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In recent years much progress has been made in the study of groups whose

central quotient groups are abelian. Î Such a group is an extension of an

abelian group by an abelian group, and the usual method of solving the im-

plied extension problem may be described as follows: If G is such a group,

then a maximum abelian subgroup F of G is chosen. V contains the central

of G, and G/V represents therefore exactly an abelian group of automor-

phisms of the abelian group V. Thus it is possible to apply the results of the

theory of automorphisms of abelian groups. This method is rather powerful

and yields very interesting results. On the other hand it is not restricted to

this class of groups and may in fact be applied to all groups with abelian

commutator groups. § Finally it has to be mentioned that this method is not

an invariant one, since the maximum abelian subgroups are in no sense

uniquely determined.

In this paper another method will be indicated. If G is a group whose

central quotient group is abelian, then preference is given to a subgroup S

which is situated between the central and the commutator group of G. This

subgroup S will be left indeterminate as long as possible. But as soon as the

final results are reached, either the central or the commutator group of G will

take the place of S according to which of these choices will give better results.

The extension problem presents itself now in the following form: To char-

acterize those groups whose central contains a given abelian group S and

whose quotient group (mod S) is isomorphic to a preassigned abelian group

G*. Each group with these properties induces certain invariant relations be-

tween the given abelian groups 6'* and S, and these invariants turn out to

be characteristic invariants, provided G* is a direct product of (a finite or

infinite number of finite and infinite) cyclic groups. This last hypothesis will

be the only restriction of generality imposed on the investigated groups, so

that the finite groups with abelian central quotient groups are included in

our treatment.

t Presented to the Society, September 7, 1937; received by the editors September 20, 1937.

î Cf., for example, H. R. Brahana, American Journal of Mathematics, vol. 57 (1935), pp. 645-

667, and Duke Mathematical Journal, vol. 1 (1935), pp. 185-197; also C. Hopkins, these Transac-

tions, vol. 37 (1935), pp. 161-195; vol. 41 (1937), pp. 287-313.

§ K. Taketa, Japanese Journal of Mathematics, vol. 13 (1937), pp. 129-232.
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1. Basic concepts and formulas. If G is any group, then Z(G) denotes

the central, and C(G) the commutator group of G. If n is any positive integer,

then Gn is generated by the elements x which satisfy x" = 1, and Gn is gen-

erated by the elements of the form xn for x in G. (If G is an abelian group,

then Gn consists of the elements x with a;n = 1, and G" consists of the elements

x" for x in G.) Finally let (x, y) = xyx~1y~1.

(1.1) If G and S are groups such that C(G) ^SúZ(G), then the operation

(S <G; x*, y*) =x* o y*, which is defined by Sxo Sy = (x, y), obeys the following

rules :

(1) x* o y* is, for every x*, y* in G*=G/S, a uniquely determined element

in S.

(2) 1 = x* o x* = (** o y*) (y* o x*).

(3) x*oy*z* = (x*oy*)(x*oz*).

(4) The element s ¿m G belongs to Z(G) if, and only if, Sz o x* = 1 for every x*

in G*.

Proof. The statements (1), (2), and (4) are obvious. (3) may be proved

as follows :

Sx o SySz = a;yzx_1z_1y~l = xyx~lxzx~lz~ly~l

- (*, y)(x, z),

since every commutator is an element of the central.

An obvious consequence of assertion (1.1), (4) is the following proposition:

(1.2) Suppose that C(G) ̂S^Z(G). Then S = Z(G) if, and only if, 1 is the
only element w* in G/S such that w* o x* = 1 for every element x* in G/S.

(1.3) 7/ x and y are elements of the group G with abelian central quotient

group, then

(xyY = (y, x)<(i~1)!rVy

for every positive integer i.

Proof. This statement is certainly true for i = 1. If 1 <i, then

Xi-lyi-lXy    —     XiX-lyi-lXyl-iyi    =     XÍ(x"1,    y»~l)y*

= (y, *)«-i*y,

since the commutators are elements of the central, and since (2) and (3) of

(1.1) may be applied. If (1.3) holds true for ¿ — 1, then

(xyY = (y, x)(í-i'(i-2)2"1x<-1y<-1xy = (y, *)i<*-l>*"Vy,J

and thus (1.3) holds true for every ¿.
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(1.4) Suppose that C(G) — S = Z(G) and that x and y are elements of G such

that Sx and Sy are both contained in (G/S)n-

(a) If at least one of the elements Sx and Sy is contained in (G/S)2 (this

would certainly be the case, if « is odd), then (xy)n = x"yn.

(b) If « = 2m is an even integer, then

(xy)2m = (SxoSy)mximy2m   and    ((SxoSy)m)2 = 1.

Proof. It follows from (1.3) that

(xy)n = (SyoSx)n(n-1)2_1xnyn;

and the statement (b) is now a consequence of (1.1). In order to prove (a),

assume that Sy belongs to (G.S)2. Then Sy = Sz2 for some z in G and

(SyoSx)^"-»2"1 = (SzoSx")"-1 = 1

by (1.1). This completes the proof.

(1.5) If C(G) =S^Z(G), and if the function P(n, x*) =P(S<G; «, x*) is
defined by P(n, Sx) =S"xn, then the following statements are true:

(1) P(n, at*) is, for every x* in {G/S)n, a uniquely determined element in

S/S».
(2') If x* and y* are both elements of (G/S)„ and at least one of them is an

element of (G/S)2 (for example, if n is odd), then P(n, x*y*) =P(n, x*)P(n, y*).

(2") If x* and y* are both elements of (G/S)2m, then

P(2m, x*y*) = (x* o y*)mP(2m, x*)P(2m, y*),

and (x* o y*)m is either the unit or an element of order 2.

(3) P(nm, x*) =P(n, x*)m for positive m and x* in (G/S)„; and P(n, x*m)

= S»P(nm, x*) for x* in (G/S)nm.

Proof. (1), (2'), and (2") are consequences of (1.4). If Sx belongs to

(G/S)„ and m is a positive integer, then Sx belongs to (G/S)„m and P(«, Sx)m

= (Snxn)m=Snmxnm = P(nm, Sx). If Sx belongs to (G/S)nm, then Sxm belongs

to (G/S)n, and P(«, Sxm) =Snxnm=SnSnmxnm=SnP(nm, Sx).

2. Existence theorems. We prove the following theorem :

Theorem 2.1. Suppose that S and G* are abelian groups, that x* o y* is, for

every x* and y* in G*, an element in S, and that P(n, x*) is an element in S/Sn

for every positive integer « (if « is such that elements of order n exist in G*) and

for every x* ¿« Gn*.

There exists a group G such that C(G) ^S — Z(G) and an isomorphism y of

G/S upon the whole group G* such that (Sx) » o (Sy) » = (x, y) for x and y in G and

P(n, (Sx)7) =S"xn for Sx in (G/S)n (provided there exist elements of order n

in G*) if, and only if, the following conditions are satisfied:
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(1) 1 = x* o x* = (** o y*) (y* o x*), x* o y*z* = (x* o y*) (x* o z*).

(2) P(n, x*y*)=P(n, x*)P(n, y*), if the n is odd; and P(2m, x*y*)

= (x*oy*)mP(2m, x*)P(2m, y*).

(3) P(nm,xm*) = P(n,x*)m,if x* is an element of G*. P(n,x*) =S"P(nm,x*),

if x* is an element of G£n.

Proof. The necessity of the conditions (1) to (3) is a consequence of (1.1)

and (1.5). Suppose now that conditions (1) to (3) are satisfied. There exist

an ordinal number t and, for every ordinal number v with O^v^t, a group

G*(v) with the following properties: G*(0) = 1, G*(v) <G*(v') for v<v',

G*(t) =G*; G*(v + l)/G*(v) is a cyclic group whose order is either infinite or a

prime number; and if v is a limit ordinal, then G*(v) is the join of the groups

G*(u) ior u<v.

By complete (transfinite) induction with regard to v, groups G(v) and iso-

morphisms y(v) will be defined which obey the following rules:

(i) C(G(v))SS^Z(G(v)).

(ii) G(v) <G(v') for 0^v<v'^t.

(iii) 7(1;) is an isomorphism of G(v)/S upon the whole group G*(v).

(iv) If x is an element in G(v) and v <v', then (Sx)y(v) = (Sx)v<-"'K

(v) If x and y are elements in G(v), then (x, y) = (Sx)t(c) o (Sy)y(v).

(vi) If G* contains elements of the finite order m, and if Sx belongs to

(G(v)/S)n, then Snx" = P(n, (Sx)*™).

The choices G(0) =S and 7(0) = 1 are in accordance with these rules, since

G*(0) = 1. It may therefore be assumed that for every u <v a group G(u) and

an isomorphism y(u) have been defined which satisfy (i) to (vi).

Case 1. v = w+\ is not a limit ordinal. G*(w+1)/G*(w) is a cyclic group.

It is either infinite or its order is a prime number p. Denote by b* an element

of G*(v) generating G*(v) (mod G*(w)). If G*(w)b* contains elements of finite

order, then b* may be chosen as an element of minimum order in its class

G*(w)b*. If G*(w+1)/G*(w) is of finite order p, then let c be an element in

G(w) such that (Sc) »« = b*p.

