), or an arc $Q'Q''$ of such nature that $AQ'+Q'Q''$ contains an arc AQ'' having the following properties: (1) AQ'' lies in $J+I-(H+K)$, (2) Q'' is a point of segment AYB and does not precede Y_2, (3) there are at least two components of H such that if T denotes either of them, then $[T+$segment $AXB+$interval AQ'' of $AYB-A]$ is connected, but $[T+Q''B-Q'']$ is not connected, and (4) there exists no component W of $H+K$, such that $W+AYB-Q''$ is connected. Since there is only a finite number of components of H such that if T denotes any one of them, $T+J-(A+B)$ is connected, the above process may be repeated until we have obtained either an arc AB lying in $J+I-(H+K)$, or an arc $A Q^{(k)}$ lying in $J+I-(H+K)$, where $Q^{(k)}$ is a point of segment AYB, and there is no point Y' between $Q^{(k)}$ and B for which there is a component T of H such that $Y'+T+$segment AXB is connected. In the latter case, the argument for obtaining α may be used to obtain an arc $Q^{(k)}B$ lying in $J+I-(H+K)$. The set $AQ^{(k)}+Q^{(k)}B$ contains an arc AB lying in $J+I-(H+K)$; and the theorem is established.

Theorem 28. If the common part of the closed and compact point sets H and K is a continuum, and if neither H nor K separates the point A from the point B, and if furthermore, $H-H\cdot K$ and $K-H\cdot K$ are mutually separated sets, then $H+K$ does not separate A from B.

Proof. Suppose on the contrary that \(H+K \) separates \(A \) from \(B \). Let \(M = H+K \) and \(T = H \cdot K \). Let \(S_1 \) and \(S_2 \) denote the components of \(S - M \) which contain \(A \) and \(B \), respectively. There exist arcs \(AXB \) and \(AYB \) such that \(AXB \cdot H = 0 \) and \(AYB \cdot K = 0 \). Let \(X_1 \) and \(Y_1 \) denote the first points of \(AXB \) and \(AYB \), respectively, which belong to the boundary of \(S_2 \). Thus \(X_1 \) and \(Y_1 \) belong to \(K - T \) and \(H - T \), respectively, and hence are not contiguous to each other. Let \(AY_1 \) and \(AX_1 \) denote intervals of \(AXB \) and \(AYB \), respectively. The set \(AX_1 + AY_1 \) contains an arc \(X_1 Y_1 \) such that \(X_1 Y_1 \cdot H = 0 \) and \(A_1 Y_1 \cdot K = 0 \). If \(X_1 \) is contiguous to any point of \(S_2 \), let \(X_2 \) denote such a point, and let \(X_1 X_2 \) denote the arc consisting of these two points. Otherwise, let \(R \) denote a connected domain containing \(X_1 \) but containing no point or boundary point (other than \(X_1 \)) of \(H + A_1 Y_1 \), let \(Y_2 \) denote a point of \(R \cdot S_2 \), and let \(X_1 Y_2 \) denote an arc lying in \(R \). If \(Y_1 \) is contiguous to any point of \(S_2 \), let \(Y_2 \) denote such a point, and let \(Y_1 Y_2 \) denote the arc consisting of these two points. Otherwise, let \(W \) denote a connected domain containing \(Y_1 \) but containing no point or boundary point (other than \(Y_1 \)) of \(K + A_1 X_1 + X_1 X_2 \), let \(Y_2 \) denote a point of \(W \cdot S_2 \), and let \(Y_1 Y_2 \) denote an arc lying in \(W \). Let \(X_1 Y_2 \) denote either the point \(X_2 \) or an arc lying in \(S_2 \) according as \(X_2 \) is or is not \(Y_2 \). It may be readily shown that the set \(X_1 A_1 Y_1 + X_1 X_2 + Y_1 Y_2 + X_2 Y_2 \) contains a simple closed curve \(J \) such that (1) \(J \) contains \(A_1 \) and a point \(B_1 \) of \(X_1 Y_2 \), and (2) of the two segments of \(J \) from \(A_1 \) to \(B_1 \), one contains no point of \(H \) and the other contains no point of \(K \). Let \(I \) denote that complementary domain of \(J \) which does not contain \(T \), and let \(H_1 = H \cdot (J + I) \) and \(K_1 = K \cdot (J + I) \). It follows from Theorem 27 that there exists an arc \(A_1 B_1 \) lying in \(J + I - (H_1 + K_1) \). Thus \(A_1 B_1 \) contains no point of \(M \). But this is impossible since \(A_1 \) and \(B_1 \) lie in different complementary domains of \(M \). The theorem is thus established.

Theorem 29. If no point of the arc \(XY \) separates the point \(A \) from the point \(B \), then \(XY \) does not separate \(A \) from \(B \).

Proof. Suppose \(S - XY = S_A + S_B \), where \(S_A \) and \(S_B \) are mutually separated sets containing \(A \) and \(B \), respectively. Let \(S_1 \) denote the set consisting of \(X \) together with all points \(Z \), if there are any, such that the interval \(XZ \) does not separate \(A \) from \(B \), and let \(S_2 = XY - S_1 \). Now \(S_2 \) contains \(Y \), and clearly every point of \(S_1 \) precedes every point of \(S_2 \). Hence there exists either a last point of \(S_1 \) or a first point of \(S_2 \).

Suppose there exist a point \(O \) which is the last point of \(S_1 \) and \(O \) which is the first point of \(S_2 \). By Theorem 20 the interval \(OQ \) does not separate \(A \) from \(B \). Hence by Theorem 28, \(S_1 + OQ \) does not separate \(A \) from \(B \). Thus \(XQ \) does not separate \(A \) from \(B \), contrary to the fact that \(Q \) is a point of \(S_2 \).
Suppose that there exists a point O which is the last point of S_1. Let O_1, O_2, O_3, \ldots be a sequence of points of S_2 converging to O such that each precedes the next in the order V to X. By Theorem 28, the interval OO_n separates A from B. Thus, by Theorem 5, Chapter 2, of P.S.T., the point O separates A from B.

Suppose there exists a point O which is the first point of S_2. Let O_1, O_2, O_3, \ldots be a sequence of points of S_1 converging to O such that each precedes the next in the order X to Y. By Theorem 28, the interval O_nO separates A from B. Hence by Theorem 5, Chapter 2, of P.S.T., the point O separates A from B. Again a contradiction is reached and the theorem is established.

The following proposition is false:

Proposition. If A, B, and C are three distinct points, and if A is not contiguous to either B or C, then there exists a simple closed curve or triune which separates A from $B + C$.

In Example 1, let A be any point of the triune $T_1T_2T_3$, and let B and C be points of different complementary domains of this triune. There does not exist a simple closed curve or triune which separates A from $B + C$.

Agricultural and Mechanical College of Texas,
College Station, Texas