In order to define G(v) and 7(11) we require first the following results:

(2.11) An automorphism ß of G(w) is defined by xß = (b* o (Sx)~>(-w})x. All

the elements of S are fixed elements of ß. If G*(v)/G*(w) is of finite order p, then

c is a fixed element of ß and the automorphism \p=ßv is the inner automorphism

of G(w) induced by c.

By its definition xß is, for every x in G(w), a uniquely determined element

of G(w). If a; is an element in S, then Sx=S and xß = x by (1). If x and y are ele-

ments of G(w), then (xy)ß = (b* o (Sxy)*M)xy = (b* o (Sx)T(w))(è* o (Sy)-"(w))xy

= xßyß by (1) and (i). If x" = l, then x is an element of S, consequently x = \.
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From these facts it follows that ß is a (proper) automorphism of G(w).

Suppose now that G*(v)/G*(w) is of finite order p. Then c> = (b* o (Sc)*<">)c

= (b* o b*p)c = c by (1). Since the elements of S are fixed elements of the auto-

morphism ß,

x+ = (b* o (Sx)yM)px = (b*p o (Sx)yM)x

by (1), and

x+ = ((Sc)t(»' o (Sx)T(»>)x = cxc~l

by (v). This completes the proof of (2.11).

(2.12) There exists a group G(v) with the following properties:

(a) G(w) is a normal subgroup of G(v), and G(v)/G(w) is a cyclic group of

the same order as G*(v)/G*(w).

(b) G(v) contains an element b which generates G(v) (mod G(w)) and satis-

fies the relation bxb~l=xß for every x in G(w).

(c) If G*(v)/G*(w) is of finite order p, then bp is an element of G(w), and

Sc = Sbp.

(d) If b* is an element of finite order pn, then Spnbpn = P(pn, b*).

To prove this note first that G*(v)/G*(w) is of finite order p if b* is of

finite order. The order of b*, if finite, is therefore a multiple pn of p. It follows

from (3) and (vi) that there exists an element c', satisfying Sc = Sc' and

P(pn, b*)=Spnc'n. Now it follows from (2.11) and general theorems in the

theory of extensions of groupsf that the group G(v) which is generated by

G(w) and an element b subject to the relations bxb~l = xff for x in G(w) and

bp = c, if b* is of infinite order and G*(v)/G*(w) of finite order p, or bp = c', if

b* is of finite order pn and G*(v)/G*(w) of finite order p, satisfies the condi-

tions (a) to (d).

(2.13) There exists one and only one isomorphism y(v) of G(v)/S upon

G*(v) which satisfies

(Sb)y^ = b*,        (Sx)yM = (Sx)vw

for x in G(w).

This is an obvious consequence of the following facts : ß induces in S and

in G(v)/S the identical automorphism; if G*(v)/G*(w) is of finite order p,

then b*p = (Sc)y^ = (Sc')y^.

That these definitions of G(v) and y(v) are in accordance with (i) to (iv)

is clear. Any pair of elements in G(v) has the form xb% yb' with x, y in G(w).

Hence, by (1), (i), (v) is a consequence of

f A. M. Turing, The extension of groups, Compositio Mathematica, vol. 5 (1938), pp. 557-567.
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(xb\ yb>~) = xb'yb'b^x-^'y-1 = xyß'(x_1)ß''y_l

= (b*< o (Sy)y^)((Sx)y^ o b*'~)(x, y)

= (Sxbi)y^o(Syb'yw.

Suppose that G* contains elements of order m and that xb* is an element

in G(v) such that (xb')™ is an element of S. Then it follows from (i) and (1.3)

that

(xZ>Om = ((Sx)-*M ob*)-imim-»2~1xmbim;

consequently xmbim is an element of S. Therefore ¿ = 0, if G*(v)/G*(w) is

infinite, and Smxm = P(m(Sx)vM) by (vi) (which condition is satisfied in

G(w)). If G*(v)/G*(w) is of finite order p, then it may be assumed without

loss in generality that 0^i<p. If ¿ = 0, then the above argument may be

applied; if ¿j¿0, then ¿ and p are relatively prime. Since bim is an element of

G(w), this implies that m is a multiple of p. Since i is relatively prime to p,

and since 6* and xbi are elements of the same class (mod G(w)), it follows

that the order of &** is finite and a divisor of the order of (Sa;&i)7("). Hence

pn is a divisor of m, and bim, as well as xm, is an element of S. Consequently

S*"(xôOm = ((Sx)t(») o ô*)-i",t"-1'2",P(>», (Sx)t^))P(w, &**)

by (vi) applied on G(w), by (2.12), (d) and b.y condition (3); and

Sm(x¥)m = P(w, (Sx)?«-"'*»*4) = P(m, (Sxb^M)

by (2) and (2.13). Thus the condition (vi) is satisfied by G(v) and y(v).

Case 2. t) is a limit ordinal. Let G(v) be the uniquely determined group

which contains all the groups G(u) for u <v and is just their join, and let y(v)

be the uniquely determined isomorphism of G(v)/S upon G*(v) which coin-

cides on every G(u)/S for u<v with y(v). That the conditions (i) to (vi) are

satisfied is clear.

Thus G(v), y(v) are defined for every O^v^t. Since G*(t) =G*, it follows

that the group G(t) =G and the isomorphism y(t) =7 meet all the require-

ments of the theorem. This completes the proof.

Corollary 2.2. Suppose that S and G* are abelian groups and that x* o y*

is, for every x* and y* in G*, an element in S. Then there exists a group G such

that C(G) ^S^Z(G) and an isomorphism y of G/S upon the whole group G*

such that

(Sx)y o (Sy)y = (x, y)

for x and y in G if, and only if,

1 = x* o x* = (x* o y*)(y* o x*),        x* o y*z* = (x* o y*)(x* o z*).
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Proof. The necessity of the condition is a consequence of (1.1). Suppose

now that the condition is satisfied. Denote by F(G*) the subgroup of all the

elements of finite order in G*. Then there exists a basis P* of F(G*)

(mod £(G*))f which contains, for every positive integer ¿, a basis P,* of

G** modulo the cross cut of G*2 and Gv4 (^»' *s tne cross cut of P* and G*'.)

If « is an odd integer and m a non-negative integer, then every element x*

in Gt2m may be represented in one and only one way in the form

x*m II b*"(*'-b') (modG*2),

h(x*, b*) =0 or 1, and h(x*, b*) =0 for almost every b*. If bx*, ■ ■ ■ , bk* are

exactly those elements b* in Pm* such that h(x*, bf) = 1, then put

P(n2m, x*) = 5»2"n (b* o 6,*)2""1.
Hi

It is now fairly obvious that the functions x* o y* and P(r, x*) satisfy

the conditions (1) to (3) of the Theorem 2.1, and the existence of a group G

and of an isomorphism y, meeting the requirements of the Corollary 2.2, is

a consequence of Theorem 2.1.

Corollary 2.3. If Z and G are abelian groups, then the necessary and suffi-

cient condition for the existence of a group whose central is Z and whose central

quotient group is G is the existence of an operation xoy of the elements x and y in

G with values in Z, satisfying the conditions :

(1) xoy is for every x and y in G an element in Z.

(2) 1 = x o x = (x o y) (y o x).

(3) x o yz = (x o y) (x o z).

(4) w o x = 1 for every xinG if, and only if,w = \.

This corollary is a consequence of Corollary 2.2 and of (1.2).

3. Factor sets. Suppose that C(G) ̂ S^Z(G) and that G* = G/S is a di-

rect product of cyclic groups. Let P* be a basis of G*, and let B be some set

of representatives in G of the classes in B*. The elements in B may be ordered

in some way. It is important to note that the following formulas depend on

the way in which B has been ordered.

If x* is any element of finite order in G*, then let «(x*) be its order.

Now every element x in G may be represented in one and only one way as

x = s(x)TJ &»<*.»),
biß

t K. Taketa, Japanese Journal of Mathematics, vol. 13 (1937), pp. 129-232.

% Cf., for example, R. Baer, American Journal of Mathematics, vol. 59 (1937), pp. 99-117,

particularly §1.
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where the factors of the product are ordered in the same way as B, almost

every m(x, b) =0, where 0 ún(x, b) <n(Sb) (if Sb is an element of finite order),

and s(x) is an element in S.

If x and y are two elements in G, then integers h(x,y;b), which may only

be 0 or 1, are uniquely determined by the equation

n(xy, b) + h(x, y; b)n(Sb) = m(x, b) + n(y, b)

if Sb is of finite order, and

n(xy, b) = n(x, b) + n(y, b)

if Sb is of infinite order. Put furthermore

«(*, y) = IT'*nCS6).

where Jp indicates a product taken over all those b in B such that Sb is of

finite order and h(x, y; b) = 1 ; and put

c(x, y) = II (Sb' oSi)»^')»'»'1',
b<b'

where Sb o Sb' = (b, b'). Then it follows from (1.1) that

s(xy) = s(x)s(y)a(x, y)c(x, y).

Note that a(x, y) =a(Sx, Sy) =a(Sy, Sx) and c(x, y) =c(Sx, Sy). The product

a(x*, y*)c(x*, y*) is, in the usual terminology,! a factor set of the extension G

of S by G* satisfying S^Z(G).
4. Existence of transformations. Suppose that S, G and T, H are groups

with the property that C(G)^S^ Z(G) and C(H)^T^Z(H). Then <p is called

an S-T-transformation of G into H, if </> obeys the following postulates:

(1) x* is, for every x in G, a uniquely determined element in II.

(2) (sx) * =5*x* for s in S and x in G.

(3) <p maps S exactly upon the whole group T.

(4) 4> induces in G* = G/S a homomorphism X upon the whole group

H*=II/T.
(5) If n is a positive integer, and if x and y are elements in G and xn, yn

elements in S, then ((xy)")* = ((xy)*)" = (x*y*)".

It follows from (2) and (3) that the S-T-transformation 4> induces in S

a homomorphism a upon T, and it follows from (1) to (4) that every element

in H is, under <p, the picture of some element in G. Using the conditions (1)

to (4) we may analyze the condition (5) in the following way. By choosing

y = 1, (5) specializes to the statement:

t Cf., for example, R. Baer, Mathematische Zeitschrift, vol. 38 (1934), pp. 375-416.
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(5') If « is a positive integer, x an element in G, and xn an element in S,

then (x")* = (x*)".

Since 0 induces a homomorphism of S upon the whole group T, it follows

that (Sn)* = P", consequently (5') implies the condition:

Condition 4.a. P(S<G;n, as*)' = P(T<H; w, as**) for x* in G*.

If (1) to (4) and (5') hold, and if Sx and Sy are elements in G„*, then

((xy)*)n = ((xy)")* = ((y, a;)»C"-i>2"Vy»)*

= ((y, x)"("-1)2"Xx")*(y'*)*,

(x*y*)n = (y*, x*)n(n_1)2_1(x*)n(y*)n

= (y*, x*)"(n-1)2_1(xn)*(y")*.

This follows from (1.3) and the facts that 0 is a homomorphism of S upon T

and of G* upon 77*, and that xn, y" are in S. In view of (1.1) it is fairly ob-

vious that under the assumption of (1) to (4), condition (5) holds if, and only

if, condition (5') and the following condition are satisfied:

Condition 4.b. ((S<G; x*, y*)2m"> = (P<77; x*\ y**)2"'1 for x* andy*

in G2»*.

Theorem 4.1. Suppose that S, G and T, 77 are groups with the property

C(G)^S = Z(G) and C(H)^T^Z(H), that G* = G/S is a direct product of

cyclic groups, and that conditions 4.a and 4.b are satisfied by the homomorphism

cr of S upon T and the homomorphism X of G* upon 77* =77/P. Then there exists

an S-T-transformation y of G into 77 which induces a in S, and X ¿« G* and

satisfies the condition :

(6) If T' is the subgroup of T, generated by the elements

(T<H; y*\ x**)(S<G, x*, y*)»

for x* and y* ¿w G*, then y induces a homomorphism of G upon H/T'.

Remark. An obvious consequence of the condition (6) is the following con-

dition :

(6') If C(G) ̂ U^S and C(H) = U", then y induces a homomorphism of

G/UuponH/U".

Proof. Let B be an ordered set in G representing a basis of G/S. If b is

any element in B, and if the order of Sb is finite, then it follows from Condi-

tion 4.a that there exists an element/(ô) in (Sb)x such that (bn<-Sb'>)<'=f(b)n(-Sb\

where n(Sb) is the order of Sb.

It has been mentioned in §3 that every element x in G may be represented

in one and only one way in the form
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x = s(x)YL bn(-z-b\
b

where s(x) is an element in S, almost every m(x, b) = 0, and 0ám(x, b) <n(Sb),

if Sb is an element of finite order m (Se). A function y may be defined for every

x in G by the equation

xy = 5(x)*n/(&)n(*,6),

where the factors in the product are ordered in the same way as the elements

binB.

The element xT is, for every x in G, uniquely determined in H. If 5 is an

element in S, and x in G, then s(sx) =ss(x) and n(sx, b) =n(x,.b) ; consequently

(sx) » = s"xy = syxy. This implies also that y induces <r in S. Since 73 is a basis

of G (mod S), and since (Sé)7 = T/(¿>) = (Sô)\ it follows that y induces X in G*.

Suppose now that x is an element in G and n a positive integer such that xn

is an element in S. Then m(x, ¿>) =0 if Sb is of infinite order, and n(x, b)n

= n'(x, b)n(Sb) if Sb is of finite order. It follows from (1.3) that

x" = s(x)na(xn)c(xn),

where

a(xn) = II bn<-x-b)n = TT/(&»<w.)»'(*.»>

(U' indicates a product over those b such that Sb is of finite order), and

c(xn) = II (S < G; Sb', 5J)»(».»'>»(«.W«<—»r*.
b<b'

Computing a((xy)n) and c((xy)"), accordingly, one finds that

a(x")y = a(x")" = Yl'f(b)n<-Sb)"'<-X'b) = a((xT)")

and it follows from Condition 4.b that

c(xn)y = c(xnY = c((xy)n).

Thus finally

(*")' = (xnY = (s(xY)na((xy)n)c((xy)n) = (xy)n.

Hence y satisfies the conditions (1) to (4) and (5'), and, since y satisfies Con-

dition 4.b, this implies that y is an S-7-transformation of G into H.

If x and y are two elements in G, if a(x, y) and c(x, y) are defined as in §3,

and if a(xy, yy) and c(xy, yy) are computed accordingly, then

a(x, y)y = a(x, y)' = a(xy, yy),
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and

(xy)y = (s(x)s(y)a(x, y)c(x, y)J{ bn{xv-b)

\ ¡><B

= s(x)<'s(y)'a(xy, yy)c(x, y)'T[ f(b)n(x»>»

biß

= c(x, y)"c(xy, yy)~xxyyy.

This shows that y satisfies (6) also.

Lemma 4.2. 7/C(G) =S = Z(G), if C(H) = T^Z(H), and if 0 is an S-T-
transfor motion of G into 77 which induces in S the homomorphism a and in

G/S the homomorphism X, then a necessary and sufficient condition for 0 to be a

one-one correspondence is that a and X are isomorphisms.

Proof. The necessity of the conditions is clear. If the conditions are satis-

fied, and if x and y are two elements in G such that x* =y*, then (Sx)x = (Sy)x,

and consequently Sx = Sy; that is, x=sy for some s in S. Hence y * = x* = (sy) *

= s'y* and x = y, since s' = \ implies 5 = 1.

5. Homomorphisms and isomorphisms. We prove the following theorem :

Theorem 5.1. Suppose that S, G and T, 77 are groups with the property

C(G) ííS = Z(G) and C(H) ^T^Z(H), that G/S is a direct product of cyclic

groups, that a is a homomorphism of S upon T and X a homomorphism of

G* =G/S upon H* = H/T. Then there exists a homomorphism of G into 77 which

induces a in S and X ¿w G* if, and only if,

(a) (S<G; x*, y*)" = (T<H; x*\ y*x) for x*, y* ¿« G*,

(b) P(S<G; «, x*)' = P(T<H; n, ***) for x* in G*.
A homomorphism of G into 77, inducing a in S and X ¿« G*, is an isomor-

phism if, and only if, a and X are isomorphisms.

Proof. The necessity of these conditions is obvious. If, on the other hand,

a and X satisfy the conditions (a) and (b), then it follows from Theorem 4.1

that there exists an S-P-transformation 7 of G into 77 which induces a in

S and X in G* and satisfies the condition (6) of Theorem 4.1. But by condition

(a) it follows that the subgroup T' of T, mentioned in (6), consists of the

identity only, and y is consequently a homomorphism. The last statement

of Theorem 5.1 is an obvious consequence of Lemma 4.2.

6. Uniqueness theorems. We prove the following theorems:

Theorem 6.1. Suppose that S, G and T, 77 are groups with the property

C(G) =S^Z(G), C(H)^TèZ(H), and that G/S is a direct product of cyclic

groups. Then there exists an isomorphism of G upon 77 which maps S upon T if,

and only if, there exists an isomorphism o of S upon T and an isomorphism X

of G* = G/S upon H* = H/T satisfying conditions (a) and (b) of Theorem 5.1.

)
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This is an obvious consequencef of Theorem 5.1.

Theorem 6.2. Suppose that G/Z(G) is a direct product of cyclic groups.

Then G and the group H are isomorphic if, and only if, there exists an iso-

morphism <s of Z(G) upon Z(H) and an isomorphism X of G/Z(G) upon H/Z(H)

which satisfy the conditions (a) and (b) of Theorem 5.1.

This is a consequence of Theorem 6.1 and the fact that an isomorphism of

G upon H maps Z(G) upon Z(H).

Remark 6.3. If one assumes that G and H are groups with abelian central

quotient groups, then Theorem 6.2 is transformed into another true theorem, if

everywhere the commutator group is substituted for the central.

Remark 6.4. If G/Z(G) is abelian and countable and does not contain ele-

ments of infinite order, then G/Z(G) is a direct product of cyclic groups.

Since G* = G/Z(G) is abelian and does not contain elements of infinite

order, it is the direct product of its primary components. If w* is an element

in G* whose order is a power pi of the prime number p, if the equation

y*p =w* fias a solution for every positive integer k, and if x* is an element of

order p' in G*, then

(Z(G) < G; w*, x*) = w* o x* = v*p' o x* for some v* eG*

= v* o x*pi = 1

by (1.1). Now it follows from (1.2) that w* = l. Since G* is countable, it fol-

lows from a theorem of H. Prüfer! that G* is a direct product of cyclic groups.

In Appendix A a uniqueness theorem will be proved in which G/Z(G) does

not contain elements of infinite order and need not be a direct product of

cyclic groups.

Example 6.5. This is to show that Theorem 6.2 does not hold if G/Z(G) is

a countable abelian group but not a direct product of cyclic groups.

Denote by A a direct product of a countably infinite number of infinite

cyclic groups, by a(l), a(2), • • • , a basis of A and by B an abelian group

which is generated by elements b(l), 6(2), • • • , subject to the relations

b(i+l)n = b(i), for ¿ = 1, 2, • • ■ , and a fixed integer m>1. Z is the direct

product of A and B.

The abelian group G* is generated by elements g(i,j)*, for/ = l, 2 and

¿ = 1, 2, • • • , satisfying the relations g(i+i, j)*n=g(i, j)*, for i — \, 2, ■ ■ ■ ,

f That these conditions are sufficient is an obvious consequence of well known theorems in the

theory of extensions of groups; cf., for example, R. Baer, Mathematische Zeitschrift, vol. 38 (1934),

p. 410, formula (3), or p. 391, Theorem 2.

Î H. Prüfer, Mathematische Zeitschrift, vol. 17 (1923), pp. 48-57.
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G* does not contain elements of finite order not equal to one, and a normal

form of the elements in G* is

g(i, i)*"g(m, 2)",

with 0<h<n, if 1 <i, and 0<k <«, if 1 <m.

Essentially the only operation x* o y* of G* in Z which satisfies the condi-

tions (1) to (4) of Corollary 2.3 is defined by

g(i, l)*hg(m, 2)*k o g(i', i)*h'g(m', 2)**' = b(i + m' - l)hk'b(ï + m- 1)-*'*.

The group G is generated by adjoining to Z elements g(i, j) which are

subject to the relations

Z ^ Z(G),    g(i + 1,/)" = g(i,j),    (g(i, 1), g(k, 2)) =b(i+k-l).

The group W is generated by adjoining to Z elements w(i, j) which are

subject to the relations

Z ^ Z(W),    w(i + \,j)n = w(i,j)a(i),    (w(i, 1),   w(k, 2)) = b(i + k - 1).

It follows from (1.2) that both groups G and W have Z as central and G*

as central quotient group, and realize the operation x* o y*. Since G* does not

contain elements other than one of finite order, the conditions of Theorem 6.2

are satisfied with the exception that G* is not a direct product of cyclic

groups. But G and W are not isomorphic. For every class, not equal to Z,

of G/Z contains elements which are «th powers of elements in G for every

positive integer r. But if x is an element in the class Zw(l, 1) of W/Z, then

the integers r, such that ynr = x has a solution y in W, are bounded, as an wlh

power of an element in W which is contained in Zw(\, 1) has the form

zn'a(r)nr-la(r - l)"1-2 ■ • • a(\)w(\, 1), z in Z.

It is a consequence of Theorem 2.1 and Theorem 6.2 that the problem to

construct all groups whose centrals are a preassigned abelian group Z and

whose central quotient groups are isomorphic to a given direct product G*

of cyclic groups is equivalent to the problem to define all sets of functions

x* o y*,        P(n, x*)

which satisfy the conditions (1) to (4) of Corollary 2.3 and the conditions (2),

(3) of Theorem 2.1. If

x*oy*,    P(n, x*)    and    x*Oy*,    P'(n, x*)

are two sets of functions of G* in Z, subject to the mentioned conditions, then

they characterize isomorphic groups if, and only if, there exists an auto-

morphism T of Z and an automorphism y of G* such that
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(a) x*y o y*y = (x*Oy*)f for x*, y* in G*, and

(b) P(n, x*y) =P'(n, x*Y for a;* in G*.

That it is not sufficient to assume the existence of one pair of automor-

phisms 7, f satisfying (a) and of another pair of automorphisms y', f', satisfy-

ing (b), may be seen from the following example :

Example 6.6. Suppose that Z is a direct product of a cyclic group of order

p3, generated by v, and a cyclic group of order p, generated by u, where p

is a prime number not 2, and that G* is a direct product of two cyclic groups

of order p2 (b*, c* a basis of G*). Admissible sets of functions of G* in Z may

be characterized by the equations

0* o c* = vpu,    P(p2, b*) = P(p2, c*) = Zp\pu,

and another set by the equations

b* e c* = vpu,    P(p2, b*)' = P(p2, c*)' = Z'Vw"1.

Clearly there exists a pair of automorphisms y, f which satisfies (a) and an-

other pair which satisfies (b) but none which satisfies both (a) and (b).

7. Types of subgroups. Suppose that G is a group with abelian central

quotient group, and that the subgroups S and T of G are situated between

the central and the commutator group of G. Assume furthermore that G/S

is a direct product of cyclic groups. Then it follows from Theorem 5.1 that

there exists an automorphism of G which maps S upon T (that is, that S and

T are isotype in G) if, and only if, there exists an isomorphism a of S upon T

and an isomorphism X of G/S upon G/T such that

(a) (S<G; x*, y*)" = (T<G; x*\ y*x) for x*, y* in G/S and

(b) P(S<G; n, x*)° = P(T<G; n, x*x) for a;* in (G/S)n.

If, in particular, G is an abelian group, then condition (a) may be omitted,

and this characterization of the types of subgroups applies to any subgroup

whose quotient group is a direct product of cyclic groups. It applies therefore

to all subgroups, if, for example, G is a group with a finite number of genera-

tors or if the orders of the elements in G are bounded.

8. Conformality. Two groups G and H are said to be conformai, if they

contain for every positive integer m the same number of elements of order m

and also the same number of elements of infinite order. Since (as obvious ex-

amples show) infinite abelian groups without elements of infinite order may

be conformai without being isomorphic, this definition of conformality is too

wide for our purposes, and therefore the following definition may be adopted.

Definition 8.1. The groups G and H with abelian central quotient groups

are said to be conformai if there exist groups S and T between the central and the

commutator groups of G and H, respectively, and an S-T-transformation of G



1938] ABELIAN CENTRAL QUOTIENT GROUPS 371

into 77 which is a one-one correspondence between G and 77 and satisfies condi-

tion (6) of Theorem 4.1. Such an S-T-transformation may be termed an S-T-

conformality of G upon 77.

Since S-F-conformalities induce isomorphisms in S and G/S and sat-

isfy condition (5') of §4, conformai groups are also conformai in the wider

sense mentioned above. It is a consequence of condition (6) of Theorem 4.1

that conformalities between abelian groups are isomorphisms.

Conformality is a symmetric and reflexive relation. But in general it is

not transitive as follows from Example 8.4.

Suppose now that C(G)=S^Z(G), C(H)^T^Z(H) and that G/S is a

direct product of cyclic groups. Then it follows from the results of §4, that

there exists an S-F-conformality of G upon 77 if, and only if, there exists an

isomorphism a of S upon P and an isomorphism X of G/S upon 77/P such that

(a) P(S<G;«,x*)" = P(F<77;«,x*x) for x* in (G/S)n and

(b) (S<G; x*, y*)2m-'°= (T<H; x*\ y**)»—1 for x*, y* in (G/S)2->.

Exactly those pairs <r, X which satisfy the conditions (a) and (b) may be

induced by S-P-conformalities of G upon 77.

As condition (b) is not very restrictive, this shows that conformality de-

pends essentially on the P-functions.

Theorem 8.2. If G is a group with abelian-central quotient group, and if

G/C(G) is a direct product of cyclic groups, then the following three properties

of G are equivalent :

(a) G is conformai to an abelian group.

(b) 7/x and y are elements of G and if n is a positive integer such that x" and

yn are elements of C(G), then xny" = (xy) ". "

(c) (C(G) <G; x*, y*)2"'1 = 1 for x*, y* ¿« (G/C(G))2-.

Proof. If (a) holds, then there exists a group S between C(G) and Z(G),

an abelian group 77 and a subgroup T of 77, and an S-P-conformality 0 of G

upon 77. If « is a positive integer, and if x and y are elements in G such that

x" and yn are elements in C(G), then xn and y" are elements in S; hence

((xy)n)* = (x*y*)n = (x*)"(y*)n

= (xn)*(yB)* = (x"yn)*,

since G* = 77 is an abelian group, condition (5') holds, and 0 is a homomor-

phism on S. Now (b) is a consequence of the fact that 0 defines a one-one

correspondence between G and 77.

If (b) holds true, then it follows from (1.3) that for any two elements x

and y such that C(G)x and C(G)y are elements of (G/C(G))2m the following

equalities hold:
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x*my*m = (xyym = (C(G) <G;C(G)x, C(G)y)2m~'x2Vm;

and (c) is therefore a consequence of (b).

Suppose now that (c) is satisfied. Then it follows from Theorem 2.1 that

there exists an abelian group H, which contains C(G) =S as a subgroup, and

an isomorphism y of G/C(G) upon H/S such that P(S<H; n, x*y)

= P(C(G) <G; m, x*) for x* in (G/C(G))„. It follows, from the fact mentioned

in the beginning of this section, that there exists a C(G)-S-conformality of

G upon H which maps every element in C(G) =S upon itself and induces y

in G/C(G). Hence (a) is a consequence of (c).

Note that the existence of a basis of G/C(G) has been needed only to

prove that (a) is a consequence of (c).

Theorem 8.3. 7/G is a group with abelian central quotient group, if G/C(G)

is a direct product of cyclic groups, and if H and H' are abelian groups which

are both conformai to G, then H and H' are isomorphic.

Proof. From the assumptions there exist subgroups S and S' between

C(G) and Z(G), an S-S*-conformality 4> of G upon H, and an S'-S'*'-con-

formality <j>' of G upon H'. Since H and H' are abelian groups, <f> and <¡>' are

isomorphisms in C(G), it follows from condition (6) of Theorem 4.1 that <p is a

C(G)-C(G)^-conformality of G upon H, and <¡>' is a C(G)-C(G) ^-conformal-

ity of G upon 77'. Consequently there exists an isomorphism a of C(G)* = T

upon C(G)*' = T' and an isomorphism X of H/T upon H'/T' such that

P(T <H;n, x*)' = P(T' < H';n, x*x)

for x* in (77/7%. Since G/C(G), H/T, and H'/T' are isomorphic groups and

therefore direct products of cyclic groups, and since H and 77' are abelian

groups, it follows from Theorem 5.1 that there exists an isomorphism of H

upon 77' which induces a in T and X in H/T.

This proof together with the considerations in §7 makes it clear that the

investigation of the functions P(n, x*) is a problem which is equivalent to

the problem of characterization of the classes of isotype subgroups of an

abelian group.

Example 8.4. This is to show that the Theorem 8.3 is no longer true, when

the condition of the existence of a basis of G/C(G) is omitted, and this proves

incidentally that the conformality relation is not transitive.

Let A be the direct product of infinite cyclic groups with the basis a(\),

a(2), ■ • ■ , and let B be the abelian group generated by the elements b(l),

b(2), ■ ■ ■   subject to the relations

b(i+ \y = b(i),
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where 1 <n is a fixed odd integer. Z denotes the direct product of A and P.

A* denotes the direct product of infinite cyclic groups with the basis

a*(i), a*(2), ■ ■ ■   and B* the abelian group generated by elements b*(i,j),

for ¿ = 1, 2, ■ ■ •   and/ = l, 2, subject to the relations

b*(i+l,jY = b*(i,j).

G* denotes the direct product of A* and P*.

An operation x* o y* of G* in Z, satisfying the conditions (1) to (4) of

Corollary 2.3, is characterized by the equations

a*(2i - 1) oa*(2i) = a(i),

a*(i) o a*(j) = 1,    for    i < j, (i, j) ^ (2k - 1, 2k),

b*(i, j) o a*(k) = 1,

b*(i, l)ob*(k, 2) = b(i+ k - 1).

The group G may be the group, generated by adjoining to Z elements

m(1), u(2), ■ • ■ , v(i,j), for ¿ = 1, 2, • • • ;/ = l, 2, subject to the relations

Z ^ Z(G),        (u(i), u(j)) = a*(i) o a*(j), (u(i), v(k, j)) = 1,

(v(i,l),v(k,2)) =b*(i,l)ob*(k,2),

v(i + 1,/)" = v(i,j).

G is an extension of Z by G* which realizes the operation x* o y*. Hence

Z = C(G)=Z(G).
It is easily seen that G is conformai to the abelian group 77 which is the

direct product of Z and G*.

Denote by U' the direct product of infinite cyclic groups generated by the

elements u'(\), u'(2), ■ ■ ■ , by B' the direct product of the infinite cyclic

groups, generated by the elements b'(i,j), for ¿ = 1, 2, • • • ,/=l, 2, andby A'

the subgroup of B' which is generated by the elements a'(2(i — \)+j)

= b'(i, j)b'(i+\,j)~n and is the direct product of the cyclic groups generated

by the elements a'(k). Let 77' be the direct product of U', B', and P, and

denote by Z' the direct product of A ' and P.

A Z-Z'-conformality 0 of G upon 77' is defined by

u'(i) = u(iy, b'(i,j) = v(i,jY,

a'(i) = a{i)*, b(i) = b(iy,

since 0 defines an isomorphism of Z upon Z' and of G* upon H'/Z'. But 77

and 77' are abelian groups which are not isomorphic,! since 77 is a direct prod-

t Cf. R. Baer, Duke Mathematical Journal, vol. 3 (1937), pp. 69-122, Corollary 2.9.
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uct of cyclic groups by three groups of the type of B, whereas H' is a direct

product of cyclic groups by one group of the type of B.

It is a special case of Theorem 8.2 that the group G is conformai to an

abelian group, if C(G) ¿Z(G), and if G/C(G) is a direct product of cyclic

groups and does not contain elements of even order. Suppose on the other

hand that C(G) ̂ S^Z(G) and that 2m with 0<m is the l.c.m. of the orders

of the elements in G/S. If G is S- ■ ■ • -conformai to an abelian group, and

if w* is an element of order 2m in G/S, then

1 = (S < G; w*, x*)2""1 = (S < G; w*2""1, x*)

for every x* in G/S; and it follows from (1.1) that the elements in w*2"'1 are

elements of Z(G). Since 1 s¿w*2m~l, this implies that Sy¿Z(G).

It is fairly obvious how to construct groups of order a power of 2 which

are conformai to an abelian group. Let, for example, m be an integer, (Km), S

a cyclic group of order 2n~l generated by s, and G* a direct product of two

cyclic groups of order 2", (u*, v* a basis of G*). The group G with C(G) sSS

^Z(G) which realizes the functions characterized by

m* o v* = s,        P(2n, u*) = P(2n, v*) = 1

is, by Theorem 8.2, conformai to an abelian group, though not itself abelian.

If in this construction it had been assumed that S was of order 2", then the

group G would not be conformai to any abelian group, since S = C(G) =Z(G),

and it may be computed that the numbers of the elements of a given order in

G are not the same as the corresponding numbers in any abelian group.

9. Groups with isomorphic commutator groups and isomorphic central

quotients groups. If # is a homomorphism of the group G upon the whole

group H, then C(G)* = C(77) and Z(G)*fkZ(H). If S is a normal subgroup

of G, then S* is a normal subgroup of H, and <p induces an isomorphism of

G/S upon H/S*, if S is the complete origin of S*.

Lemma 9.1. If G is a group with abelian central quotient group, and if <j> is

a homomorphism of G upon the (whole) group H which induces an isomorphism

in C(G), then Z(G) * = Z(H), Z(G) is the complete origin of Z(H), and 4> induces

an isomorphism in G/Z(G).

Proof. Let w be any element in G such that w* is an element in Z(H). If x

is any element in G, then (w, a;)* = (w*, x*) = l, consequently (w, x)=l for

every x in G; that is, w is an element in Z(G). This proves the lemma.

That the converse does not hold, may be seen from the following example.

Let p be a prime number not 2, and let Z and G* each be a direct product

of three cyclic groups of order p. If z, z', and z" form a basis of Z, and u*, v*,
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and w* a basis of G*, then an operation x* o y* of G* in Z which satisfies the

conditions (1) to (4) of Corollary 2.3 is characterized by the equations

u* ov* = z,        v* o w* = z',        w* ou* = z".

The functions P(p, x*) = 1, for x* in G*, satisfy the conditions of Theorem 2.1

with the operation x* o y*. It is therefore a consequence of Theorem 2.1, (1.2),

and Theorem 6.1 that there exists one, and essentially only one, group G such

that Z=Z(G) (or C(G)) and G/Z = G* which realizes the functions x* o y* and

P(P, «*)•
Denote by M the subgroup of G generated by z, and put H = G/M. Then

it follows from (1.2) that Z(77) =C(H) =Z(G)/M, but this homomorphism

of G upon 77 is not an isomorphism in C(G).

Theorem 9.2. Suppose that G and G' are groups whose central quotient

groups are abelian. Then there exists an isomorphism 0 of C(G) upon C(G')

and an isomorphism X of G/Z(G) upon G'/Z(G') with the property that

(Z(G) <G;x*, y*)* = (Z(G') < G'; x*\ y*x)

for x*, y* ¿« G/Z(G) if, and only if, there exists a group 77 with abelian central

quotient group and homomorphisms 0 and 0' of 77 upon G and G', respectively,

which induce isomorphisms in C(H).

Proof. Suppose first that there exists a group 77 with abelian central quo-

tient group and homomorphisms 0 and 0' of 77 upon G and G', respectively,

which induce isomorphism in C(H). Then it follows from Lemma 9.1 that

Z(77)* = Z(G), Z(77)*'=Z(G'), and that 0 and 0' induce isomorphisms in

77/Z(77). Thus 0-1 is an isomorphism in C(G) and in G/Z(G), and 0=0_10'

is an isomorphism of C(G) upon C(G'), X=0_10' is an isomorphism of

G/Z(G) upon G'/Z(G').
If x and y are two elements in G, then there exist some elements u and v

in 77 such that w*=x, v* = y. Consequently

(x, yy = («,»)*'- («♦',*♦'),

(Z(G)x,Z(G)yY = ((Z(G)x)\ (Z(G)yY),

and the condition is a sufficient one.

Suppose now that there exists an isomorphism 0 of C(G) upon C(G') and

an isomorphism X of G/Z(G) upon G'/Z(G') such that

(i) (Z(G) <G; x*, y*)* = (Z(G') <G'; x*y>) for x*, y* in G/Z(G).

Since G/C(G) is an abelian group, there exist a direct product G* of infinite

cyclic groups and a homomorphism y of G* upon G/C(G). There exist by
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Theorem 2.1 and by Theorem 6.1 one, and essentially only one, group K,

such that C(K) =C(G) ^Z(K), and an isomorphism k of K/C(K) upon G*

such that

(C(K) < K; x*, y*) = (C(G) < G; x**y, y*<?)

for x*, y* in K/C(K). Since K/C(K) is a direct product of infinite cyclic

groups, Z(K)/C(K) is also a direct product of infinite cyclic groups,f con-

sequently Z(K) is the direct product of C(K) and a group D which is a direct

product of infinite cyclic groups. Since ay is a homomorphism of K/C(K)

upon G/C(G), since K/C(K) is a direct product of infinite cyclic groups, it

follows from the above equation and Theorem 5.1 that there exists a homo-

morphism p oí K upon G which leaves the elements in C(K) = C(G) invariant

and induces «7 in K/C(K).

Similarly there exists a group K', such that C(G') =C(K') ^Z(K'),

K'/C(K') is a direct product of infinite cyclic groups, and Z(K') is the direct

product of C(K') and a group D' which is a direct product of infinite cyclic

groups; and there exists a homomorphism p' of K' upon G' which leaves all

the elements in C(K') = C(G') invariant.

Since G/Z(G) is an abelian group, there exists a direct product H* of

infinite cyclic groups and a homomorphism i of 77* upon G/Z(G). Denote by S

the direct product of D, D', and C(G), and denote by H the essentially

uniquely determined group such that C(H) ^S^Z(H) and such that there

exists an isomorphism t of 77/S upon 77* which satisfies the equation

(S < II ; x*, y*) = (Z(G) < G; **", y*")

for x*, y* in H/S.

Since H/S is a direct product of infinite cyclic groups, H/C(H) is the di-

rect product of S/C(H) and a direct product D* of infinite cyclic groups.

By Lemma 9.1, p induces an isomorphism of K/Z(K) upon G/Z(G) ; con-

sequently the isomorphism p~l is well defined on G/Z(G). Since D* is a direct

product of infinite cyclic groups and since D* represents exactly 77/S, there

exists a homomorphism <j of H/C(H) upon K/C(K) with the following prop-

erties: x*" = l, if x* = C(H)d' and d' in D'; x*° = C(K)d, if x* = C(H)d and d

is an element of D; and Z(K)*° = (Sx*)71?'1, if x* is an element of D*.

Since p induces «7 in K/C(K), it follows that

(S < II; x*, y*) = (Z(K) < K; x**"-1, y**"-1)

for x*, y* in 77/S. The homomorphism a therefore satisfies

f R. Baer, Duke Mathematical Journal, vol. 3 (1937), pp. 69-122, especially the remark to

Corollary 8.9.
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(C(K) < K; x*", y*') = (C(H) < H; x*, y*)

forx*, y* in H/C(H).

By Lemma 9.1, p' induces an isomorphism of K'/Z(K') upon G'/Z(G');

consequently the isomorphism p'_1 is well defined on G'/Z(G'). There exists,

therefore, a homomorphism a' of H/C(H) upon K'/C(K') with the following

properties: x*'' = C(K')d', if x* = C(H)d' and d' is an element in D'; x*"' = 1,

if x* = C(H)d and d is an element in D; and Z(K')x*"' = (Sx*)**""1, if x* is

an element of D*.

Since p' is a homomorphism of K' upon G' which leaves all the commuta-

tors invariant, it follows from condition (i) that

(C(K') < K'; x*"', y*"') = (Z(K') < K';Z(K')x*"', Z(K')y*°')

= (Z(K') < K'; (5x*)"Xp,_I, (Sy*)"*"'-1)

= (Z(G') < G'; (Sx*y>\ (Sy*y*)

= (Z(G) < G; (Sat*)«, (Sy*)")*

= (S < H;Sx*,Sy*y = (C(H) < H; x*, y*)*

for every x*, y* in H/C(H).

Since H/C(H) is a direct product of infinite cyclic groups, it follows from

Theorem 5.1 that there exists a homomorphism ß of 77 upon K which induces

<r in H/C(H) and leaves the elements in C(H)=C(K) invariant, and that

there exists a homomorphism ß' of 77 upon K' which induces a' in H/C(H)

and 0 in C(77) =C(G). ßp and ß'p' are homomorphisms of 77 upon G and G',

respectively.ßp leaves the elements in C(77) = C(K) = C(G) invariant, and ß'p'

induces in C(77) the isomorphism 0. This completes the proof.

In fact slightly more has been proved, namely, that the group 77, which

meets the requirements of the Theorem 9.2, may always be chosen in .such

a way that H/C(H) is a direct product of infinite cyclic groups.

The proof of this theorem shows the advantage of treating finite and in-

finite groups at the same time. For even if the groups G and G' of the theorem

are finite, it may prove difficult to construct a group 77 which meets all the

requirements without recourse to infinite groups.

10. Automorphisms. If G is a group with abelian central quotient group

and S a subgroup of G such that C(G) SS^Z(G), then denote by 9(S<G)

the group of all those (proper) automorphisms of G which map S upon itself.

If S is, for example, the central or the commutator group of G, then 0(S <G)

is the group of all automorphisms of G.

Those automorphisms of G which leave invariant every element in S and

every element in G/S form a normal subgroup Q,(S<G) of &(S<G). If 0 is
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any automorphism in fi (S <G), x an element in G and s an element in S, then

x*x-1 = (sx)*(5x)-! = (Sx)*(Sx)-1 = (4,, Sx)

is an element in S; and if x and y are two elements in G, then

(<t>, Sxy) = (xy)*(xy)~l = x*y*y_1x_1

= x«(0,Sy)x-1 = (0,Sx)(4>,Sy),

and conversely every homomorphism of G/S into S may be realized this way.

Since finally

(4>y, Sx) = x^x-1 = x*y(x-1)yxyx~1

= (4>, Sx)y(y, Sx) = (4>,Sx)(y,Sx),

as 7 belongs to fi(S <G) and (</>, Sx) to S, it follows that fi(S <G) is essentially

equal to the group of all homomorphisms of G/S into S.

Two automorphisms in 8(S<G) belong to the same class of A(S<G)

= 0(S<G)/fi(S<G) if, and only if, they induce the same automorphisms in

S and in G/S. Thus A(S<G) is essentially equal to a subgroup of the group

II(S, G/S) of all the pairs (a, X) of automorphisms a of S and X of G/S. If

the pair (a, X) in II(S, G/S) is realized by an automorphism in ®(S <G), then

it follows that

(a) (S<G; x*, y*)' = (S<G; x*\ y*x) for x*, y*, in G/S, and

(b) P(S<G; n, x*)' = P(S<G; n, x*x) fora:* in (G/S)n;

and these conditions are sufficient for the realizability, provided G/S is a di-

rect product of cyclic groups, as follows from Theorem 5.1.

Suppose now that 4> is an automorphism in fi(S<G) and that the auto-

morphism 7 of G induces in S the automorphism a and in G/S the automor-

phism X. Then

(t_107, Sx) = xy~l*yx~l = (xy~1*(xy~l)~r)y

= (</>, Sxy~l)y = (0, (Sxy-1)*;

consequently it follows that the class of A(S<G) which is characterized by

the pair (a, X) in II(S, G/S) induces, in the abelian group fi(S <G), the auto-

morphism defined by

(4>C".*>, x*) = (<t>, x*x-1)'

for x* in G/S.

In order to characterize the extension 8(S<G) of fi(S<G) by A(S<G)

which realizes the above mentioned automorphisms in fi(S<G), it is neces-

sary to compute the so-called factor sets. A method for their calculation may

be indicated for groups G, S which satisfy the conditions:
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(i) C(G)=S = Z(G).
(ii) G/S = G* is a direct product of cyclic groups.

(iii) If x and y are elements of G and « is a positive integer such that x"

and y" are elements of S, then x"y" = (xy)\

First we define in S for every positive integer « a function sn~l as follows:

1 = l"-1; if the equation xn = s has a solution in S, then sn_1 is one of these

solutions x; if 5 is not contained in S", then sn_1 is not defined.

Second an ordered set B is chosen in G which represents exactly a basis P*

of G/S, and the functions

s(x),    n(x, b),    a(x, y) = a(Sx, Sy),    c(x, y) = c(Sx, Sy),

for x, y in G and b in B, introduced in §3, are defined with reference to the

ordered set B.

In defining another multiplication of the elements of G by the equation

x*y = c(x, y)~1xy,

for x, y in G, G is transformed into an abelian group 77, and S is a subgroup

of 77, since c(x, y) = 1 for x, y in S. Thus the identical mapping of the elements

in G is an S-S-conformality of G upon 77. Furthermore G/S = H/S and

P(S<G; n, x*) =P(S<77; «, x*) for x* in G„*. Finally tt(S<G) = tt(S<H)
and A(S<G) — A(S<H), as follows from the conditions (a) and (b) men-

tioned above.

Suppose now that (a, X) is a pair in n(S, G/S) which may be realized by

some automorphism in 6(S<G). Then

¿>*x = n>*n<i,;-t,>>°,
d'tB'

where almost every «(&*, d*, X) = 0 and 0 = n(b*, d*,X) <n(d*), if d* is of finite

order n(d*). If b* is an element of finite order n — n(b*), and if d in P always

represents the element d* in P*, then it follows from the realizability of (<r, X)

that the elements

(¿>n)*n<*~n"í!,*''í''X) = <b,<r,\)
dtli

are «th powers of elements in S. Consequently, an automorphism y =y(a, X)

in @(S <G) is defined by the equations

xy = x" for x in S,

¿>t = t(b, a, X)lJd^b,'d'^,
diB
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where t(b, o-,'X) = 1, if b* is of infinite order, and t(b,<r,\) =s(b, er, X)n<6*'-1, if b*

is of the finite order n(b*).

It is easily seen that there exists an automorphism in 6(S<77) which has

the same values as 7 on S and on B. But these automorphisms do not con-

stitute the same mapping of the elements which form both groups G and H.

Thus a representative of every class of A(S <G) has been chosen, and the

factor sets are expressions

7(0-, \)y(o-', \')y(o-o-', XX')"1 = a(a, X; </, \')c(a, X; <r', X')

where a( ■ • ■ ) is the factor set, calculated for the group H, and c( ■ ■ ■ ) is

an expression in the (S<G; b*, d*).

If all the elements of G/Z(G) are of finite odd order, then the investiga-

tions of Appendix B will produce better results. But the methods of Appendix

B break down in some of those cases in which the method of this section may

be applied.

Appendix A. A uniqueness theorem for /»-adic groups. It is the object of

this appendix to prove a uniqueness theorem which is not contained in Theo-

rem 6.2. Because of Example 6.5 only groups without elements of infinite

order will be considered, and by Remark 6.4 it will be necessary to consider

groups whose central quotient group is infinite but not countable.

Groups whose central quotient group is abelian are direct products of

/»-groups (that is, groups which contain only elements of order a power of

the prime number p) if, and only if, they do not contain elements of infinite

order.f Consequently only /»-groups will be considered in this appendix.

The /»-group G will be called p-adic if the cross cut of its subgroups Gp(,

for ¿=1, 2, • ■ • , consists of the group unit element only. The /»-group G is

said to be dense in the p-group H, if G ^ 77 and every class of H/Hp contains

elements of G. Finally G is termed a closed p-adic group if G is /»-adic and if G

is the only /»-adic group in which G is dense.

Lemma A.l. (a) Every p-adic group is dense in one and essentially only one

closed p-adic group.

(b) If the p-adic group G is dense in the closed p-adic group G, and if the

p-adic group H is dense in the closed p-adic group H, then every isomorphism y

of G upon the whole group H is induced by one and only one isomorphism of G

upon H.

f Cf., for example, R. Baer, Compositio Mathematica, vol. 1 (1934), pp. 254-283, especially the

lemma on p. 261.
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Similar statements have been proved before by similar methods, t and it

will therefore be sufficient to give the following indication of a proof of this

lemma. If G is a ^>-adic group, then consider the set S(G) of all the sequences

Si with the following properties :

(a) Si is a class of G/Gpi.

(b) Si+1^S,,

(c) The orders of the elements S< of the groups G/Gpi are bounded. (The

upper bounds for the orders may be different for different sequences.)

If the multiplication in S(G) is defined in the obvious way, S(G) becomes

a closed />-adic group. In mapping the element x of G upon the sequence Gpix

an isomorphism of G upon a dense subgroup of S(G) is defined. Now it is

fairly obvious how to work out a proof of the lemma.

If G is a ^>-adic group, then the essentially uniquely determined closed

£-adic group G, in which G is dense, may be called the p-adic closure of G.

The following example shows the existence of closed ^-adic groups whose

central quotient group is abelian but not a direct product of cyclic groups.

Denote by Z, and Z<* cyclic groups of order p\ generated by zf and z*, re-

spectively; and let Z be the direct product of the groups Z¡, for ¿=1,2, • • • ,

and Z* the direct product of the groups Z?, for ¿ = 1, 2, ■ • • . An operation

x* o y* and functions P(pi, x*) of Z* in Z, which satisfy the conditions (1) to

(4) of Corollary 2.3 and the conditions (1) to (3) of Theorem 2.1, may be

defined by the following equations :

z*ozf+i = Si,     zf ozf+n = 1     (for 1 < h);    P(p\ zf) = 1.

Thus there exists one, and essentially only one, group G which satisfies

Z = C(G) = Z(G), Z* = G/Z, and which realizes the functions x* o y*, P(p\ x*).

G is clearly a ^-adic group.

If G is the ^-adic closure of G, then Z(G) is the ^-adic closure of Z(G),

and G/Z(G) is the ^-adic closure of G/Z(G). It is well known that these

abelian groups are not direct products of cyclic groups.

Theorem A.2. Suppose that G is a closed p-adic group with abelian central

quotient group. Then G and 77 are isomorphic groups if, and only if,

(1) 77 ¿j a closed p-adic group;

(2) there exists an isomorphism f of Z(G) upon Z(H) and an isomorphism X

of G/Z(G) upon H/Z(H) which satisfy the conditions :

(a) (Z(G) <G; x*, y*)t = (Z(H) <77; x*\ y*x) for x*, y* ¿« G/Z(G) ;

(b) P(Z(G) <G; p<, x*y = P(Z(H) <77; p\ x*x) for x* ¿« (G/Z(G))PK

f R. Baer, Journal für die reine und angewandte Mathematik, vol. 160 (1929), pp. 208-226.

H. Freudenthal, Compositio Mathematica, vol. 4 (1937), pp. 145-234.
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If condition (1) is satisfied by 77, then exactly those pairs of isomorphisms

f, X which satisfy (a) and (b) may be induced by isomorphisms of G upon 77.

Proof. The necessity of the conditions appearing in either of the state-

ments of the theorem is fairly obvious. Suppose now that condition (1) is

satisfied by H, and that f, X is a pair of isomorphisms satisfying the conditions

(a) and (b). It shall be proved that there exists an isomorphism of G upon 7f"

which induces f in Z(G) and X in G/Z(G).

Since G* = G/Z(G) is an abelian /»-group, there exists a direct product D*

of cyclic groups which is dense in G*.f Then D*x is dense in the abelian

/»-group G*X = H/Z(H). If D is the group such that Z(G)úDSG, D/Z(G)
= D*, and if D' is the group such that Z(77) ÚD'^H, and D'/Z(H) =7>*\

then D is dense in G and D' is dense in 77. It is now a consequence of Theorem

5.1 and the conditions (a), (b) that there exists an isomorphism 5 of D upon

D' which induces f in Z(G) and X in D*; and it follows from Lemma A.l, (b)

that there exists a uniquely determined isomorphism y oí G upon the closed

/»-adic group H which induces 5 in D. Clearly 7 induces f in Z(G).

Applying the argument used in Remark 6.4 we can show that G/Z(G) is a

/»-adic group. Consequently there exists at most one isomorphism of G/Z(G)

upon H/Z(H) which induces a given isomorphism in the group D*, dense in

G*. Since 7 and X are equal isomorphisms on'D*, this implies, therefore, that 7

induces X in the whole group G/Z(G).

It may be noted that by the method applied in the proof even the follow-

ing slightly more general statements may be proved :

Corollary A.3. Suppose that G and H are closed p-adic groups and that

C(G) S S á Z(G), C(H) :S T :£ Z(H). Then there exists an isomorphism of G upon

H which maps S upon T if, and only if, there exists an isomorphism a of S upon

T and an isomorphism X of G/S upon H/T which satisfy the conditions (a)

and (b) of Theorem 5.1. If furthermore G/S is a p-adic group, then exactly the

pairs a, X, satisfying (a) and (b) of Theorem 5.1 may be realized by isomorphisms

of G upon H which map S upon T.

Appendix B. Conformalities which preserve the automorphisms.We prove

the following theorem :

Theorem B .1. If Gis a group with abelian central quotient group, if the sub-

group S of G does not contain elements of order 2, and if C(G) úS2SS^Z(G),

then there exists an abelian group H and a one-one correspondence 4> which maps

G upon the whole group H and satisfies the conditions :

(1) (xy) * = x^ytfor x in Z(G) and y in G.

t R. Baer, American Journal of Mathematics, vol. 59 (1937), pp. 99-117, §1.
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(2) (xn) * = (x*) " for x in G and any integer «.

(3) 0 induces a homomorphism of G upon 77/S*.

(4) If y is a (proper or improper) automorphism of G such that Sy ^ S, then

0_170 M an automorphism of 77.

Note that 0 induces isomorphisms in Z(G) and in G/S.

Proof, f Since C(G) f¿S2, and since S does not contain elements of order 2,

there exists to every pair x, y of elements in G a uniquely determined ele-

ment/(x, y) in S such that/(x, y)2 = (x, y). Since/(x, y) is the only solution

of this equation in S, and since S is an abelian group, it follows that

f(x, x) = f(x, y)f(y, x) = 1,        /(at, yz) = f(x, y)f(x, z) ;

and

f(x, y) = 1

if, and only if, (at, y) = 1.

Denote now by 0 a one-one correspondence which maps G upon a set 77

of elements. In 77 a multiplication may be defined by the equation

x*y* = (f(y, x)xy)*

for x and y in G. The product of any two elements in 77 is uniquely determined

by this definition. Since/(x, y) = 1 for x in Z(G), this correspondence 0 be-

tween the group G and the multiplicative manifold 77 satisfies condition (1) ;

and it satisfies (2), since f(x\ x>) = 1 for x in G and any integers i and /. This

implies in particular that the picture of the group unit in G is the uniquely

determined unit in 77, and that the inverse of any element in 77 is uniquely

determined. That the multiplication in 77 is commutative follows from

x*y* = (/(y, x)xyy = (f(y, x)(x, y)yx)* = (f(x, y)yx)* = y*x*;

and that the multiplication in 77 is associative, follows from

(x*y*)z* = (f(y, x)xy)*z* = (f(z, f(y, x)xy)f(y, x)xyz)*

= f(y, x)*f(z, xyf(z, yy(xyz)*
and

x*(y*z*) = x*(/(z, y)yzy = (f(f(z, y)yz, x)xf(y, z)yz) +

= f(y, z)*f(z, x)*f(y, xy(xyzy.

Consequently H is an abelian group and 0 satisfies (3), since all the elements

f(x, y) are contained in S.

f The idea for this proof has been suggested by an argument used by C. Hopkins for the proof

of a similar theorem, cf. C. Hopkins, these Transactions, vol. 37 (1935), pp. 169-170.
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Suppose finally that y is an automorphism of G such that Sy S S. Then

(f(x, y)yy - (/(x, y)2)^ = (x, y)y = (xy, yy) = f(xy, yy)2,

consequently

/(*, y)y = f(x\ yy)

since/(x, y)y is an element of S. Hence

(x*y*)*-1T* = (/(y, x)xy)y* = (/(y, x)TxTyT)*

= (f(yy, xy)xyyy)+ = xy*yy*

= (x*)*~1^*(y*)*-I,>'*;

and this completes the proof of the Theorem.

Example B.2. This example is to show that the Theorem B.l would not

hold without the assumptions concerning the existence of a subgroup S with-

out elements of order 2 such that C(G) ^S2¿S.

Denote by Z an infinite cyclic group generated by an element z, and by G*

a direct product of two infinite cyclic groups. If u*, v* is any basis of G*, then

an operation x* o y* of G* in Z which satisfies the conditions (1) to (4) of Cor-

ollary 2.3 is characterized by u* ov*=z. Let G be the (essentially uniquely de-

termined) group such that Z = C(G) =Z(G), G* = G/Z which realizes the

operation x* o y*.

This group is conformai to a direct product of three infinite cyclic groups.

Suppose that </> is a one-one correspondence which maps G upon some

group H and which satisfies the conditions:

(i)  (xy) * = x*y4, for x in Z(G) and y in G.

(ii)  (x")* = (x*)n for x in G and any integer m.

(iii) 4> induces a homomorphism of G upon 77/Z(G)*.

(iv) If 7 is a proper automorphism of G, then 4>~ly4> is an automorphism

of 77.
Note that (i) and (ii) are identical with the conditions (1) and (2) of the

Theorem B.l, whereas (iii) and (iv) are even weaker conditions than the cor-

responding conditions (3) and (4) of the Theorem B.l.

Since ^ is a one-one correspondence, an element/(x, y) is uniquely deter-

mined by the equation

x*y* = (f(y, x)xy)*

for x and y in G, and it is a consequence of (iii) that f(y, x) is an element of

Z(G). It is a consequence of (i) that/(x, y) =f(Z(G)x, Z(G)y) is independent

of the choice of x and y in their respective classes in G/Z(G) ; and it is a con-

sequence of (ii) thatf(x\ x') = 1 for x in G and integral i and/.
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Let now u and v be some representatives of the classes u* and v* of G/Z,

respectively. Then an automorphism 7 of G is defined by

W = uv,        vy = v~l,        zy = z~l,

since (uy, vy)=(uv, v~1) = (v, u) =z_1=zy = (u, v)y. It is therefore a con-

sequence of condition (iv) that

(f(v, u)yuyvyy = (f(v, m)mz))t* = (f(v, ^uvy^y*

= (m*»*)*-17''' = M**-'7*!;**-1'1"* = uy^vy*

= (uyy(vyy = (f(vy, uy)uyvy)*;

and this implies, since f(u, v) is an element of Z, that

f(v, m)-1 = f(v, u)y = f(vy, uy) = f(v~\ uv).

Another automorphism 1 of G is defined by

u' = v,        v' = u,        z' = S~l;

and on applying a similar argument it follows that/(z>, w)_1 =f(u, v).

Finally it is a consequence of all these equations and (ii) that

(v*, u*) = d*m*(d*)~1(m*)-1 = d*m*(z)-1)*(m-1)*

= f(u, v)*(f(v~l, vu)*f(u~l, vuv-l)*(v, uy

= /(«, d)*/(z)_i, uvyf(u-x, uy(v, uy

= /(«, »)♦/(», M)_1*(^ «)* = (/(«, ")2(^, «))*;

and this last expression is not equal to one, since (v, u) =z-1 is not the square

of an element in Z. Thus 77 is not an abelian group.

If Z is a cyclic group of order 2" for 0<«, z an element generating Z,

if G* is a direct product of two cyclic groups of order 2n+1, and if u*, v* is a

basis of G*, then let G be the group which satisfies C(G)=ZSZ(G), G/Z = G*,

and which realizes the operations characterized by u* ov*=z, P(2n+1, «*)

= P(2n+1, v*) = 1. (This group G has been discussed at the end of §8.) G is

conformai to an abelian group, but practically the same argument as the one

used above proves that there does not exist a transformation 0 into an abelian

group which satisfies the conditions (i) to (iv).

Corollary B.3. If G is a group with abelian central quotient group, and if

C(G) =C(G)2 does not contain elements of order 2, then there exists a conformality

0 of G upon an abelian group II which satisfies the conditions (1) and (2) of

Theorem B.l and transforms the (proper or improper) automorphisms of G into

automorphisms of II.
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This is a consequence of the fact that every automorphism of G maps

C(G) upon a subgroup of C(G) and of Theorem B.l.

Note that the conditions of this Corollary B.3 are satisfied, if G/Z(G) is

an abelian group whose elements are of finite odd order.

Appendix C. Operator groups. If G is a group, then <P is said to be a set

of operators for G, if x* is, for every x in G and for every </> in Í», a uniquely

determined element in G such that (xy)* = x*y*. 4» may be called an associa-

tive set of operators for the group G, if a multiplication of the elements in "i> is

defined which satisfies (x*)y = x*y.

If G is a group, and if 4» is a set of operators for the group G, then the

subgroup S of G is said to be ^-admissible if S* g S for every 4> in $>. The com-

mutator group C(G) is ^-admissible for every set <P of operators. But it is

easy to construct groups G and sets «I» of operators of G such that the central

Z(G) is not ^»-admissible.

If G is a group, and if 4? is a set of operators for G, then the ^-central

Z(G, <f>) of G may be defined as the set of all those elements x in G which

satisfy xy = yx, for every y in G, and x* = x, for every 0 in F ; and the subgroup

C(G, <p) of G, which is generated by the elements (x, y) and x*x_1 for x, y in G

and <f> in <i>, may be called the ^-commutator group of G. Both Z(G, «i») and

C(G, Í») are normal «^-admissible subgroups of G. Z(G, <p) is the greatest sub-

group of G in which the inner automorphisms of G and the operators in <P

induce the identity transformation. C(G, Í») is the smallest subgroup of G

whose quotient group is abelian and in whose quotient group all the operators

in <P induce the identity only. Thus Z(G, <p) and C(G, <i>) are ^-characteristic

subgroups of the «Ê-operator group G.

The obvious generalization of the groups with abelian central quotient

group are the groups satisfying the equation

C(G,*)ÚZ(G, «*).

They are groups with abelian central quotient group, since C(G) ^ C(G, <!>)

and Z(G, <I») ̂Z(G). Thus it is advisable to consider G as an extension of a

group S between C(G, «ï») and Z(G, <ï>) (S is then also situated between C(G)

and Z(G)) by the group G/S — G*. S and G* are abelian groups essentially

without operators. Hence the only problem is to characterize the operators

in <ï> by relations between G* and S, and this may be done by practically the

same method as has been used in §10 in order to describe the automorphisms

in the group fi(S<G) since the elements in <i> induce automorphisms of G

which belong (as automorphisms) to fi(S<G).
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